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Abstract

The Semantic Web aims at easy integration and usage
of content by building on a semi-structured data model
where data semantics are explicitly specified through on-
tologies. The use of ontologies in real-world applications
such as community portals has shown that a new level of
data independence is required for ontology-based applica-
tions. For example, the customization of information to-
wards the needs of specific user communities is often need.
This paper extends previous work [22, 21] on this issue and
presents a view language for the fundamental data models
of the Semantic Web, viz. RDF and RDFS, and how it can
be implemented. The basic novelty of the view language is
the semantically appropriate classification of views into in-
heritance taxonomies based on query semantics. Addition-
ally, the underlying distinction between unary predicates
(classes) and binary predicates (properties) taken in RDF/S
is maintained in the view language. So-called external on-
tologies allow the integration of multiple source databases,
offer control over the publishing of data and enable the gen-
eration of views spanning across databases.

1. Introduction

The vision of the Semantic Web incorporates distributed
content that is machine understandable by relying on an ex-
plicit conceptual level. It builds on RDF [13], which is a
semi-structured data model that allows the definition of di-
rected labelled graphs. The required conceptual level is not
given by a fixed schema, but rather by an ontology that spec-
ifies the formal semantics of content. For this purpose, RDF
Schema (RDFS) has been devised as a particular vocabulary
within RDF. It introduces a property-centric approach and
allows to partition data into classes without expressing strict

typing. Additionally, inheritance hierarchies on both classes
and properties are provided.

The use of ontologies in real-world applications such as
community portals has shown that they can enhance inter-
operability between heterogeneous information resources
and systems on a semantic level. However, what has also
become clear is that ontologies and thereby ontology-based
applications themselves suffer from heterogeneity. This
leads to difficulties when several communities try to estab-
lish a way of communication while using diverse ontolo-
gies. On the one hand, not all information that is accessi-
ble within one community (e.g. a department) might be in-
tended to be accessible to other communities. On the other
hand, overlapping content might be represented in different
ways.

Therefore a new level of data independence is required
to allow customization of information towards the needs of
other agents, which can be achieved by exploiting database
view principles.

Contribution of the paper In this paper we show how
a view language that picks up the unique situation of data
in the Semantic Web and allows easy selection, customiza-
tion and integration of Semantic Web content can be imple-
mented.

The central objective of this implementation is to ac-
knowledge the underlying intention of the Semantic Web,
i.e. adding explicit formal semantics to Web content. There-
fore the implementation must ensure that views are classi-
fied to the semantically appropriate location in RDFS inher-
itance hierarchies.

Second, we maintain the underlying distinction between
classes and properties taken in the ontology representation.
This leads to a distinction of views on classes and views on
properties. Hence, views can be composed and used within
queries.



Third, our approach supports the construction of exter-
nal ontologies by grouping views and base entities into new
data sets to allow customization and integration of multiple
databases towards application demands or other user com-
munities.

Our approach facilitates data integration and usage and
paves the way to Semantic Web information systems that
nourish from various data sources and feed back into many
different data sinks - like our SEmantic portAL (SEAL)
[14]. Such a view mechanism for ontology-based semi-
structured data will be a crucial cornerstone to achieve many
different exciting objectives. Examples for such objectives
will be personalized access to metadata bases, authorization
and the improved integration of ontologically disparate in-
formation sources - to name but a few.

The paper is structured as follows. Section 2 introduces
the associated data model and ontology representation lan-
guage proposed for the Semantic Web and discusses the
query language that is used in our approach. In Section
3 the underlying design decision for an apt view language
is presented. Then, Section 4 provides a brief look at the
proposed view language and presents some example views.
Section 5 introduces the notion of external ontologies that
support the aggregation and integration of distributed data.
Section 6 sketches the implementation issues before we talk
about related work in section 7 and conclude.

2. The Semantic Web

2.1. RDF - A semi-structured data model

The underlying data model of the Semantic Web is the
Resource Description Framework (RDF) [13]. It is a semi-
structured data model that was initially intended to enable
the encoding, exchange and reuse of structured metadata
describing Web-accessible resources. Data is encoded us-
ing so-called resource-property-value triples, which arealso
called statements.

Individual information objects are represented in RDF
using a set of statements describing the same resource. Ob-
ject identity is given via the uniform resource identifier
(URI) that labels the resource1. This object identifier is
globally unique.

A set of statements constitutes a partially labelled di-
rected pseudograph2 and is commonly called an RDF
model. The fact that properties can have multiple values,
e.g. ’x:email’3 for the resource ’x:Rudi’ in Figure 1, allows

1This can also be omitted creating so-called anonymous resources, e.g.
the resource pointed to by ’x:name’ in Figure 1

2We can speak of pseudographs since multiple edges between (possibly
identical) nodes are allowed.

3For the sake of brevity, we use “x” to abbreviate a uniform resource
identifier (URI) using XML namespaces. In a real world scenario, the
“x”es would be replaced by URIs.

to combine statements from different RDF models very eas-
ily.

The data model distinguishes between two types of val-
ues. A value can either be another resource leading to ob-
ject associations or may be a literal establishing object at-
tributes. For example, in Figure 1 ’x:Raphael’ is a resource,
whereas the name ’Volz’ is a literal.

x:Raphaelx:Rudi

x:Daniel

Volz@aifb.uni-karlsruhe.de

dahi@aifb.uni-karlsruhe.de

Studer@fzi.de

x:advises

x:email
x:email

x:email

x:supervises

x:email
Raphael

Volz

x:name

x:firstn

x:lastn

x:AIFB

Studer@aifb.uni-karlsruhe.de

x:works

x:directs

x:works

Figure 1. A simple, exemplary RDF model

2.2. RDFS – Light-weight ontologies

Ontologies provide a formal and shared conceptualiza-
tion of a particular domain of interest. In the Semantic Web
a light-weight (in comparison to classical knowledge repre-
sentation languages) approach is currently in use. Ontolo-
gies are constructed from classes and properties. Both are
embedded in a class and a property inheritance hierarchy.
One of the proposed standards for the Semantic Web is RDF
Schema (RDFS)[9]4

Instantiation

Subclass-of

Figure 2. Class hierarchy in RDFS for a simple
ontology

RDFS incorporates a unique notion of object orientation.
It introduces classes and a subsumption hierarchy on classes
(compare Figure 2). In RDFS subsumption allows for mul-
tiple inheritance and has set-inclusion semantics. As the
subsumption establishes a partial order, class equivalence
can be expressed via a cyclic class hierarchy. The extension
of a class is defined by explicit assignment of resources to
classes. A given resource can belong to several class exten-
sions since multiple instantiation is allowed.

4A more expressive language in style of description logics iscurrently
finalized by another W3C working group.



Attributes and associations are not defined with the class
specification itself. Instead, such class properties are de-
fined as first-class primitives, so-called properties, which
exist on their own. Thereby classes do not specify types. In-
stances may have further (unspecified) properties and may
also not use properties that were specified to be valid for
their particular classes.

The definition of a property may include the specifica-
tion of (multiple) domains and ranges. This defines the
context, i.e. the class instances, in which a property may
be validly used in an RDF statement. Multiple assignments
have to be understood conjunctively. Therefore, a property
can only be validly used on resources that are instances of
all classes simultaneously. For example, in Figure 3 the
property ’x:advises’ has two domain classes: ’x:Employee’
and ’x:PhD-Student’, thus ’x:advises’ is correctly instanti-
ated in Figure 1 on ’x:Raphael’ in Figure 1 (also cf. Figure
2 for class membership). The consistency of the constraints
is maintained by entailing the appropriate class membership
for resources when they are used in a property instantiation
[12].

If the domain or range of a property is not defined, no
entailments are made for the resource-value pair, e.g. this
applies to ’x:responsiblefor’ in Figure 3. Properties may
be placed into a subsumption hierarchy as well, e.g. in Fig-
ure 3 the property ’x:advises’ is a specialization of the prop-
erty ’x:responsiblefor’. Property subsumption establishes
a partial-order and has set-inclusion semantics as well. A
query to the extension of the property ’x:responsiblefor’ to
the data set of Figure 1 would therefore yield the two tuples
((’x:Rudi’,’x:Raphael’), (’x:Raphael’,’x:Daniel’)).

x:Employee

x:PhD-Student

x:email

x:supervises

x:advises

x:Employee x:Employee

rdf:Literal

x:Student

rdfs:domain

rdfs:domain

rdfs:domain

rdfs:range

rdfs:range

rdfs:range

x:responsible_for

rdfs:subPropertyOf

rdfs:subPropertyOf

x:worksx:Employee x:Organization

rdfs:domain rdfs:range

x:directs x:Organization

rdfs:range

Figure 3. Properties in RDFS for a simple on-
tology

2.3. Query Language

We chose to extend RQL [3] with view primitives. RQL
is the only RDF query language that takes the semantics
of RDFS ontologies into account. The need to be aware
of these semantics is the main reason why query languages
operating on the syntactic XML-serialization (e.g. XQuery
) also fail to meet our goals5.

Due to lack of space, we can only give a short introduc-
tion to RQL in this section. The interested reader may refer
to [3] for a more in-depth description.

RQL is a typed language following a functional approach
(in style of OQL) and aims at querying RDF at the semantic
level. Its basic building blocks are generalized path expres-
sions which offer navigation in the RDF graph. The graph
itself is viewed as a collection of elements which can be ac-
cessed in such path expressions. For example the following
query would return the collection of all pairs of nodes which
are related via the property email:

SELECT X,Y FROM {X}x:email{Y}

RQL queries follow the basic select-from-where con-
struct known from SQL. The construct{X}x:email{Y} is
called a basic data path expression and is the atom of all
path expressions. The variables X and Y are bound to the
resources and values of those RDF statements that use the
property x:email. The{} notation is used in path expres-
sions to introduce variables.

RQL permits the interpretation of the superimposed se-
mantic descriptions offered by one or more ontologies. For
instance, the inheritance hierarchy is considered when ac-
cessing class extents. Also path expressions can be con-
catenated by a ”.”, which is just a syntactic shortcut for an
implicit join condition. The following query shows these
features:

SELECT Y FROM Student{X}.x:advises{Y}

This query returns the identifiers of all students advised
by other students. Since the class PhD-Student is a subclass
of Student the above query would return ”x:Daniel” for the
RDF model depicted in Figure 1.

Furthermore, RQL supports set operators, such as union,
intersection and difference. Boolean operations like=, <,
> can be used for selection in where-clauses.

3. Design of a view language

Views provide a new level of data independence and al-
low the required selection, customization and integrationof
data that is required for many Semantic Web applications.

5Additionally one would have to take care of the multiple syntactic
variants that exist to represent the same data due to the RDF specification.



From the perspective of classical databases it is natural to
consider views as arbitrary stored queries. Users should not
be able to make a distinction between views and base data
and should be able to state other queries or views on top of
them. This mandates that the structure of views corresponds
to the structure of base data.

However, in classical approaches to views (independent
of the particular data model), no conceptual description of
views are provided. Hence, the semantics of the view re-
main unclear to the agent. Since the Semantic Web builds
on this very semantics, the semantics of the views must be
described by an ontology and views must be embedded in
the appropriate location of the inheritance hierarchies. This
imposes the following requirements on a view language for
ontology-based RDF data:

1. The structure of views must correspond to the struc-
ture of data. This results in the distinction between
views on classes and views on properties. Hence,
views can only involve queries which return either
unary (views on classes) or binary (views on proper-
ties) tuples. RQL queries that return n-ary relations
are therefore not allowed in view definitions.

2. The semantics of views have to be specified by an on-
tology and should be embedded in the respective in-
heritance hierarchies according to their semantics by
classification. This classification must be part of every
view definition.

3.1. Classification of views

Views have to be embedded into the inheritance hierar-
chies by explicit assignment. This imposes further work on
the user. Therefore this burden should be taken from the
user by deducing the appropriate classification from analy-
sis of the query.

Unfortunately, this information cannot be deduced in
all cases due to the undecidability of the general problem
[17, 4]. However, the classification can be deduced au-
tomatically for many important queries. In our approach
the required (and undecidable) analysis whether a particu-
lar query belongs to one of those special cases is avoided
by introducing a special convenience syntax for each case.
If these syntaxes are used the appropriate classification is
automatically generated for the user.

Figure 4 provides an overview about the classification
which is semantically correct for each algebraic opera-
tor. The illustrated classifications are motivated by the set-
inclusion semantics of inheritance.

Selection always reduces the initial set and creates sub-
sets. Therefore the class or property which is subject of the
selection subsumes the view.

A B

A B

A B

A \  B

(A)

C

s

Figure 4. Placement of views in the hierarchy

Difference can always be rewritten into an equivalent se-
lection (involving negation) on the minuend. Therefore the
minuend subsumes the view.

Union unifies the extensions of classes or properties.
Hence, the unified classes or properties are subsets of the
view. Consequently, the view subsumes the unified classes
or properties. The view itself is subsumed by the least com-
mon element in the respective inheritance hierarchy of all
unified elements.

Intersection is a subset of the extents of all intersected
classes or properties. Therefore every intersected class or
property subsumes the view based on the intersection oper-
ation.

Join, negation and cross product do not introduce sub-
or supersets wrt. to the interconnected classes or properties.
Hence, the semantics have to be stated manually by the user.
One exception are views on classes, where queries have to
return unary results. Here, the join operator decomposes to
selection6. The cross product operator does not have any ef-
fect wrt. the row that provides the unary result of the query7.
Nevertheless the user has to stated even in this case which
class or property is subject of the selection.

3.2. View Population and updates

Views that are created via this automatic classification
are also updatable, since updates can be delegated to the
involved classes or properties.

Since RDF uses object identifiers in form of URIs, up-
dates on views could be propagated to base data. This re-
quires that objects are preserved. Hence, views must be
populated with base data. The generation of objects to-
gether with new instance identifiers, which is chosen in

6Since joins can be rewritten to a selection on the cartesian product.
As we can only regard one row of the relation the results of thecartesian
product vanish leaving the selection behind.

7Since duplicates are irrelevant with respect to the interpretation of the
result since we regard the result as a set of instances



many object-oriented view languages (e.g. [5]), is therefore
not applied in our language.

Object preservation allows the propagation of updates in
many cases. Views could be updated if they don’t involve
joins (such as involved in generalized path expressions), or
aggregation functions. The question where to put newly
generated instances, known as the so-called interface res-
olution conflict [8], does not arise with RDFS ontologies
since multiple instantiation is allowed.

For views based on the above-mentioned operations
all updates are therefore propagated to the involved base
classes or properties (cf. Figure 5). For example, if object
x is deleted from∪(A, B) thenx is deleted from bothA
andB. Any updates through a view are ultimately visible
for views based on the union and intersection operations,
since they automatically meet the query conditions after-
wards. The latter is not necessarily true for selection-based
views, since the updated data may not meet the query con-
ditions anymore.

A B

A B

A B

A \  B

(A)s

Figure 5. Update propagation

Updates are generally not permitted against elements of
the ontology itself. Modifying or deleting classes and sub-
class relationships may invalidate view definitions, e.g. if a
class is deleted. Inserts do not necessarily impose problems
since they do not alter existing information. However, for
union-based views, where the least common subsuming el-
ement is sought, a reclassification could be necessary. The
same kind of problems arise with updates on property def-
initions. This problem is germane to schema evolution and
not specific to the Semantic Web.

4. View Language

In this section we will describe the language constructs
for creating class and property views as well as for external
ontologies.

4.1. Views on classes

The definition of views on classes involves two compo-
nents: First, users have to define an arbitrary RQL query.
This query must return a set of resources, viz. unary tuples.
This set of resources constitutes the instances that are in the

extent of the view. Second, the view must be properly clas-
sified in the class hierarchy. This enables the understand-
ability of the view by using the semantics of the subclass
relationship. The basic syntax for the definition of class
views (cf. [22]) therefore involves these two components.
For example, one could characterize the class of all ”Wis.
Mitarbeiter” consisting of PhD-Students that are employed
and advise students at the same time:

CREATE CLASS VIEW x:WisMitarbeiter
SUBCLASSOF x:Employee
SUBCLASSOF x:PhD-Student
USE
(SELECT X FROM x:Employee{X})
INTERSECT
(SELECT X FROM
x:PhD-Student{X},
{Y} x:advises {Z}
WHERE X = Y)

The fact that users can use arbitrary unary RQL queries
within this syntax has two main consequences.

1. Restricted Updatabilityas it is impossible to decide
where to propagate updates.

2. Manual ClassificationAs users can combine arbitrary
algebraic operations in the view8 the semantic charac-
terization of the view cannot be given automatically
since this problem is undecidable [17, 4].

The latter fact leads to the introduction of additional pos-
sibilities to define views on classes conveniently where the
classification can automatically be determined from query
semantics. Consequently, the view language features con-
venience syntaxes which allow to define views via selection
and set operations (i.e. union, intersection and difference).
Multiple convenience syntaxes for selection are available,
viz. rename, arbitrary selection and difference9.

Convenience syntaxes are normalized into the above
mentioned general syntax. The classification of the view,
i.e. the creation of necessary subclassof statements, is au-
tomatically generated during the transformation. Besides,
the appropriate RQL-query is created. Views which are de-
fined in this way are additionally subject to the previously
discussed updatability.

For example a class view ”x:Scientist” which consists of
professors as well as PhD-Students is created by the follow-
ing definition:

CREATE CLASS VIEW x:Scientist
ON x:Professor UNION x:PhDStudent

8except for the default projection that fixes the arity
9As already mentioned, the difference operator can always berewritten

into an equivalent selection.



The translation of this definition into the standard form
involves the computation of the least common super class
of the unified classes.

With respect to our ontology example in Figure 2 no
common superclass of ”x:Professor” and ”x:PhD-Student”
can be found. Therefore the view has no super class and
the subclassof statement is omitted in the translation. The
generation of the RQL query which is used in the translated
definition is straightforward:

CREATE CLASS VIEW x:Scientist USE
(SELECT X FROM x:Professor{X})
UNION
(SELECT X FROM x:PhD-Student{X})

The remaining convenience syntaxes can be found in
[22].

4.2. Views on Properties

The declaration of views on properties involves the fol-
lowing:

1. an arbitrary, binary query10

2. the definition of the views’ domains and ranges

3. embedding of the view into the property hierarchy

The following definition creates a new property view
which relates all PhD-Students with the email addresses of
advised students.

CREATE PROPERTY VIEW x:mails_of_advised
SET DOMAIN x:PhD-Student
SET RANGE rdf:Literal
SUBPROPERTYOF x:email
USE
SELECT DOMAIN, RANGE
FROM x:PhD-Student{DOMAIN}.
x:advises{Y}.x:email{RANGE}

The updatability of views based on arbitrary queries can-
not be automatically ensured. Furthermore, the consistency
of the view definition with respect to constraints and prop-
erty inheritance must be ensured at compile time (cf. sec-
tion 6.4).

As the definition of property views involves quite a lot
of information from the user, several convenience syntaxes
are supported by our system, simplifying the construction
of property views. Similar to views on classes, these short
hand notations support automatic classification of the view

10Each tuple must be either (resource× resource) or (resource× literal)
to reflect that literals cannot be in the domain of RDF properties

into the hierarchy. Additionally, appropriate domain and
range constraints are generated.

For example, the following definition refines the prop-
erty ”x:email” from Figure 1 to carry only email addresses
of Students.

CREATE PROPERTY VIEW x:student-mail
SET DOMAIN x:Student ON x:email

This can be automatically translated to the following
standard property view definition:

CREATE PROPERTY VIEW x:student-mail
SET DOMAIN x:Student
SUBPROPERTYOF x:email
USE
SELECT DOMAIN, RANGE
FROM {DOMAIN} x:email {RANGE}
WHERE DOMAIN IN
(SELECT M FROM x:Student{M})

5. External ontologies

5.1. Motivation

Many typical Semantic Web applications such as com-
munity portals are characterized by the fact that they rely
on more than one information source and collect informa-
tion from many distributed sources in the web. Distributed
information can be aggregated and combined easily due to
the characteristics of the RDF model. The integrated infor-
mation can be understood if all information providers have
used the same ontology to mark up their data. Hence, infor-
mation that is not presented according to the ontology of the
consumer cannot be understood. This mandates a means to
transform data such as provided by database views.

Accordingly, views should not only be applied on one
data source, but on the integrated data of several data
sources instead. This requires the ability to integrate in-
formation from several sources. A set of view definitions
can then transform data outside of a particular data source.

The aggregated and transformed data is often intended to
be republished as a new information artefact. Therefore it
is necessary to be able to control which elements should be
republished. This requires the adoption of the ontology. For
example, the ontology should only talk about the aspects of
the data that are visible, e.g. for security reasons.

5.2. Primitives

Figure 6 depicts the features offered by external ontolo-
gies. First, users can import classes and properties from
multiple RDF databases and other external ontologies. Sec-
ond, users may state new views on top of the integrated data
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Figure 6. Classical and external ontologies
approach

sources. View queries have access to all data not only the
imported classes and properties. This allows to transform
data without making the (raw) data itself visible to users.

One the one hand, this providesexternal schematain
the sense of the ANSI SPARC three-level architecture for
databases, where applications or users can access a database
through a specified subschema, e.g. to issue queries. On
the other hand, this differs from the ANSI SPARC ap-
proach since external ontologies are hosted and specified
completely outside of the data sources.

5.3. Example

The following example provides an external ontology
that captures an administration perspective for a scientific
department. This includes all information about people who
actually receive payments. The view x:WorkingStudents
grasps that students might employed by another faculty than
the one they are enrolled in. The latter information would
not be possible within an isolated faculty database.

CREATE EXTERNAL ONTOLOGY
x:HumanResources
DATABASE x:Faculty_1
DATABASE x:Faculty_2
IMPORT CLASS x:Scientist
IMPORT PROPERTY x:email
IMPORT PROPERTY x:supervises

CREATE CLASS VIEW x:WorkingStudents
ON x:Student INTERSECT x:Employee

The interested reader may refer to the normative syntax de-
fined in [21].

6. Implementation

6.1. Storage of RDF

We use a standard relational database to store the phys-
ical RDF data. For each class, a separate unary relation is
created, in which the particular instances of the class are
stored. Furthermore, separate binary relations are created
for each property, all triples11 are then sorted on a per prop-
erty basis and stored as (resource, value) pairs in these rela-
tions.

Please note, that this approach also creates six dedicated
relations that store the ontology. Two of them are unary
relations which store all class and property definitions. Be-
sides, there are four binary relations storing the class and
property hierarchies as well as the constraints for proper-
ties.

In our experience this physical representation outper-
forms the naive storage of RDF on a per triple basis within
a single ternary relation with respect to read access. If up-
dates are dominant for a RDF system the ternary represen-
tation is faster since it does not involve the generation and
deletion of physical tables in the database.

Additionally the storage of data on a per class and prop-
erty basis simplifies the integration of RDF data with legacy
data. The latter can be done via the definition of unary
and binary relational SQL views on top of existing database
content. To realize this data access has to be realized via a
catalogue component which determines the correct physical
relation where property and class data is actually stored.

6.2. Realization of RDF Semantics

In order to speed up query processing all entailments
supported by the RDF semantics specification [12] are ma-
terialized. This involves primarily the computation of tran-
sitive closure of the class and property hierarchies. All im-
plicit members of classes and properties (e.g. instances of
subclasses and subproperties) are stored in separate physi-
cal relations. The same is done for other entailments, e.g.
for domain and range of properties.

This materialization of implicit information has to be
maintained in case of updates. Insertions are easy to han-
dle and simply require to compute the new closure resulting
from the addition. Modifications and deletions are harder
to handle. Trivially, we could simply recompute the whole
materialization. More elaborate mechanisms such as im-
plemented in the Sesame system [7] keep track of all the
dependencies between statements (statement B was derived
from statement A, etc.) and use this knowledge of the de-
pendencies to determine which set of statements have to be

11except for those creating the class instance relationship,i.e. (x,
rdf:type,<class>)



removed together. Naturally, this makes adding new state-
ments slightly slower (since dependencies have to be com-
puted and stored), but removing statements is a lot quicker.

6.3. Interpretation of queries

The implementation of the query language is straight-
forward because operations can be mapped easily to those
offered by the relational algebra of the underlying database.
Hence, operations are pushed down to the database. Con-
sider the following query as an example. It returns all stu-
dents working at AIFB, who are advised or supervised by
someone:

SELECT Y
FROM {x} x:responsible_for
{y : Student}.works {z}
WHERE z = "x:AIFB"

P
y

responsible_for(x,w) works(v,z)Student(y)

w=y

y=v

s z=x:AIFB

works

resource value
x:Daniel x:AIFB

responsible_for
resource value

x:Rudi
x:Raphael

x:Raphael
x:Daniel

Student

instance
x:Daniel

Derived

0

Derived

1

Derived
1

1

Figure 7. Query graph and involved physical
db relations

First, the parser analyzes the syntax of the query, then the
semantics of the query are captured via graph constructions.
Figure 7 depicts the query graph of the above query. Then,
this graph is translated into corresponding SQL queries,
which are sent to the database engine:

SELECT responsible_for.value
FROM responsible_for, student, works
WHERE responsible_for.value =
student.instance AND
responsible_for.value =
works.resource AND
works.value = "x:AIFB"

During graph construction, the various shortcuts of RQL
are expanded and variable dependencies are determined.
The computation of the extents of classes and properties
would involve the expensive computation of the transitive
closure of the respective inheritance hierarchies. To avoid
this and speed up read access, the transitive closure is com-
puted with each update and materialized as mentioned be-
fore.

6.4. Realization of views

Views are created in a straightforward manner. First the
provided convenience syntaxes are normalized into the gen-
eral forms, creating the appropriate query, classificationand
constraints. Then the adequate tuples in the subclass-of and
subproperty-of relations are created, respectively. For views
on properties, additional tuples are created in the appropri-
ate tables that store property constraints. Then, a relational
view is created for each view whose query is the SQL query
which was translated from the RQL query. Alternatively,
we could store the normalized query in a dedicated relation
and expand the queries issued by users with view queries in
style of [20].

For views on properties additional consistency checks
have to ensure that the returned tuples are actually instances
of the specified domain and range constraints and that these
constraints are compatible with respect to the constraintsof
super properties. While the latter is checked at compile time
(cf. [16]), the first is implemented via a kind of type cast-
ing. It ensures that the domain and range can only take val-
ues that are in the extent of the specified classes. Hence, the
RQL expressions of the following form are appended to the
WHERE-clause of the RQL query for all specified domain
and range constraints12 before it is compiled into SQL:

AND DOMAIN IN (SELECT M FROM
CONSTRAINT_URI_i{M} )

6.5. Realization of External Ontologies

Since many user queries can only be answered by the
integrated data, a materialized approach is chosen. Hence,
all imported data is replicated and views are materialized.
User queries are then processed in the normal manner.

The inheritance hierarchies of the external ontology have
to be adopted to those classes and properties and views that
are visible to the users. This is done by Algorithm 1 for
the class hierarchy13. Following Figure 8, all inheritance
information and is gathered from all sources and augmented
with the information about the classification of views in the
first step. Then, the full transitive closure of this merged
inheritance hierarchy is computed. In the final, third step
only the links that connect visible nodes remain.

The property hierarchy is computed in a similar fashion.
Furthermore, the domain and range constraints for proper-
ties must be adopted to the visible classes, cf. [16] for the
proposed solution.

12with the exception of literal ranges
13This algorithm is simplified, since the implementation can avoid un-

necessary computation of the transitive close and has only to consider all
upwards links from visible nodes, hence the algorithm can bring visible
nodes into a topological order and do an incremental computation (unlike
the presented algorithm)



Algorithm 1 Computation of the class hierarchy
Require: IC set of imported classes,CV set of class

views,S set of RDF sources
subclassof = {}
for all s ∈ S do

subclassof = subclassof ∪ s.subclassof

end for
for all v ∈ CV do

subclassof = subclassof ∪ v.subclassof

end for
subclassof = subclassof∗

newsubclassof = {}
for all c1 ∈ (IC ∪ CV ) do

for all c2 ∈ (IC ∪ CV ) do
if (c1, c2) ∈ subclassof then

newsubclassof = newsubclassof ∪ (c1, c2)
end if

end for
end for

Ensure: new class hierarchy (newsubclassof )

6.6. System Environment

The view language is currently implemented as an exten-
sion of the open-source RQL database system Sesame [7].
PostgreSQL is chosen as the relational database. Several
technical details like the employed indexing techniques and
translation of class and property URIs to the physically used
names for tables have not been presented here.

A first implementation, described in [16] provides an in-
memory variant of an earlier version of the view language
and has been realized with the SiLRI F-Logic engine [10].

7. Related Work

There is a large body of work on views for the relational
data model. These results are already incorporated in many
database textbooks. Our approach differs substantially from
the approach to views taken for the relational data model.

Also, we cannot rely on previous work about views for
other semi-structured data models. The views of [23] con-
sist of object collections only. Associations between objects
- which are fundamental to RDF - are not considered. [2] do
consider such edges, but do not provide semantic descrip-
tions for views. Nevertheless our proposal is the only one
that takes a superimposed conceptual model into account,
viz. the ontology. Besides, consistency constraints such as
situated by the RDF(S) data model are not considered in
those approaches.

There is a large amount of work done on views for
object-oriented data (e.g. [5, 1, 17, 18]). We have combined
many aspects presented there. The proposition of external

1 2

3

Figure 8. Steps in the computation of the
class hierarchy. (1) merging all subclas-
sof statements from all source databases,
(2) computation of the transitive closure, (3)
Keeping only links between visible classes

ontologies and the terminology is similar to [8]. The idea
to classify views in the hierarchy was first proposed in [18].
Other approaches, e.g. [5], do not mix view and class hi-
erarchies. Like the majority of object-oriented approaches
to views we mainly support object-preserving views. Many
object-oriented approaches allow to support other forms of
view population such as set-tuples (akin to the relational
world) and of object-generation. The latter was first pre-
sented in [5] which present arguments such as its usefulness
for simulated schema evolution. Some formation of exter-
nal schemata was also proposed in [1, 18]. However, views
can only be introduced in this context and not alternatively
be added to the base database.

Generally those approaches do not fit an open world such
as the Semantic Web. This is mainly due to the explicit typ-
ing of classes and local assignment of properties to classes
taken in object-oriented databases. Web criteria such as the
ability to base views on multiple data sources are not met
either. Also property hierarchies are unknown to object-
oriented models.

8. Discussion

We have presented a view mechanism that picks up the
unique situation of data in the Semantic Web and implemen-
tation issues surrounding this mechanism. Our approach ac-
knowledges the underlying intention of the Semantic Web
- to add explicit formal semantics to Web content - and ex-
ploits the semantics of view definitions as far as possible to
classify views into the semantically appropriate positionin
the entity hierarchies provided by RDFS. This allows agents
to understand the semantics of the views autonomously. If
the vocabulary of another ontology is used in the view defi-
nitions otherwise disparate ontologies are integrated by es-



tablishing is-a links between the classes and properties of
both vocabularies leading to a proper articulation of both
ontologies [15].

From our perspective, a view mechanism is an important
step in putting the idea of the Semantic Web into practice.
Based on our own experiences with building Semantic Web
based community portals [14, 19] and knowledge manage-
ment frameworks [6] we devise that view mechanisms for
ontology-based semi-structured data will be a crucial cor-
nerstone to achieve many different, exciting objectives.

Examples for such objectives will be personalized access
to metadata bases in community portals, authorization and
the improved integration of ontologically disparate informa-
tion sources — to name but a few.

For the future much remains to be done. Currently, we
are extending our view language towards a more expressive
Web ontology language, DLP [11], which represents the in-
tersection of Datalog and Description Logics. Additionally,
we are investigating how updates can be consistently inte-
grated for this extended Web ontology language. Further-
more, the materialization of views is of great importance
in Web scenarios where read access to data is dominant, we
are therefore also investigating how such materialized views
can be incrementally maintained in presence of updates. We
also plan to adapt the implicit classification approach to al-
low full description-logic style subsumption which might
have benefits for using views in query rewriting.
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