Stage-oe-small.jpg

Lehre/Praktikum Knowledge Discovery and Data Science

Aus Aifbportal
Wechseln zu:Navigation, Suche

Praktikum Knowledge Discovery and Data Science

Details zur Lehrveranstaltung
Dozent(en) York Sure-Vetter
Übungsleiter Michael FärberAnna Nguyen
Fach (Gebiet) Künstliche IntelligenzMaschinelles LernenData Science
Leistungspunkte ECTS
Erfolgskontrolle
Semester SS


Aktuelle und ergänzende Informationen, sowie Zeiten und Räume der Lehrveranstaltung finden Sie im Vorlesungsverzeichnis der Universität.
Link zum Vorlesungsverzeichnis
Link zum Studierendenportal


Forschungsgruppe


Inhalt

Ziel des Praktikums ist die komplette Durchführung eines Data Science-Projekts. Dies beinhaltet die Datenaufbereitung, Modellierung und Auswertung von Daten. Bewertet wird die praktische Umsetzung des Themas (Softwareentwicklung) sowie ein Abschlussvortrag und ein Bericht, der auch theoretische Grundlagen zum entsprechenden Data Science Gebiets beinhalten soll. Beim ersten Termin wird ein Auswahl von Datensätzen und zugehörigen Aufgabe / Algorithmen vorgestellt. Außerdem werden Gruppen gebildet und Themen zu Gruppen zugeordnet. Denkbare Themen sind z.B. Empfehlungsdienste für Nachrichtenartikel; Twitter-Feed Analysen; Aufbereitung von Daten für ChatBots; Analyse von Wikipedia Artikeln in verschiedenen Sprachen; Zuordnung von Nachrichtenartikeln zu Wikipedia-Kategorien; etc.

Die Gruppen können bei Interesse Aufgaben und Themen mitgestalten.


Literatur

Detaillierte Referenzen werden zusammen mit den jeweiligen Themen angegeben. Allgemeine Hintergrundinformationen ergeben sich z.B. aus den folgenden Lehrbüchern:

  • Mitchell, T.; Machine Learning, McGraw Hill, 1997.
  • Cook, D.J. and Holder, L.B. (Editors) Mining Graph Data, ISBN: 0-471-73190-0, Wiley,
  • Manning, C. and Schütze, H.; Foundations of Statistical NLP, MIT Press, 1999.