Aus Aifbportal
Wechseln zu:Navigation, Suche

Semantic Formalization of Cross-site User Browsing Behavior

Semantic Formalization of Cross-site User Browsing Behavior

Published: 2012 November

Buchtitel: Proceedings of the 2012 IEEE/WIC/ACM International Conference on Web Intelligence
Verlag: IEEE Computer Society Press
Erscheinungsort: Macao

Nicht-referierte Veröffentlichung


Large amounts of data are being produced daily as detailed records of Web usage behavior, but the task of deriving actionable knowledge from them remains a challenge. Investigations of user browsing behavior at multiple websites, while more beneficial than studies restricted to a single site, still need to tackle the problems of information heterogeneity and mapping usage logs to meaningful events from the application domain. Focusing on the problem of modeling cross-site browsing behavior, we present a formalization approach based on a Web browsing Activity Model (WAM). We introduce a novel two-staged approach for the semantic enrichment of usage logs with domain knowledge, bringing together Semantic Web technologies and Machine Learning techniques. For learning the semantic types of logs, we present a supervised multi-class classification formulation, deploying structural Support Vector Machines with new sequential input features. We provide an implementation of these approaches and show the results of evaluation with real-world data.