Stage-oe-small.jpg

Trustworthy AI

Aus Aifbportal
Wechseln zu:Navigation, Suche

=Trustworthy AI=

Beteiligte Personen
Dr. Michael Färber
M.Sc. Florian Leiser
Dr. Sebastian Lins
M.sc. Maximilian Renner
Prof. Dr. Ali Sunyaev
Philipp Toussaint




Veröffentlichungen zum Forschungsgebiet

Article
Imrana Abdullahi Yari, Tobias Dehling, Felix Kluge, Juergen Geck, Ali Sunyaev, Bjoern Eskofier
Security Engineering of Patient-Centered Health Care Information Systems in Peer-to-Peer Environments: Systematic Review
Journal of Medical Internet Research, 23, (11), Seiten e24460, November, 2021
(Details)


Ali Sunyaev
Vertrauenswürdige Systeme mit künstlicher Intelligenz
Wirtschaftsinformatik & Management, März, 2020
(Details)


Konstantin D. Pandl, Scott Thiebes, Manuel Schmidt-Kraepelin, Ali Sunyaev
On the Convergence of Artificial Intelligence and Distributed Ledger Technology: A Scoping Review and Future Research Agenda
IEEE Access, 8, Seiten 57075-57095, März, 2020
(Details)


Scott Thiebes, Sebastian Lins, Ali Sunyaev
Trustworthy artificial intelligence
Electronic Markets, Oktober, 2020
(Details)


↑ top

inproceedings
Leopold Müller, Lars Böcking, Michael Färber
Safety Aware Reinforcement Learning by Identifying Comprehensible Constraints in Expert Demonstrations
Proceedings of the Workshop on Artificial Intelligence Safety 2022 (SafeAI∂AAAI'22), AAAI
(Details)


Michael Färber, Frederic Bartscherer
Media Bias Everywhere? A Vision for Dealing with the Manipulation of Public Opinion
Proceedings of the Second International Workshop on Algorithmic Bias in Search and Recommendation (Bias∂ECIR'21), Springer
(Details)


Konstantin D. Pandl, Fabian Feiland, Scott Thiebes, Ali Sunyaev
Trustworthy machine learning for health care: scalable data valuation with the shapley value
Proceedings of the Conference on Health, Inference, and Learning, Seiten: 47–57, Association for Computing Machinery (ACM), April, 2021
(Details)


↑ top

proceedings
Maximilian Renner, Sebastian Lins, Matthias Söllner, Scott Thiebes, Ali Sunyaev
Understanding the Necessary Conditions of Multi-Source Trust Transfer in Artificial Intelligence
none, 55th, Januar, 2022
(Details)


Maximilian Renner, Sebastian Lins, Matthias Söllner, Scott Thiebes, Ali Sunyaev
Achieving Trustworthy Artificial Intelligence: Multi-Source Trust Transfer in Artificial Intelligence-capable Technology
Association for Information Systems, Austin, TX, USA, Dezember, 2021
(Details)


↑ top