Stage-oe-small.jpg

Deep Learning

Aus Aifbportal
Wechseln zu:Navigation, Suche

=Deep Learning=

Beteiligte Personen
Dr. Mehwish Alam
M.Sc. Marcus Fechner
M.Sc. Nicholas Popovic
Prof. Dr. York Sure-Vetter




Veröffentlichungen zum Forschungsgebiet

inproceedings
Nicholas Popovic, Michael Färber
Few-Shot Document-Level Relation Extraction
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics
(Details)


Igor Shapiro, Tarek Saier, Michael Färber
Sequence Labeling for Citation Field Extraction from Cyrillic Script References
Proceedings of the AAAI Workshop on Scientific Document Understanding (SDU∂AAAI'22), ACM
(Details)


Michael Färber, Nicolas Weber
When to Use Which Neural Network? Finding the Right Neural Network Architecture for a Research Problem
Proceedings of the AAAI Workshop on Scientific Document Understanding (SDU∂AAAI'22), ACM
(Details)


Nicholas Popovic, Walter Laurito, Michael Färber
AIFB-WebScience at SemEval-2022 Task 12: Relation Extraction First - Using Relation Extraction to Identify Entities
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), Association for Computational Linguistics
(Details)


Michael Färber, Vinzenz Zinecker, Isabela Bragaglia, Sebastian Celis, Maria Duma
C-Rex: A Comprehensive System for Recommending In-Text Citations with Explanations
Proceedings of the 1st International Workshop on Scientific Knowledge: Representation, Discovery, and Assessment (Sci-K'21∂WWW'21), ACM
(Details)


Kevin Förderer, Mischa Ahrens, Kaibin Bao, Ingo Mauser, Hartmut Schmeck
Towards the Modeling of Flexibility Using Artificial Neural Networks in Energy Management and Smart Grids
In ACM, Proceedings of the Ninth International Conference on Future Energy Systems (e-Energy '18), Seiten: 85-90, ACM, New York, NY, USA, Juni, 2018
(Details)


↑ top


Deep learning (also known as deep structured learning or hierarchical learning) is part of a broader family of machine learning methods based on learning data representations, as opposed to task-specific algorithms. Learning can be supervised, partially supervised or unsupervised. (From https://en.wikipedia.org/wiki/Deep_learning)