Stage-oe-small.jpg

Inproceedings3865

Aus Aifbportal
Version vom 15. März 2021, 12:46 Uhr von He9318 (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Publikation Erster Autor |ErsterAutorNachname=Färber |ErsterAutorVorname=Michael }} {{Publikation Author |Rank=2 |Author=Frederic Bartscherer }} {{Inproceed…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche


Media Bias Everywhere? A Vision for Dealing with the Manipulation of Public Opinion


Media Bias Everywhere? A Vision for Dealing with the Manipulation of Public Opinion



Published: 2021

Buchtitel: Proceedings of the Second International Workshop on Algorithmic Bias in Search and Recommendation (Bias∂ECIR'21)
Verlag: Springer

Referierte Veröffentlichung

BibTeX

Kurzfassung
This paper deals with the question of how artificial intelligence can be used to detect media bias in the overarching topic of manipulation and mood-making. We show three fields of actions that result from using machine learning to analyze media bias: the evaluation principles of media bias, the information presentation of media bias, and the transparency of media bias evaluation. Practical applications of our research results arise in the professional environment for journalists and publishers, as well as in the everyday life of citizens. First, automated analysis could be used to analyze text in real-time and promote balanced coverage in reporting. Second, an intuitive web browser application could reveal existing bias in news texts in a way that citizens can understand. Finally, in education, pupils can experience media bias and the use of artificial intelligence in practice, fostering their media literacy.

Download: Media:BiasVisionPaper_BIAS2021.pdf

Projekt

Digilog@bw



Forschungsgruppe

Web Science


Forschungsgebiet

Information Retrieval, Entscheidungsunterstützende Systeme, Knowledge Discovery, Künstliche Intelligenz, Social Software, Trustworthy AI