Stage-oe-small.jpg

Inproceedings3855

Aus Aifbportal
Version vom 21. Dezember 2020, 11:23 Uhr von He9318 (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Publikation Erster Autor |ErsterAutorNachname=El Asmar |ErsterAutorVorname=Boulos }} {{Publikation Author |Rank=2 |Author=Syrine Chelly }} {{Publikation Auth…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche


AWARE: An Ontology for Situational Awareness of Autonomous Vehicles in Manufacturing


AWARE: An Ontology for Situational Awareness of Autonomous Vehicles in Manufacturing



Published: 2021

Buchtitel: Proceedings of the 2021 Commonsense Knowledge Graph Workshop (CSKG'21)@AAAI'21
Verlag: AAAI

Referierte Veröffentlichung

BibTeX


Kurzfassung
With the development of autonomous vehicles, recent research focuses on semantically representing robotic proprioceptive and exteroceptive perceptions (i.e., perception of the own body and of an external world). Such semantic representation is queried by reasoning systems to achieve what we would refer to as machine awareness. This aligns with the general purpose of artificial intelligence to utilize common-sense knowledge, but rather relates to the knowledge representation and knowledge elicitation aspects. In this work, we present our ontology for representing background knowledge grounding cognition capabilities of autonomous transport robots. Also, existing ontologies in the domain of robotics and Internet of Things are integrated. We then demonstrate the applicability and extensibility of our ontology to autonomous and automated vehicles implemented in an automobile manufacturing plant. Our robotic situational awareness ontology can provide a basis for organizing and controlling robots in a smart factory in the near future and showcases how situational awareness facilitates the coexistence of smart autonomous agents.

Download: Media:AWARE-Ontology_CSKG-AAAI2021.pdf


Verknüpfte Datasets

AWARE Ontology


Forschungsgruppe

Web Science


Forschungsgebiet

Wissensrepräsentation, Ontologiemodellierung, Künstliche Intelligenz