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Abstract

Description logics of minimal knowledge and negation as
failure (MKNF-DLs) are formalisms which augment de-
scription logics (DLs) with the modal operators K repre-
senting ‘knowledge’ and A representing ‘default assump-
tion’. Such hybrid formalisms are useful in characterizing
many nonmonotonic features which can not captured in pure
DLs. The traditional semantics employed for MKNF-DLs is
based on the possible world approach where each world cor-
responds to a DL interpretation. Further, the semantics re-
quires the interpretations to share a common domain and to
interpret constants rigidly across the worlds. In this paper
we argue that these restrictions lead to unintended effects
when an expressive MKNF-DL like SROIQKNF is con-
sidered. We thus propose employing the extended semantics,
introduced recently, for SROIQKNF . We then provide a
comparison between the traditional and the extended seman-
tics including a comparison from first-order modal logic per-
spective. In addition, we present a methodology for perform-
ing reasoning tasks in SROIQKNF .

Introduction
The origin of Description logics (DLs) dates back to the
quest for semantics for knowledge representation systems
like Frame Based Systems (Minsky 1974). DLs are decid-
able fragments of first-order logic (Baader et al. 2007) and
thus the semantics employed for DLs is inherently based on
open-world assumption. Such an assumption is very hand-
ing in modeling problem domains with incomplete knowl-
edge such as Semantic Web (Hitzler, Krötzsch, and Rudolph
2009). However, several features of frame-based system are
expressible only under the close world assumption. Be-
sides, several problem domain requires some sort of non-
monotonic reasoning. Consequently, several work has been
done on extending DLs with non-standard features in order
to capture defeasible inferencing (Donini, Nardi, and Rosati
2002)Bcheck:more refC. However in this work we mainly
focus on MKNF-DLs: standard DLs augmented with modal
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operators K (representing knowledge) and A (representing
default assumption).

While propositional logic extended by the modal opera-
tors has been widely studied and is well-understood, the in-
troduction of the operators into first-order logic (as treated
by Fitting and Mendelsohn 1998 and Braüner and Ghi-
lardi 2006) brings about conceptual controversies concern-
ing assumptions to be made about the domains of quantifica-
tion, equality, (non-)rigidity of constants and the like. Early
works on extending DLs with the operator K and/or the
operator A include (Donini et al. 1992,Donini, Nardi, and
Rosati 1995,Donini, Nardi, and Rosati 1997,Donini, Nardi,
and Rosati 2002, etc.). The formalism presentd in (Donini,
Nardi, and Rosati 2002), called ALCKNF extends the DL
ALC (Schmidt-Schauß and Smolka 1991) with both afore-
mentioned operators and thus is more expressive than the
other approaches of extending a DL with the operator K
only. Consequently many non-monotonic capabilities are ac-
quired. The semantics defined for these extensions are based
on the possible-world approach, where each world corre-
sponds to a DL interpretation wheres as the domain of quan-
tification is fixed to a common countable infinite set and the
constants are interpreted rigidly.

In this work, we first notice that when extending ex-
pressive DLs like SROIQ (Horrocks, Kutz, and Sattler
2006), the traditional semantics can not be employed. In fact,
SROIQ is expressive enough to formalized axioms which
only allow models with finite domain. We thus take the ap-
proach presented in (Mehdi and Rudolph 2011) for defin-
ing the semantics of expressive MKNF-DL like SROIQ
extended with K and A. We than provide a comparison be-
tween our semantics with the traditional one (while restrict-
ing the underlying formalism) from first-order modal logic
perspective (Fitting and Mendelsohn 1998). We then ex-
tended the traditional reasoning approach such the one pre-
sented in (Donini, Nardi, and Rosati 2002) to our approach.
To this end we provide an algorithm for deciding the basic
tasks like entailment and knowledge base consistency.

We omit most of the numerous and lengthy proofs from
the paper and refer the interested reader to the accompanying
technical report (Mehdi 2013).



Preliminaries
Our results are independent of the fragment of first-
order logic under consideration, although we focus on DL
SROIQ(Horrocks, Kutz, and Sattler 2006) only. In this
work, we mainly use the description logic SROIQ. Though
our results are application

Description Logic SROIQ
The DL SROIQ (Horrocks, Kutz, and Sattler 2006) pro-
vides the foundations for OWL 2 DL, the most comprehen-
sive version of OWL that still allows for automated reason-
ing (Hitzler, Krötzsch, and Rudolph 2009). As for the signa-
ture of SROIQ, let NI , NC , and NR be finite, disjoint sets
called individual names, concept names and role names re-
spectively, with NR partitioned into simple and non-simple
roles. These atomic entities can be used to form complex
ones as displayed in Table 1.

Name Syntax Semantics
inverse role R− {(x, y) ∈ ∆I ×∆I | (y, x) ∈ RI}
universal role U ∆I ×∆I

top > ∆I

bottom ⊥ ∅
negation ¬C ∆I \ CI
conjunction C uD CI ∩DI
disjunction C tD CI ∪DI
nominals {a1, . . . , an} {aI1 , . . . , aIn}
univ. restriction ∀R.C {x | ∀y.(x, y) ∈ RI → y ∈ CI}
exist. restriction ∃R.C {x | ∃y.(x, y) ∈ RI ∧ y ∈ CI}
Self concept ∃S.Self {x | (x, x) ∈ SI}
qualified number 6nS.C {x | #{y ∈ CI | (x, y) ∈ SI} ≤ n}
restriction >nS.C {x | #{y ∈ CI | (x, y) ∈ SI} ≥ n}

Table 1: Syntax and semantics of role and concept construc-
tors in SROIQ. Thereby a denotes an individual name, R
an arbitrary role name and S a simple role name. C and D
denote concept expressions.

Axiom α I |= α, if
R1 ◦ · · · ◦Rn v R RI1 ◦ · · · ◦RIn ⊆ RI RBoxR
Dis(S, T ) SI ∩ T I = ∅
C v D CI ⊆ DI TBox T
C(a) aI ∈ CI ABox A
R(a, b) (aI , bI) ∈ RI
a
.
= b aI = aI

a 6 .= b aI 6= bI

Table 2: Syntax and semantics of SROIQ axioms

A SROIQ knowledge base (or SROIQ KB in short)
is a tuple (T ,R,A) where T is a SROIQ TBox, R is a
SROIQ role hierarchy1 andA is a SROIQABox. Table 2
presents the respective axiom types.

The semantics of SROIQ is defined via interpretations
I = (∆I , ·I) composed of a non-empty set ∆I called the
domain of I and a function ·I mapping individual names to
elements of ∆I , concept names to subsets of ∆I and role

1We assume the usual regularity assumption for SROIQ, but
omit it for space reasons.

names to subsets of ∆I × ∆I . This mapping is extended
to complex role and concept expressions as in Table 1 and
finally used to define satisfaction of axioms (see Table 2).
We say that I satisfies a knowledge base Σ = (T ,R,A) (or
I is a model of Σ, written: I |= Σ) if it satisfies all axioms
of T , R, and A. We say that a knowledge base Σ entails an
axiom α (written Σ |= α) if all models of Σ are models of
α.

Description Logics of MKNF
In (Donini, Nardi, and Rosati 2002), the formalism
ALCKNF is presented which extends the description logic
ALC2 with two modalities namely, K (minimal knowledge)
and A (negation as failure). Syntactically, ALCKNF can
be taken as a fragment of the (first-order) logic of mini-
mal knowledge and negation as failure (MKNF (Lifschitz
1991)). Though for semantics, we will see in the following
that certain restrictions are imposed.

We first present the syntax of ALCKNF . A ALCKNF
role R is given by the following grammar

R ::= S|KR|KR
where S is a role name. Similarly, for an ALCKNF role R
and a concept name A, an ALCKNF concept is given by
the following grammar

C ::=>|⊥|A|C u C|C t C|¬C|∃R.C|∃R.C|
∀R.C|KC|AC

The notions of axioms and KBs are defined in the obvious
way. By definition every ALC concept/role/axiom/KB is an
ALCKNF concept/role/axiom/KB. Note that any DL can be
extended with the operators K and A. In sequel by MKNF-
DL we mean a DL extended with K and A.

Classical Semantics The semantics for ALCKNF is de-
fined in terms of MKNF structures: sets of ALC interpreta-
tions.3 Under the classical semantics, the following assump-
tions are made:
• all ALC interpretations under consideration share a com-

mon domain which is a countably infinite set containing
all the individual names, and

• the interpretation of any individual names remains the
same across different interpretations.
An ALCKNF interpretation is a triple (I,M,N ) where

I is an ALC interpretation, andM and N are sets of ALC
interpretations. All these interpretations have a countably in-
finite set ∆ as their domain such that NI ⊂ ∆. The inter-
pretation of an ALCKNF concept C in an epistemic inter-
pretation (I,M,N ), denoted by CI,M,N , can be defined
inductively as given in Table 3

The satisfaction of axiom, TBoxes, ABoxes, RBoxes and
knowledge bases, can be defined in a straight forwardly.

2ALC is the least expressive boolean complete DL that allows
for universal and existential restriction constructs.

3In such structures, each interpretation corresponds to a possi-
ble world(Kripke 1971). Since the accessibility relation is assumed
to be total, it is not explicitly given.



Role S SI,M,N

P P I for an ALC role P
KP

⋂
J∈M(P )J ,M,N

AP
⋂
J∈N (P )J ,M,N

Concept X XI,M,N

> ∆

⊥ ∅
C CI for an ALC concept C
¬C ∆ \ (C)I,M,N

C1 t C2 CI,M,N
1 ∪ CI,M,N

2

C1 u C2 CI,M,N
1 ∩ CI,M,N

2

∃R.C {d ∈ ∆|∃d′ with (d, d′) ∈ RI,M,N and d′ ∈ CI,M,N }
∀R.C {d ∈ ∆|∀d′ with (d, d′) ∈ RI,M,N implies d′ ∈ CI,M,N }
KC

⋂
J∈M(C)J ,M,N

AC
⋂
J∈N (C)J ,M,N

Table 3: Semantics of role and concept constructors in
ALCKNF . Thereby P is a role name, R is an ALCKNF
role and C1, C2 and C are ALCKNF concepts

Given an ALCKNF knowledge base O, a set of ALC in-
terpretations M is called an ALCKNF model (written
M |= O) iff for every I ∈ M we have that (I,M,M)
satisfies O and for any set of ALC interpretation M′ with
M ⊂ M′ there is some I ′ ∈ M′ such that (I,M′,M)
does not satisfy O. We call an ALCKNF model of O just a
model of O whenever its clear from the context. Note how
non-monotonicity is acquired in the semantics by preferring
maximal sets as the models. In this way, we introduce mini-
mality for K and default assumption for A.

Now the notion of entailment in ALCKNF is defined
as follows. An ALCKNF knowledge base O entails an
ALCKNF axiom α if and only if for every model M of
O is such that (I,M,M) satisfies α i.e., (I,M,M) |= α.
Unlike the standard entailment, we write O ||= α.

Note that by definition every standard DL knowledge
base Σ is an MKNF-DL knowledge base with unique
SRIQKNF \U modelM(Σ), which is the set of all stan-
dard models of Σ with a countably infinite domain ∆.

With the modal operators K and A, ALCNF can be used
to model several features of frame-based systems (Minsky
1974) like defaults, integrity constraints, concept/role clo-
sure (see Donini, Nardi, and Rosati 2002). For example, con-
sider the wine ontology.4. To enforce a constraint that for any
wine it should be known if it is a white wine or a red wine,
the following axiom can be added to the knowledge base.

KWine v ARedWine t AWhiteWine

As mentioned in (Donini, Nardi, and Rosati 2002) a
similar axiom using only the K operators is incorrect
formalization of the aforementioned constraint. Neverthe-
less, using K instead of A in axioms has no effect so far
entailment (from a knowledge base) of such an axiom is in
question.

4http://www.w3.org/TR/owl-guide/wine.rdf

Similar to ALCKNF we can extended SROIQ to ob-
tained SROIQKNF . However as shown in (Mehdi and
Rudolph 2011), the semantics can not be employed as is. In
SROIQ we can express axioms that allow for models with
only finite domains. For example a KB containing the ax-
ioms > v {a, b, c} or > v≤3U.> has models with at most
3 elements in their domains. Whereas inALCKNF every in-
terpretation considered has ∆ (a countably infinite set) as its
domain. To over come this problem, the notion of extended
interpretation is presented in (Mehdi and Rudolph 2011) for
SROIQK (SROIQ extended with K). We adopt the same
approach here for SROIQKNF .

Extended Semantics
The extended semantics introduces an abstraction layer in
the standard interpretation to obtain an extended interpreta-
tions. This layer assigns abstract individual names to do-
main elements. The names are from the set NI ∪ N and
hence common to all interpretations, thus they can serve as
the “common ground” for different interpretations with dif-
ferent domains. It is required that every domain element is
associated with at least one abstract name, however, different
names can denote the same domain element (thus allowing
for the possibility of finite domains).

Definition 1. An extended SROIQ-interpretation Ĩ is a
tuple (∆Ĩ , ·Ĩ , ϕĨ) such that

• (∆Ĩ , ·Ĩ) is a standard DL interpretation,
• ϕĨ : NI ∪ N� ∆I is a surjective function from NI ∪ N

onto ∆I , such that for all a ∈ NI we have that ϕĨ(a) =

aĨ .

We call ϕĨ as the abstraction mapping of Ĩ. This mapping
returns the actual interpretation of an individual, given its
(abstract) name, under the interpretation Ĩ. We extend the
definition of ϕĨ to subsets of NI ∪N. For a set S, ϕĨ(S) :=
{ϕĨ(t) | t ∈ S}. Similarly we extend ϕĨ to ordered pairs
and set of ordered pairs on NI ∪ N as follows:

• ϕĨ((s, t)) := (ϕĨ(s), ϕĨ(t)) for ordered pairs (s, t) ∈
(NI ∪ N)

2.
• ϕĨ(T ) := {ϕĨ((s, t)) | (s, t) ∈ T} for sets T ⊆

(NI ∪ N)
2.

We also define the inverse ϕĨ
−1 of the mapping ϕĨ for an

extended interpretation Ĩ as follows:

• ϕĨ−1(x) := {t ∈ NI ∪ N | ϕĨ(t) = x} for every x ∈ ∆Ĩ .

• ϕĨ−1(E) :=
⋃

x∈E ϕĨ
−1(x) for E ⊆ ∆Ĩ .

• ϕĨ−1((x, y)) := {(s, t) | ϕĨ((s, t)) = (x, y)} for ordered
pairs (x, y) ∈ ∆Ĩ ×∆Ĩ .

• ϕĨ−1(H) :=
⋃

(x,y)∈H ϕĨ
−1((x, y)) for anyH ⊆ ∆Ĩ×∆Ĩ .

. ♦

Based on these notions, an extended SROIQKNF inter-
pretation for SROIQK is a tuple (Ĩ,M̃, Ñ ), where Ĩ is an
extended SROIQ-interpretation, and M̃ and Ñ are sets of

http://www.w3.org/TR/owl-guide/wine.rdf


extended SROIQ-interpretations. Similar toALCKNF in-
terpretations, one can define an extended interpretation func-
tion ·Ĩ,M̃,Ñ as in Table 3 except:

(KC)Ĩ,M̃,Ñ = ϕĨ

( ⋂
J̃ ∈M̃

ϕJ̃
−1
(
C Ĩ,M̃,Ñ

)
(KR)Ĩ,M̃,Ñ = ϕĨ

( ⋂
J̃ ∈M̃

ϕJ̃
−1
(
RĨ,M̃,Ñ

)
(AC)Ĩ,M̃,Ñ = ϕĨ

( ⋂
J̃ ∈Ñ

ϕJ̃
−1
(
C Ĩ,M̃,Ñ

)
(AR)Ĩ,M̃,Ñ = ϕĨ

( ⋂
J̃ ∈Ñ

ϕJ̃
−1
(
RĨ,M̃,Ñ

)
All the other notions are similar to the traditional seman-

tics. We next compare the different semantics introduced in
this section. Again similar to the traditional semantics , note
that a SROIQ KB Σ has a unique extended SROIQKNF
model. To define this model, by E(I) we mean the set of
all extended interpretation obtained from the standard inter-
pretation I with all possible abstraction mappings ϕĨ . Sim-
ilarly, for a set I of interpretation we define

E(M) :=
⋃
I∈M

E(I)

Now as Σ is K and A free KB and as in an extended inter-
pretation Ĩ, the abstraction mapping ϕĨ plays no role in the
interpretation of K and A free axioms, we immediately get
the set M̃(Σ) := E(M(Σ)) as the unique extended model
of Σ.

As of the reasoning tasks, by consistency problem of a
given SROIQKNF KB Σ, we mean the problem of de-
termining if Σ exhibits an extended SROIQKNF model.
Similarly by entailment problem of an axiom α we mean the
problem of deciding if Σ ||=

e
α. It is easy to see that entail-

ment problem can be reduced to consistency problem similar
to the standard DLs (Baader et al. 2007).

The Traditional Semantics and SRIQKNF \U
As mentioned earlier, the reason of in-applicability of the
classical semantics for expressive MKNF-DL is that there
are MKNF-DL knowledge bases with models that have fi-
nite domains only. However, we next show that considering
models with infinite domain suffices when we consider any
MKNF-DL upto SRIQKNF \U 5. The idea is that for any
standard DL interpretation I with finite domain there is an
interpretation with infinite domain that behaves exactly like
I on the satisfaction of axioms provided the DL is restricted
to SRIQK\U . This allows us to totally discard interpre-
tation with finite domains from consideration. This is the
reason why it suffices to define ALCKNF model as set of
interpretations with a countably infinite common domain. To
this end, by lifting of an interpretation I to ω, we mean the
interpretation Iω obtained as follows:

5SRIQKNF \U is SROIQKNF without nominals and the
universal role.

• ∆Iω := ∆I × N,
• aIω := 〈aI , 0〉 for every a ∈ NI ,
• AIω := {〈x, i〉 | x ∈ AI and i ∈ N} for each concept

name A ∈ NC ,
• rIω := {(〈x, i〉, 〈x′, i〉) | (x, x′) ∈ rI and i ∈ N} for

every role name r ∈ NR.
By structural induction, it is easy to show that for any inter-
pretation I we have

〈x, i〉 ∈ CIω iff x ∈ CI (1)

for any x ∈ ∆I and SRIQK\U concept C. Consequently
we get the following result.
Lemma 2. Let Σ be a SRIQ knowledge base. For any in-
terpretation I we have that

I |= Σ if and only if Iω |= Σ.

Proof. First we note that it follows immediately from
the definition of Iω that for any SRIQ-role R ∈ R
and (〈x, i〉, 〈y, i′〉) ∈ ∆Iω for i, i′ ∈ N we have that
(〈x, i〉, 〈y, i′〉) ∈ RIω if an only if (x, y) ∈ RI and i = i′

for an interpretation I. Now for any RIA R1 ◦ . . . Rn v R
we have that:
I |= R1 ◦ . . . Rn v R
⇔ I |= RI1 ◦ . . . RIn ⊆ RI
⇔ for any x0, . . . , xn ∈ ∆I , whenever (xi−1, xi) ∈ RIi for
1 ≤ i ≤ n then (x0, xn) ∈ RI
⇔ for any x0, . . . , xn ∈ ∆I and any j ∈ N, when-
ever (〈xi−1, j〉, 〈xi, j〉) ∈ RIωi for 1 ≤ i ≤ n then
(〈x0, j〉, 〈xn, j〉) ∈ RIω
⇔ Iω |= R1 ◦ . . . Rn v R.
The second last equivalence holds as (xi−1, xi) ∈
RIi for 1 ≤ i ≤ n and any non-negative inte-
ger j implies that (〈xi−1, j〉, 〈xi, j〉) ∈ RIωi . Similary
(〈xi−1, ji−1〉, 〈xi, ji〉) ∈ RIω for 1 ≤ i ≤ n implies that
(xi−1, xi) ∈ RI and that all ji, s are equal. And the same
holds for the role R.

Similary, for any role characteristic Ref(R), we have
that:
I |= Ref(R)
⇔ (x, x) ∈ RI for all x ∈ ∆I

⇔ (〈x, j〉, 〈x, j〉) ∈ RIω for any j ∈ N and x ∈ ∆I

⇔ (〈x, j〉, 〈x, j〉) ∈ RIω for any 〈x, j〉 ∈ ∆Iω as
∆Iω = ∆I × N
⇔ Iω |= Ref(R).
In the same way, we can prove for any of the rest of the
role characteristics that whenever I models it so does Iω .
Consequently we have that for any role hierarchyR, I |= R
if and only if Iω |= R.

Now for any GCI C v D and for any interpretation I, by
(1) we get CI ⊆ DI if and only if CIω ⊆ DIω . Further for
any TBox T , I |= T if and only if Iω |= T .

Finally for an ABox A we show that for each assertion in
α ∈ A, I |= α if and only if Iω |= α.
• α is of the form C(a): Now for an interpretation I it

follows from the definition of Iω that aIω = (aI , 0).



As we have already shown that aI ∈ CI if and only if
(aI , i) ∈ CIω for i ∈ N. Hence we get that aI ∈ CI if
and only if (aI , 0) ∈ CIω .

• Analogously we can show an interpretation I satisfies an
assertion if and only if Iω does so.

As a consequence of the above lemma, the restriction to in-
terpretations with infinite domains suffices for the semantics
for SRIQKNF \U as required by the common domain as-
sumption. Further, since we can define a one-to-one map-
ping between ∆I and ∆ (as defined in ALCKNF interpre-
tation), it suffices to consider interpretations only with ∆ as
their models.

Semantic Comparison
As both the traditional semantics and the extended seman-
tics are employable for SRIQKNF \U , we now study the
relationship between the entailment relation in both the se-
mantics. For this, let |≈ and |w be two entailment relations
defined for a logic L. Then |≈ and |w are compatible in L if
we have

Σ|w α iff Σ|≈ α
for every L KB Σ and L axiom α. We now show that ||=
and ||=e are compatible for SRIQKNF \U . To this end we
present the following definition.

Let M be a set of standard DL interpretations and I =
(∆, ·I) be an interpretation in M. An extended interpreta-
tion Ĩ based on I is defined as follows:

• ∆Ĩ = ∆ = NI ∪ N,

• aĨ = aI = a for a ∈ NI ,

• AĨ = AI for concept name A,

• RĨ = RI for a role name R,
• ϕĨ is an identity function on NI ∪ N i.e., ϕĨ(x) = x for

each x ∈ NI ∪ N.

Given a set of interpretation M, the set of extended inter-
pretations based onM is denoted by M̃ as is given as

M̃ = {Ĩ | Ĩ is based on some I ∈ M}

To this end we observe he following relationship.
Lemma 3. Let M be a set of interpretations. Then for a
given SRIQKNF \U role R and concept C, we have

• (x, y) ∈ R(I,M,M) if and only if (x, y) ∈ R(Ĩ,M̃,M̃)

• x ∈ C(I,M,M) if and only if x ∈ C(Ĩ,M̃,M̃)

for arbitrary x, y ∈ NI ∪ N.

The proof is simply by induction on the structure of R and
C (c.f. (Mehdi 2013)).

As a consequence of the above lemma we get the follow-
ing results.
Corollary 4. Let α be an MKNF-DL axiom and M be a set
of interpretations. Then we have

M |= α if and only if M̃ |= α

where M̃ is the set based on M .

Specifically, for each model M of Σ, we have that
M̃ |= Σ where M̃ is the set of extended interpretations
based onM.

Now similar properties can be proved for set of extended
interpretations. Let Ĩ = (∆Ĩ , ·Ĩ , ϕĨ) be an extended inter-
pretation. Then an interpretation I based on Ĩ is defined as
follows:
• ∆I = NI ∪ N
• aI = a for a ∈ NI

• AI = ϕĨ
−1(AĨ) for concept name A

• RI = ϕĨ
−1(RĨ) for role name R

For a set M̃ of extended interpretations the set

M = {I | I is based on Ĩ ∈ M̃}

is called as the set based on Ĩ.
In the following we restrict the extended interpretations Ĩ

such that ∆Ĩ to a countably infinite set and ϕĨ to a one-to-
one mapping. We thus observe the following.

Lemma 5. Let M̃ be a set of extended interpretations such
that each ext. interpretation Ĩ in M̃ is such that ∆Ĩ is
countably infinite and ϕĨ is just a one-to-one mapping from
NI ∪ N to ∆Ĩ . Further letM be the set of interpretations
based on M̃ and let R be an MKNF-DL role and C be an
MKNF-DL concept. Then for any Ĩ ∈ M̃ and x, y ∈ ∆Ĩ

• (x, y) ∈ RĨ,M̃,M̃ if and only if there are u, v ∈ NI ∪ N
with ϕĨ

−1(x) = u and ϕĨ
−1(y) = v such that (u, v) ∈

RM,M,M, where I is the interpretation based on Ĩ,
• similarly, x ∈ C Ĩ,M̃,M̃ if and only if there is a u ∈ NI∪N

with ϕĨ
−1(x) = usuch that u ∈ RM,M,M, where I is the

interpretation based on Ĩ.
As a consequence we get the following result.
Corollary 6. Let α be an MKNF-DL axiom. Then for any
set M̃ of extended interpretations such that each ext. inter-
pretation Ĩ in M̃ is such that ∆Ĩ is countably infinite and
ϕĨ is just a one-to-one mapping fromNI∪N to ∆Ĩ , we have

M̃ |= α if and only ifM |= α

We now prove the compatibility between ||=
e

and ||= in
SRIQKNF \U .
Theorem 7. The extended entailment relation ||=e and
epistemic entailment relation ||= are compatible in
SRIQKNF \U .
Proof We have to show that for any SRIQKNF\U knowl-
edge base Σ and axiom α we have

Σ ||=
e
α if and only if Σ ||= α

For the if direction, suppose that Σ 6||= α. This means
there is an SRIQKNF\U modelM of Σ such thatM 6|= α.
Let M̃ be the set of extended interpretations based on M.
By Corollary 4 we get that M̃ |= Σ and M̃ 6|= α. Since
M̃ |= Σ , we have two possibilities:



a. M̃ is an extended SRIQKNF\U model of Σ. This leads
to a contradiction to the assumption that Σ ||=e α

b. There is an extended SRIQKNF \U model M̃′ of Σ

such that M̃ ⊂ M̃′. But then this would mean M̃′ 6|= α

as M̃ 6|= α. This again leads to a contradiction.
Hence Σ ||= α whenever Σ ||=e α.

For the only if part, suppose that Σ 6||=e α. It means that
there is an extended SRIQKNF \U model M̃ of Σ such
that M̃ 6|= α. Let M̃′ ⊂ M̃ such that each extended inter-
pretation Ĩ in M̃′ is such that ∆Ĩ is countably infinite set
and ϕĨ is a one-to-one mapping. It is easy to show that that
M̃′ is non-empty.

Now letM be the set of interpretation based on M̃′. By
Corollary 6 we thus have thatM |= Σ andM 6|= α. Again
we have two possibilities:
• M is an SRIQKNF\U model of Σ i.e., it is the maximal

set of interpretation such that M |= Σ. This leads to a
contradiction as by assumption Σ ||= α butM 6|= α.

• M is not such a maximal set. But since M |= Σ there
must be some SRIQKNF \U modelM′ of Σ such that
M ⊂ M′. But again this leads to a contradiction as
M 6|= α and henceM′ 6|= α whereas by assumption we
have that Σ |= α. Hence it must be the case that Σ ||=

e
α

whenever Σ |= α.
This proves the theorem. �

Next we discuss the differences between the traditional
and extended semantics from a first-order modal logic per-
spective.

MKNF-DL as First-order Modal Logic
First-order modal logic (FOML) extends first-order logic
with modal operators (Fitting and Mendelsohn 1998; Black-
burn, Wolter, and van Benthem 2006). Several assumptions
need to be made when defining semantics of FOML. Based
on these assumption, the semantics exhibit different charac-
teristics. We refer to (Fitting and Mendelsohn 1998, Black-
burn, Wolter, and van Benthem 2006) for further detail.

Constant vs Varying Domain One of the basic question
one may ask regarding the semantics of FOML is about the
domains of the interpretations (possible worlds) in consid-
eration. Do the domains vary across different worlds? . In
a varying domain semantics, different domains are assumed
for different worlds whereas in constant domain semantics
the interpretation domains across the worlds is fixed.

(non) Rigidity of Constants Does the interpretation of
constant vary across the world?. We say the FOML seman-
tics employ the rigid constant assumption if for any two
worlds w and w′ in a given FOML interpretation and any
constant c, we have that cIw = cIw′ . If this is not the case,
we say the semantics employ the non-rigid constant assump-
tion.

As MKNF-DL can been seen as a fragment of FOML
with two modal operators K and A where both the opera-
tors are interpreted as the necessity operator (�). Note that
the difference between K and A becomes obvious once we

Semantics Domain Constant’s Interpretation
traditional Constant Rigid
extended Varying Non-rigid

Table 4: Semantics Comparison

introduce the notion of models where we require the max-
imality of the set of world for K. Table 4 describes which
(FOML semantics) assumptions are satisfied by the seman-
tics of MKNF-DL.

Reasoning in SROIQKNF
One of the standard approaches approach to reasoning in
some modal nonmonotonic logic is by reducing reasoning
problem into several reasoning steps in some standard non-
modal logic. We take a similar approach for reasoning in
SROIQKNF . We follow the notions presented in (Donini,
Nardi, and Rosati 2002) mainly. However, due to the dif-
ferent semantics, proofs presented in (Donini, Nardi, and
Rosati 2002) are not applicable to our approach as is.

Note that each extended model of a SROIQKNF
knowledge base Σ is just a set of extended interpretations,
which in themselves are standard interpretation with abstrac-
tion mapping. To this end we present the notion of SROIQ
representability.

Definition 8. A set of extended interpretations M̃ is
SROIQ representable if and only if there is an SROIQ
knowledge base Σ such that

M̃ = {Ĩ|Ĩ ∈ (E(mod(Σ))}
where mod(Σ) represents the set of all SROIQ models of
Σ. If there is no such Σ we say M̃ is SROIQ unrepre-
sentable.

In general there are SROIQKNF knowledge bases with
models that are not SROIQ representable.
Theorem 9. The models of a SROIQKNF KB are in gen-
eral not SROIQ representable.

Proof (proof sketch)
From (Donini, Nardi, and Rosati 2002) we know that

ALCKNF is not first-order representable and thus not
ALC representable. Now ALCKNF is a fragment of
SROIQKNF and by Theorem 7 we now that the entail-
ment relation ||= in the traditional semantics and ||=e in the
extended semantics are compatible. Hence the example in
the proof presented in (Donini, Nardi, and Rosati 2002)
can serve as a counter example of SROIQKNF being
SROIQ un-representable. �

Besides the result in the above theorem, we will see that
for certain SROIQKNF KBs, the models are SROIQ
representable. The question now is how to identify such
SROIQKNF KBs. For this we need to understand why
models of certain SROIQKNF KBs are not SROIQ rep-
resentable. The basic idea is that we have two types of quan-
tifiers:
1. ∃ and ∀ which quantify over the elements of the domain

of interpretations



2. K and A which quantify over the interpretations them-
selves

It is this interaction of these quantifiers that makes models
of a given knowledge base SROIQ unrepresentable. For
example, in the concept ∃R.KD with R a role name and D
a concept name, ∃R interacts with KD. Lets consider a set
of extended interpretation M̃ and let Ĩ ∈ M̃. Now in order
for the concept to be satisfiable in (Ĩ,M̃,M̃) there should
be some x ∈ ∆Ĩ for which we have some y ∈ ∆Ĩ such that
ϕĨ(c) = y for an abstract name c ∈ NI ∪N. By semantics it
is also required that c is the abstract name for some element
in each world which has the property D. Such an interaction
of x of one world with elements in all the possible worlds
can not be expressed in first-order logic and therefore not in
SROIQ. Rather first-order interpretation expresses proper-
ties that are local and are not across the worlds.

Note that for an extended SROIQKNF model M̃ of
KB, the SROIQ reprsentabilty requires the existence of a
SROIQK KB O such M̃ = E(mod(O)). Hence, it is im-
portant to understand what SROIQKNF axioms are sat-
isfied in the set of extended interpretation E(mod(O)) for
arbitrary SROIQ KB O. The following two lemmata pro-
vides us with an insight. Note that we consider K only. The
reason is simply that K and A are treated equivalently on the
right hand side of the relation |= (Donini, Nardi, and Rosati
2002).

Lemma 10. Let O be a SROIQ knowledge base and C a
SROIQKNF concept of the form = KD or = AD with D
is SROIQ concept i.e., is K and A free. Let M̃ be the set
with

M̃ = E(mod(O))

Then for any extended interpretation Ĩ ∈ M̃ and x ∈
∆Ĩ , we have that x ∈ C Ĩ,M̃,M̃ exactly if one of the follow-
ing is the case:

1. O |= > v D, or

2. x = aĨ,M̃,M̃ and O |= D(a) for an individual name
a ∈ NI .

Intuitively, this lemma ensures that the extension of a con-
cept that is preceded by K can only contain named individu-
als unless it comprises the whole domain. A somewhat sim-
ilar but intricate case is with the roles.

Lemma 11. Let O be a SROIQ knowledge base and let
R be a SROIQKNF role of the form KP or AP . Further
let M̃ = E(mod(Σ)). Then for any extended interpretation
Ĩ ∈ M̃ and any x, y ∈ ∆Ĩ , we have that (x, y) ∈ RĨ,M̃,M̃

exactly if one of the following holds:

1. O |= U v P , or

2. x = aĨ , y = bĨ and O |= P (a, b) for some individual
names a, b ∈ NI , or

3. x = aĨ and O |= > v ∃P−.{a} for some individual
name a∈NI , or

4. y = bĨ and O |= > v ∃P.{b} for some individual name
b∈NI , or

5. x = y and O |= > v ∃P.Self.

Using these observations we now define the notion of sub-
jectively quantified SROIQKNF knowledge bases whose
models are SROIQ representable.

Definition 12. Let Σ be a SROIQKNF knowledge base
and C be a concept expression occurring Σ in some axioms.
We say Σ is subjectively quantified if and only if for each
quantified sub-expression C ′ of C such that C ′ is of the form
ΞR.D where Ξ ∈ {∃,∀,≤ n,≥ n} for an non-negative
integer n, then we have either

• R and D are SROIQ role and concept respectively, i.e.,
both are K and A free, or

• R is an SROIQKNF role of the form KP or AP , and
D is of the form KD′, AD′,¬KD′ or AD′. ♦

Informally, a subjectively quantified SROIQKNF knowl-
edge base contains no concept expression in which quan-
tified K and A free sub-expression interacts with a modal-
ized sub-expression and vice versa. As discussed in (Donini,
Nardi, and Rosati 2002) there are subjectively quanti-
fied KBs whose models cannot be represented by a finite
SROIQ KB. From practical point of few we are interested
in SROIQKNF KBs whose models can be represented by
finite SROIQ. To ensure this, we need further restrictions.
A given SROIQKNF KB Σ = (T ,R,A) is said to be
simple is simple, if

1. T is a disjoint union of T ′ and Γ where T ′ is K and
A free and Γ = T \Γ such that axioms in Γ are of the
form KC @ D where C is a SROIQ concept and D is a
subjectively quantified concept.

2. for each KC v D ∈ Γ, we have that T 6|= > @ C
3. R is K and A free

4. for any SROIQ role P and individual name a we have
that:

a > v ∃P−.{a} 6∈ T ′
b > v ∃P.{a} 6∈ T ′
c > v ∃P.Self 6∈ T ′

5. (T ,R) 6|= U v P
Note that condition 1 and 2 similar to the conditions

required for simple KBs defined in (Ke and Sattler 2008).
Further condition 2, 4 and 5 ensures that whenever a model
of Σ is represented by a SROIQ KB , then only second
case in both Lemma 10 as well as in Lemma 11 holds. In
the sequel we assume each SROIQKNF to be simple
and subjectively quantified unless stated otherwise. Further
w.log we also assume NI to be the set of all individual
names which occur in Σ.6

In the following we see how the models of a simple sub-
jectively quantified SROIQKNF Σ can be represented by
finite SROIQ knowledge bases. The standard approach
is to define a set of so-called modal atoms for a given
SROIQKNF KB Σ. This set can be partitioned in to the

6NI can be extended whenever required.



set of atoms assumed to be true and the set of atoms assumed
to false. For each such partition one can identify a SROIQ
KB O such that E(mod(O)) is an epistemic model of Σ.
Definition 13. Let Σ = (T ,R,A) be a simple and subjec-
tively quantified SROIQKNF knowledge base. Then the
set of modal atoms MA(Sigma) of Σ as the smallest set
such that:
1. Kα ∈ MA(Σ) for each α ∈ A with α a K and A free

axiom,
2. KR(a, b) ∈ MA(Σ) (resp. AR(a, b) ∈ MA(Σ)) for each

KR(a, b) ∈ A (resp. AR(a, b) ∈ A)
3. KD(a) ∈ MA(Σ) for each a ∈ NI such KC(a) ∈

MA(Σ) and KC v D ∈ Γ,
4. KD(a) ∈ MA(Σ) (resp. AD(a) ∈ MA(Σ)) for each

expression KD (resp. AD) occurring strickly in some C
with KC(a) ∈ MA(Σ) or AC(a) ∈ MA(Σ) for a ∈ NI ,

5. Ξℵ1R.ℵ2D(a) ∈ MA(Σ) (resp. Ξℵ1R.¬ℵ2D(a) ∈
MA(Σ)) and ℵ1R(a, b),ℵ2D(b) ∈ MA(Σ) for each b ∈
NI whenever the concept expression Ξℵ1R.ℵ2D (resp.
ΞℵR.¬ℵ2D) occurs strictly in some expression C such
that KC(a) ∈ MA(Σ) or AC(a) ∈ MA(Σ)

where Ξ ∈ {∃,∀,≤ n,≥ n} for some non-negative integer
n and ℵ1,ℵ2 ∈ {K,A}.
Note that unlike (Donini, Nardi, and Rosati 2002) the set
MA(Σ) of modal atoms in our case is finite. The reason is
simply that the set NI is finite as well as Σ itself is finite.
This ensures the SROIQ representability of the models of
Σ by finite SROIQ KBs.
Definition 14. For a given SROIQKNF KB Σ =
(T ,R,A), let [P,N ] be a partition of MA(Σ). Further, let
C(a) be a SROIQKNF axiom in A. By C(a)[P,N ] we
mean the expression obtained as following:
• replace each strict occurrence of a concept expression

KD (resp. AD) in C with > if KD(a) ∈ P (resp.
AD(a) ∈ P ) else replace it with ⊥

• replace each strict occurrence of a concept expression
Ξℵ1R.ℵ2D in C with > if Ξℵ1R.ℵ2D(a) ∈ P else re-
place it with ⊥

where Ξ ∈ {∃,∀,≤ n,≥ n} for a non-negative integer n
and ℵ1 ∈ {K,A} and ℵ2 ∈ {K,¬K,A,¬A}. ♦

Note that C(a)[P,N ] is a K and A free expression. In
a similar manner one can replace modal atoms in a given
knowledge base. Consequently we get a SROIQ knowl-
edge base i.e., a KB without K and A operator. In the fol-
lowing we will see that such KBs can be used to represent
SROIQKNF models of a SROIQKNF KB. Similar to
(Donini, Nardi, and Rosati 2002),
Definition 15. For a given SROIQKNF Σ and a partition
[P,N ] of MA(Σ), the SROIQ KB ObK and ObA are de-
fined as ObK = (T ′,R,A′) and ObA = (T ′,R,A′′) where

A′ = {C(a)[P,N ]|KC(a) ∈ P}∪{R(a, b)|KR(a, b) ∈ P}

and

A′′ = {C(a)[P,N ]|AC(a) ∈ P}∪{R(a, b)|AR(a, b) ∈ P}

We call ObK and ObA as SROIQ KBs corresponding to
[P,N ]. In general, not every partition is of our interest as
there are partitions for which ObK and ObA may not lead
to a model. We rather are interested in partitions that are
consistent in the following sense.
Definition 16. Let Σ be a SROIQKNF KB. A partition
[P,N ] of MA(Σ) is said to consistent if it satisfies:

(i) if C(a) ∈ A (resp. R(a, b) ∈ A), then KC(a) ∈ P
(resp. KR(a, b) ∈ P ).

(ii) ObK is satisfiable,
(iii) ObA is satisfiable,
(iv) ObK 6|= C(a)[P,N ] for each KC(a) ∈ N ,
(v) ObK 6|= R(a, b) for each KR(a, b) ∈ N ,

(vi) ObA 6|= C(a)[P,N ] for each AC(a) ∈ N ,
(vii) ObA 6|= R(a, b) for each AR(a, b) ∈ N ,
(viii) for each Ξℵ1R.ℵ2D(a) ∈ P (resp.

Ξℵ1R.¬ℵ2D(a) ∈ P ), we have
• if Ξ = ∃ then there is some b ∈ NI such that
ℵ1R(a, b) ∈ P and ℵ2D(y) ∈ P (resp. ℵ2 ∈ N )
• if Ξ = ∀ then for every b ∈ NI , ℵ1R(a.b) ∈ P

implies that ℵ2D(b) ∈ P (resp. ℵ2D(b) ∈ N ),
• if Ξ =≤ n for a non-negative integer n, then there

are pair-wise distinct b1, . . . , bk ∈ NI with k ≤ n
such that ℵ1R(a, bi) ∈ P and ℵ2D(bi) ∈ P (resp.
ℵ2D(bi) ∈ N ) for 1 ≤ i ≤ k,
• if Ξ =≥ n for a non-negative integer n, then there

are pair-wise distinct b1, . . . , bk ∈ NI with k ≥ n
such that ℵ1R(a, bi) ∈ P and ℵ2D(bi) ∈ P (resp.
ℵ2D(bi) ∈ N ) for 1 ≤ i ≤ k,
• for each KC v D ∈ Γ, KD(a) ∈ P whenever

KC(a) ∈ P for each a ∈ NI . ♦

The notion of consistent partition is sufficient in the sense
that only consistent partitions satisfying some additional
conditions (to be discussed later) lead to SROIQ KBs for
representing models of a given SROIQKNF KB Σ. How-
ever, we want the other direction to be true as well i.e., for
every epistemic model M̃ of Σ there must exist a consis-
tent partition such that M̃ is representable by corresponding
KBs.
Definition 17. Let (M̃,M̃′) be a pair of set of extended in-
terpretations, then (M̃,M̃′) induces a partition (P,N) of
MA(Σ) such that P = {α ∈ MA(Σ)|(M̃,M̃′) |= α}. Ob-
viously N = MA(Σ)\P . ♦

We now observe the following relationship between a pair
of set of extended interpretations and the partition induced
by the pair.

Lemma 18. For a given SROIQKNF KB Σ, let (M̃,M̃′)
be a pair of set of extended interpretations, such that
(M̃,M̃′) satisfies Σ. Further let [P,N ] be the partition in-
duced by (M̃,M̃′). Then,

• for each Ĩ ∈ M̃we have Ĩ |= ObK and for each Ĩ ′ ∈ M̃′
we have that Ĩ ′ |= ObA.

• [P,N ] is a consistent partition.



Algorithm 1 isConsistent(Σ)
Require: a SROIQKNF KB Σ,
Ensure: returns true if Σ is consistent and false otherwise.

guess a partition [P,N ] of MA(Σ) such that:
1. [P,N ] is consistent
2. ObK[P,N ] 6|= C(a)[P,N ] for each AC(a) ∈ N
3. ObK[P,N ] 6|= R(a, b) for each AR(a, b) ∈ N
4. ObK = ObA
5. If for each partition [P ′, N ′] of MA((T ,R,A′)) where

A′ = A′∪{AC(a)|C(x) ∈ ObK[P,N ]}∪
{AR(a, b)|R(a, b) ∈ ObK[P,N ]}

at least one of the following does not hold
a. [P ′, N ′] is inconsistent,
b. ObK[P,N ] |= ObK[P ′, N ′],
c. ObK[P ′, N ′] 6|= ObK[P,N ]
d. ObK[P,N ] |= ObA[P ′, N ′]

6. Then return true
return false

Using Lemma 18 we device Algorithm 1 for checking the
consistency of a given SROIQKNF KB. The following
theorem ensures the correctness of the algorithm.
Theorem 19. For a given SROIQKNF KB Σ
isConsistent(Σ) returns true iff Σ is consistent.

Proof (proof sketch) Note that Lemma 18 established a
key result in the sense that a set M̃ of extended inter-
pretation satisfying a KB Σ induces a consistent partition
[P,N ] of MA(Σ) only. Further each Ĩ ∈ M̃ is such
that Ĩ |= ObK[P,N ]. This allows us and each extended
interpretation satisfies. In fact one can show that M̃ =
E(mod(ObK[P,N ])). Hence existence of a consistent parti-
tion as in Algorithm 1 guarantees the existence of a set of ex-
tended interpretations satisfying Σ. This set thus satisfy the
first condition required by the definition of SROIQKNF
models of Σ. Condition 5 then checks if this set is maxi-
mal as required by the second condition in the definition of
SROIQKNF models. �

As the entailment problem can be reduced to the consistency
problem, Algorithm 1 can be used for deciding entailment
problem as well. The computational complexity of the rea-
soning in SROIQKNF thus can be determined by analyz-
ing each step in the algorithm.
Corollary 20. Deciding the consistency and entailment
problem in SROIQKNF NEXPTTIME-complete.

Proof The set MA(Σ) is expenential in the size of Σ, hence
guessing a partition of MA(Σ) can be performed in NEX-
PTIME. The same is true for the partition in step 5. Con-
sistency of a partition can be checked in polynomial time.
Step 4 is linear whereas the rest of the steps are standard
reasoning in SROIQ and thus can be decided in NEXP-
TIME (Horrocks, Kutz, and Sattler 2006). Hence, the overall
complexity of the algorithm is NEXPTIME. Now given the

fact that every SROIQ KB is a SROIQKNF KB, we im-
mediately get the hardness results. �

Note that (Donini, Nardi, and Rosati 2002) and (?)
presents tableau algorithm for deciding the reasoning tasks
in ALCKNF . In our case, we believe a direct implementa-
tion of Algorithm 1 allows us using some highly optimized
off-the-shelf reasoner as a black-box for deciding the rea-
soning problems. Nevertheless, several heuristics need to be
invented in order to achieve practical feasibility. We leave
this as a matter of the future work. Just to mention an impor-
tant remark, note that guessing the partitions in Algorithm 1
is the most expensive step as it introduced non-determinism.
However, one can easily reduce the number of possible par-
titions by enforcing the conditions required for consistent
partitions. For example, for every K and A free axiom α in
A, we must have that Kα ∈ P for a partition P . The reason
is that extended interpretation in a model of Σ has to satisfy
α. Similarly, for every a ∈ NI with KC(a) ∈ P , we add
KD(a) to P whenever KC v D ∈ Γ. In deed, every con-
dition in the definition of consistent partition may serve as
filtration criteria for select modal atoms in P of a partition.
Consequently, we reduce the number of candidate partition
and hence the overall computation time.

Conclusion and Outlook
We have seen that some features of DLs like SROIQ
are expressive enough to cause problem when traditional
semantics is applied for their MKNF extension. We thus
have suggested the recently introduced semantics for
SROIQK for expressive MKNF-DL. Later we showed
the compatibility of both the semantics for DLs where the
traditional semantics is applicable. This showed that for
MKNF-DL upto SRIQKNF \ U the entailment under
both the traditional semantics and the extended semantics
coincides. Meanwhile we provided a comparison between
the semantics from the first-order logic perspective as well,
In the traditional semantics we have the assumption of con-
stant domain along with the rigidity of constants whereas in
the extended semantics we have the assumption of varying
domain along with the non-rigidity of constants. Finally we
have devised an algorithm for deciding reasoning problems
in SROIQKNF . Consequently, we showed that the time
complexity of reasoning in SROIQKNF coincides with
that of standard SROIQ.

As avenues for future research, we will first implement
Algorithm 1 into a practical system. For this we need to in-
vent several heuristics in order to improvise the run time of
the system. We have already pointed out some ideas in the
previous section. The only way of measuring the practicabil-
ity of our system is through evaluation. For this we will look
for real-life applications to advocate the need for extended
features we obtained via K and A operators.
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