Agent-Based Modelling and Simulation
- Typ: Vorlesung (V)
- Semester: WS 24/25
-
Zeit:
Mo. 21.10.2024
09:45 - 11:15, wöchentlich
11.40 Raum -116
11.40 Kollegiengebäude am Ehrenhof
Mo. 28.10.2024
09:45 - 11:15, wöchentlich
11.40 Raum -116
11.40 Kollegiengebäude am Ehrenhof
Mo. 04.11.2024
09:45 - 11:15, wöchentlich
11.40 Raum -116
11.40 Kollegiengebäude am Ehrenhof
Mo. 11.11.2024
09:45 - 11:15, wöchentlich
11.40 Raum -116
11.40 Kollegiengebäude am Ehrenhof
Mo. 18.11.2024
09:45 - 11:15, wöchentlich
11.40 Raum -116
11.40 Kollegiengebäude am Ehrenhof
Mo. 25.11.2024
09:45 - 11:15, wöchentlich
11.40 Raum -116
11.40 Kollegiengebäude am Ehrenhof
Mo. 02.12.2024
09:45 - 11:15, wöchentlich
11.40 Raum -116
11.40 Kollegiengebäude am Ehrenhof
Mo. 09.12.2024
09:45 - 11:15, wöchentlich
11.40 Raum -116
11.40 Kollegiengebäude am Ehrenhof
Mo. 16.12.2024
09:45 - 11:15, wöchentlich
11.40 Raum -116
11.40 Kollegiengebäude am Ehrenhof
Mo. 23.12.2024
09:45 - 11:15, wöchentlich
11.40 Raum -116
11.40 Kollegiengebäude am Ehrenhof
Mo. 13.01.2025
09:45 - 11:15, wöchentlich
11.40 Raum -116
11.40 Kollegiengebäude am Ehrenhof
Mo. 20.01.2025
09:45 - 11:15, wöchentlich
11.40 Raum -116
11.40 Kollegiengebäude am Ehrenhof
Mo. 27.01.2025
09:45 - 11:15, wöchentlich
11.40 Raum -116
11.40 Kollegiengebäude am Ehrenhof
Mo. 03.02.2025
09:45 - 11:15, wöchentlich
11.40 Raum -116
11.40 Kollegiengebäude am Ehrenhof
Mo. 10.02.2025
09:45 - 11:15, wöchentlich
11.40 Raum -116
11.40 Kollegiengebäude am Ehrenhof
-
Dozent:
Prof. Dr. Sanja Lazarova-Molnar
Dr. Amir Ghasemi - SWS: 2
- LVNr.: 2511102
- Hinweis: Präsenz
Inhalt | Inhalt This course on Agent-Based Modeling and Simulation (ABMS) provides an in-depth exploration of both theoretical and practical aspects of the field. Designed for students with a foundational understanding of programming, mathematics, and computational models, the course equips participants with the knowledge and skills to develop, simulate, and analyze agent-based models. Throughout the course, students will explore fundamental concepts, key theories, and the principles of ABMS. Practical sessions will focus on implementing models using Python and the Mesa library, covering essential topics such as agent behaviors, complex systems, emergent phenomena, and game theory. The course also emphasizes model validation, verification, and calibration, as well as simulation optimization techniques. Advanced topics include multi-agent systems, performance scalability, and the integration of data. We will explore example models from relevant application areas, including smart manufacturing, supply chain digitalization, and other fields where ABMS can provide significant insights. The curriculum will feature practice-oriented student projects, allowing participants to apply the course’s learning to real-world problems and present their findings. Ethical considerations and future directions in ABMS are also discussed, ensuring a well-rounded educational experience.
Competence Certificate Depending on the number of course participants, the exam will be offered as an oral exam (20 min) or as a written exam (60 min). The exam takes place every semester and can be repeated at every regular examination date.
Learning Objectives
Prerequisites
Form of Instruction Lectures and exercises. A detailed course plan will be published before the start of semester. |
Literaturhinweise |
|