
The Integration of Connectionism and First-Order

Knowledge Representation and Reasoning as a

Challenge for Artificial Intelligence

Sebastian Bader1, Pascal Hitzler2, Steffen Hölldobler1

1International Center for Computational Logic
Technische Universität Dresden, Germany
2AIFB, Universität Karlsruhe, Germany

Abstract

Intelligent systems based on first-order logic on the one hand, and
on artificial neural networks (also called connectionist systems) on the
other, differ substantially. It would be very desirable to combine the ro-
bust neural networking machinery with symbolic knowledge representa-
tion and reasoning paradigms like logic programming in such a way that
the strengths of either paradigm will be retained. Current state-of-the-art
research, however, fails by far to achieve this ultimate goal. As one of
the main obstacles to be overcome we perceive the question how symbolic
knowledge can be encoded by means of connectionist systems: Satisfac-
tory answers to this will naturally lead the way to knowledge extraction
algorithms and to integrated neural-symbolic systems.

1 Introduction

Artificial neural networks — also called connectionist systems — exhibit many
desirable properties of intelligent systems like, for example, being massively par-
allel, context-sensitive, adaptable and robust (see eg. [14]). It is strongly believed
that intelligent systems must also be able to represent and reason about struc-
tured objects and structure-sensitive processes (see eg. [16, 35]). Unfortunately,
we are unaware of any connectionist system which can handle structured ob-
jects and structure-sensitive processes in a satisfying way. Logic systems were
designed to cope with such objects and processes and, consequently, it is a long-
standing research goal to combine the advantages of connectionist and logic
systems in a single system.

Earlier attempts to integrate logic and connectionist systems have mainly
been restricted to propositional logic, or to first-order logic without function
symbols. They go back to the pioneering work by McCulloch and Pitts [34],
and have led to a number of systems developed in the 80s and 90s, including
Towell and Shavlik’s Kbann [45], Shastri and Ajjanagadde’s Shruti [43], Lange
and Dryer’s Robin [32] the work by Pinkas [37], Hölldobler [22], and d’Avila
Garcez et al. [10, 13], to mention a few, and we refer to [9, 11] for comprehensive
literature overviews.

Without the restriction to the finite case (including propositional logic and
first-order logic without function symbols), the task becomes much harder due

1



to the fact that the underlying language is infinite but shall be encoded using
networks with a finite number of nodes. One of the few approaches for over-
coming this problem (apart from work on recursive autoassociative memory,
RAAM, initiated by Pollack [40], which concerns the learning of recursive terms
over a first-order language) is based on a proposal by Hölldobler et al. [27], and
reported also in [18]. It is based on the idea that logic programs can be repre-
sented by their associated single-step or immediate consequence operators. Such
an operator can then be mapped to a function on the real numbers, which can
under certain conditions in turn be encoded or approximated e.g. by feedforward
networks with sigmoidal activation functions.

The purpose of this paper is twofold. First, we will give an overview of recent
progress made in the representation of first-order logic programs by connection-
ist systems (Section 2). We will then discuss in detail some questions which we
find of central importance in order to advance towards an integration of logic
and connectionism (Section 3). Our selections are certainly very subjective, so
we also provide ample references to related work and literature for further read-
ing. Our discussions will be in very general terms, and we will make most of our
general exhibition accessible to the general reader. Some familiarity with basic
notions from logic and artificial neural networks, and also from set-theoretic
topology and iterated function systems will however be helpful for understand-
ing some of the details. As general references we recommend [33, 7, 47, 4].

Acknowledgements. The first author is supported by the GK334 of the Ger-
man Research Foundation. The second author is supported by the German
Federal Ministry of Education and Research under the SmartWeb project and
the EU Network of Excellence KnowledgeWeb. The second and third author ac-
knowledge substantial support by the Boole Centre for Research in Informatics
at the National University of Ireland, Cork, for presenting this paper.

2 Recent Progress

Integrating first-order logical knowledge representation and connectionism ne-
cessitates to find a common framework in which both kinds of systems can be
expressed and somehow unified.

Logical knowledge representation is symbolic in nature, i.e. the data struc-
tures under consideration basically consist of words over some language or of
collections of finite trees, for example, depending on the perspective taken or
on the problem at hand. Logic programs, more specifically, consist of sets of
first-order formulae under a restricted syntax, more precisely, a logic program
is a set of (universally quantified) disjunctions, called clauses or rules, which in
turn consist of atoms and negated atoms only. Equivalently, one can say that
logic programs are basically formulae in conjunctive normal form — although
their meaning, i.e. the way they are evaluated, is not identical to their mean-
ing in first-order logic. Input (queries) and output (answers) of a logic program
essentially consist of certain logical formulae or of models of the program.

Successful connectionist architectures, however, can be understood as net-
works (essentially, directed graphs) of simple computational units, in which ac-
tivation is propagated and combined in certain ways adhering to connectionist
principles. In many cases like, for example, in multilayer perceptrons, the acti-
vation is encoded as a real number; input and output of such networks consist

2



of tuples (vectors) of real numbers. So, while logic is symbolic and thus discrete,
standard connectionist systems are continuous, i.e. they deal with real values in
Euclidean space.

In order to integrate logic and connectionism we thus need to bridge the gap
between the discrete, symbolic setting of logic, and the continuous, real-valued
setting of artificial neural networks. The method of our choice — motivated by
several reasons which will become clear below — is to employ Cantor space for
this purpose.

Cantor space C is — up to homeomorphism — a subset of the unit interval
of the real numbers endowed with the topological structure inherited from the
reals. The set is best described as the set of all real numbers in the unit interval
which can be expressed in the ternary number system using the digits 0 and 2
only. More precisely, C is the set of all real numbers of the form

∑∞
i=1 ai3−i,

where ai ∈ {0, 2} for all i. We remark that topologically, we obtain homeomor-
phic subsets of the reals by considering all real numbers of the form

∑∞
i=1 aiB

−i,
where ai ∈ {0, 1} and B is fixed to some natural number greater than or equal
to 3. This lies in the fact that Cantor space can be uniquely described — up
to homeomorphism — as the topological space which is totally disconnected,
compact, Hausdorff, second countable, and dense in itself.

How do we relate Cantor space to first-order logic? The topological charac-
terization of C just given already shows that it can be described independently
of the real numbers. Now consider some first-order language L. Interpretations
(or valuations) over L can be understood as mappings from the countable set of
ground atoms over L — which we call the Herbrand base BL over L — to the
set of truth values {t, f}. Identifying t with 2 (or 1) and f with 0, the set of all
interpretations over L can be identified with the set of all mappings from BL to
{0, 2}. Since BL is countable, we can also choose an enumeration of BL, which is
essentially an identification of BL with N, the set of natural numbers excluding
zero, or, in other words, a bijective mapping l : BL → N. We can thus identify
the set of all interpretations over L, which are of the form I : BL → {t, f}, with
the set of all mappings f : N → {0, 2}.

Now, formally, let l : BL → N be an (arbitrarily chosen) bijection and let IL
be the set of all interpretations over L, i.e. the set of all mappings from BL to
{0, 2}. We define a mapping ι from IL to C by

ι(I) =
∞∑

i=1

I(l−1(i))3−i.

It is easily verified that ι is a bijection.
The mapping ι allows to understand the set of interpretations as the Cantor

set in the real line. But does it also preserve meaningful structure, i.e. does it
relate meaningful structure for logic programs on the one side with meaningful
structure for connectionist sytems on the other side? We will see that it does,
and in order to proceed, we reproduce next a theorem due to Funahashi [17].

Theorem 1 Suppose that φ : R → R is non-constant, bounded, monotone in-
creasing and continuous. Let K ⊆ Rn be compact, let f : K → R be a contin-
uous mapping and let ε > 0. Then there exists a 3-layer feedforward network
with squashing function φ whose input-output mapping f̄ : K → R satisfies
maxx∈K d(f(x), f̄(x)) < ε, where d is a metric which induces the natural topol-
ogy on R.

3



For the reader who is not familiar with the terminology of the theorem, we
state its intuitive meaning: Every continuous real-valued function defined on
a compact subset of the reals can be uniformly approximated by input-output
mappings of artificial neural networks of a certain architecture. The details of
this architecture will not concern us for our general discussion.

Funahashi’s theorem provides an existence result for approximating conti-
nous functions on the reals. So if we manage to interpret logic programs as such
functions in a meaningful way, then we know that approximation of logic pro-
grams by neural networks is possible in a reasonable way. We need two more
steps in order to realize this idea.

Firstly, we note that it is very common in logic programming to associate
operators to logic programs in such a way that the behaviour of the operator
reflects the meaning of the program. One of the most popular — and arguably
the most natural — operator is the so-called immediate consequence operator
TP associated with a given program P . Details of the definition of TP will be
of no concern for our general discussion, so we will not spell them out. For
the same reason, we also omit a formal definition of a logic program, and just
remark that logic programs are certain sets of first-order logical formulae, as
already mentioned. The operator TP is an operator which acts on IL, i.e. on the
space of all interpretations of the underlying first-order language. Since ι maps
IL bijectively onto C, we can carry over the operator TP via ι to the reals, by
defining

ι(TP ) : C → C : x 7→ ι(TP (ι−1(x))).

Hence, ι(TP ) is a mapping on Cantor set which carries the meaning of P .
Secondly, we need to ensure that the embedded mapping ι(TP ) just defined

is continuous on Cantor space, such that Funahashi’s theorem can be applied.
This, for example, is the case if TP is continuous with respect to the initial
topology induced by ι on IL — let us denote this topology by Q. Since ι is a
bijection, it follows that it is a homeomorphism from (IL, Q) to Cantor space C
— i.e. (IL, Q) is Cantor space up to homeomorphism, and ι(TP ) is continuous
as a function on C if and only if TP is continuous as a function on (IL, Q).
Together, we obtain the following result, which was reported in [18] in a more
general form.

Theorem 2 Let P be a logic program such that TP is continuous in Q, and
let ι be a homeomorphism from (IL, Q) to C. Then ι(TP ) can be approximated
uniformly by input-output functions of artificial neural networks of the kind used
in Theorem 1.

The importance of Theorem 2 lies in the fact that the topology Q on IL
is well-known in logic programming. Indeed, it is the most important topol-
ogy for the study of fixed-point semantics for programs with negation. It dates
back to the work by Batarekh and Subrahmanian [5] where it was called the
query topology. Seda [42] studies a generalization of it under the name atomic
topology, and in the same paper it was also shown that continuity in Q can
naturally be characterized without making reference to topological notions. It is
also strongly related to the studies of fixed-point semantics of logic programs by
means of generalized metrics, as e.g. undertaken by Fitting [15], Prieß-Crampe
& Ribenboim [41] and Seda & Hitzler [20].

4



Due to its very general nature, Theorem 2 carries a lot of inherent flexibility.
The particular instance of ι given earlier is only one very specific example of a
homeomorphism which can be used. Indeed, the number of automorphisms of
Cantor space is uncountable. The specific representations of Cantor space as a
subspace of the reals given earlier are also just very particular examples of such
representations. Results analogous to that by Funahashi furthermore hold for
many popular neural network architectures, such that our investigations are not
a priori restricted to certain types of connectionist systems.

But the flexibility gained by the general nature of Theorem 2 does not come
for free. In particular, it provides no means of actually obtaining an approx-
imating network from a concretely given program. At best, we would like to
be able to read off parameters for an approximating network directly from a
given program. To date, it is an open problem how to do this along the lines of
Theorem 2.

A different approach towards obtaining concrete approximations was under-
taken by us in [2]. It was based on the observation that graphs of embedded
operators ι(TP ), displayed in the Euclidean plane, exhibit self-similar structures
known from chaos theory. More precisely, the graphs appeared to be attractors
of iterated function systems as studied, for example, in the well-known book by
Barnsley [4]. This led to the following theorem, which is stated in slightly more
general form in [2].

Theorem 3 Let P be a logic program such that ι(TP ) is Lipschitz-continuous.
Then there exists an iterated function system on the Euclidean plane whose
attractor is the graph of ι(TP ).

The importance of Theorem 3 lies in the fact that iterated function systems
can be encoded very easily as some standard type of recurrent neural networks,
and we have spelled this out in [2]. The very general Theorem 3 also leads to
concrete instances of iterated function systems — and thus of corresponding
networks — for approximating ι(TP ): Given a program P and an arbitrarily
chosen accuracy of the approximation i ∈ N, we need only determine a finite
number of explicitly determined function values of ι(TP ), in order to arrive at
an iterated function system Si whose attractor fi is the graph of a continuous
function — details of the construction can be found in [2]. Our result now reads
as follows.

Theorem 4 Let P be a program with Lipschitz-continuous ι(TP ). Then the se-
quence (fi)i∈N of attractors, as mentioned above, converges uniformly to ι(TP ).

A concrete open problem remaining with Theorem 4 is that the determina-
tion of a suitable iterated function system Si from a given program P hinges
on the explicit knowledge about an upper bound for the Lipschitz-constant for
ι(TP ) — if it exists at all.

We close our brief survey with a number of further remarks.
(1) The idea to represent a logic program via its semantic operator traces

back to Hölldobler & Kalinke [23], surveyed in [18], where this idea was employed
for the propositional case. D’Avila Garcez et al. [10, 13] have molded this into
an integrated learning system which uses backpropagation.

(2) A very restricted version of Theorem 2 was shown in [27] using different
methods. There, and in [18], the network architecture was also extended in order

5



to mimic iterations of the immediate consequence operator, and corresponding
results on the convergence behaviour and speed of these iterations were provided.

(3) It was shown in [18] that many semantic operators in logic programming,
including the immediate consequence operator, are measurable. While there
exist approximation results relating measurability to artificial neural networks,
e.g. by Hornik et al. [29], it is an open issue whether this fact can be exploited
for neural-symbolic integration.

(4) A recent result by Wendt [46] relates semantic operators used in answer
set programming [44] to the immediate consequence operator, and thus allows
to use our results for studying non-monotonic reasoning with logic programs
in a connectionist setting. This remains to be spelled out. Some preliminary
investigations can be found in [19].

(5) We are recently investigating the use of weighted automata and fibring
neural networks for our purposes [3, 12].

After this survey on the current state of the art of relating logic programs
and connectionist networks we will identify a number of open research problems
in the following section.

3 Challenges

3.1 How can first-order terms be represented and manipulated
in a connectionist system?

This is the main question that needs to be answered, and our recent results
presented in the previous section are along this line. We consider this question
to be of central importance because the development of a satisfactory and us-
able representation of first-order formulae is the first necessary step towards
neural-symbolic integration. The proposals made so far do not give a satisfying
answer to this question: Structured connectionist networks as used e.g. in [21]
are completely local. The unification and matching operations can directly be
implemented in these networks. However, the number of units is quadratic and
the number of connections even cubic wrt the size of the terms. It is not obvious
at all how such networks can be learned.

Vectors of fixed length are used to represent terms in the recursive auto-
associative memory and its derivatives [39, 1]. Unfortunately, in extensive tests
none of these proposals has led to satisfying results: The systems could not
safely store and recall terms of depth larger than five [30].

In hybrid systems terms are represented and manipulated in a conventional
way. But this is not a kind of integration we are hoping for because in this case
results from connectionist systems cannot be applied to the conventional part.

The phase-coding mechanism suggested in Shruti [43] and used in the Bur
system [25] restricts the first-order language to contain only constants and multi-
place relation symbols.

We definitely need new ideas to solve this challenge problem! Connectionist
encodings for conventional data structures like counters and stacks [24, 31] have
been proposed and may be of use, and the study of relationships between logic
programs, neural networks, and other paradigms in computing and mathemat-
ics like cellular and weighted automata, dynamical systems, and the like, may
provide new ideas.

6



3.2 How can first-order rules be extracted from a connectionist
network?

To the best of our knowledge all rule extraction techniques for connectionist
networks are propositional in the sense that they only generate propositional
rules. For example, the propositional networks in [23] were slightly modified in
[13, 10] such that backpropagation could be applied and standard rule extraction
techniques could be used to extract new revised — but propositional — rules.

The results from [18] guarantee the existence of recurrent networks with
a feed forward kernel to approximate the meaning of a first-order program.
Backpropagation can again in principle be used to train these kernels. But it is
by no means obvious how the rule extraction techniques known so far can be
generalized such that first-order rules are extracted from these kernels.

3.3 How can distributed knowledge representation in connection-
ist networks be understood from a symbolic perspective?

Although this question is being subsumed by the previous two, we want to
emphasize the difficulties underlying distributed representations explicitly. The
representation of propositional logic in connectionist networks most often is very
local, while standard network training normally leads to distributed represen-
tation, which is very difficult to interpret in a symbolic manner.

The situation becomes worse for first-order logic, where due to the infinitary
nature of the underlying language there seems to be no way at all to avoid
distributed representation. We understand that this issue provides the main
obstacle in developing constructive methods for the representation of first-order
logic programs by means of Funahashi’s theorem, and we also expect this to be
a major issue in order to make advances in first-order rule extraction.

3.4 How can established learning algorithms like backpropaga-
tion be combined with symbolic knowledge representation?

For the propositional system developed by d’Avila Garcez et al. [10, 13], sym-
bolic knowledge is being represented by a network, which is then trained using
backpropagation. Afterwards, the learned knowledge may be extracted. A sim-
iliar approach underlies the Kbann system due to Towell and Shavlik [45].

While this is a good idea, we see the risk that the initial knowledge may be
lost in the course of the training process, although it should rather influence
it. We envision an integration via continuous interaction of standard learning
techniques with background and dynamically acquired knowledge. How this can
be achieved, however, is as yet entirely unclear.

Another problem is posed by the fact that the representation of first-order
knowledge easily leads to non-standard network architectures, like in the Shruti
system [43], which cannot be trained easily, or at least cannot be trained with
established methods without loosing the specific logically meaningful architec-
ture. The latter would be the case e.g. with the recurrent networks obtained
from iterated function systems as mentioned in Section 2. Modified learning
algorithms will have to be established and studied for these purposes.

7



3.5 How can multiple instances of first-order rules be represented
in a connectionist system?

One of the properties of first-order reasoning is that it cannot be determined
in advance how many copies of a rule are needed to answer a given query or,
equivalently, to prove a theorem. In local connectionist systems like Chcl [26]
this problem is defined away by simply assuming that each rule is used only
once. A similar assumption is made in Shruti, where each relation may be
instantiated only a fixed number of times in one reasoning episode. This is
not a general solution since even for datalogic programs — which do not need
function symbols in the underlying language — exponentially many copies may
be needed. The Bur system from [25] does not provide multiple copies, which
is the reason for the fact that the system may be unsound if multiplace relation
symbols are involved.

The results from [18] suggest that the problem of generating new instances
of a rule can be mapped on the problem of obtaining a better approximation
of the least model of a logic problem in the following sense: The level assigned
to ground atoms occurring in the n-th iteration of the meaning function for the
first time should be higher than the level assigned to ground atoms which occur
at earlier stages. If the accuracy of an approximation can then be correlated to
the available hardware resources as in [24], we might obtain a solution for this
challenge problem.

3.6 How can insights from neuroscience be used to design inte-
grated systems which are biologically feasible?

Artificial neural networks are very coarse abstractions of biological networks.
Connectionist networks used for the study of neural-symbolic integration, how-
ever, are often biologically much less feasible than standard architectures like
multilayer perceptrons. While it is important to study the formal relationships
between first-order logic and connectionist systems, we believe that it is also
important to study biological networks from the perspective of symbolic knowl-
edge processing. Can the accumulation of electric potential within a dendritic
tree be understood from a logial perspective? Can we develop methods to un-
derstand the temporal aspects of different transmission times between different
neurons? Can we assign logical meaning to firing patterns of collections of neu-
rons? Interdisciplinary efforts are required to answer these questions!

3.7 What is the exact relationship between neural-symbolic in-
tegration and chaos theory? Can this be exploited?

This question is prompted not only by our results reported in Section 2, but
also by work by Blair et al. on the relationship between cellular automata,
topological dynamics, logic programming, and other paradigms related to chaos
theory [8]. The structural coincidences are striking, but research in this direction
is difficult due to the fact that the related paradigms all turn out to be equally
hard to study, and advances will most likely necessitate entirely new ideas for
approaching these issues.

8



3.8 What does a theory for the integration of logic and connec-
tionist systems look like?

The results achieved so far on connectionist inference systems are more or less
unrelated to each other. Different logics are mapped onto different connectionist
systems and very often not much effort has been spent on (i) formally showing
properties of the system, (ii) formally relating the logic to the system and (iii)
formally relating the various systems to each other. There are some exceptions
though, eg. in [21] it was proven that the presented connectionist system really
solves the unification and matching problem or in [6] we have given a rigorous
logical reconstruction of the backward reasoning version of Shruti.

We would like to see a theory where in various layers of increased expres-
siveness logics, their corresponding connectionist models, their time and space
complexities, their properties concerning learning and rule extraction as well as
learning and rule extraction algorithms are specified. Such a theory could be
developed along the lines proposed in [23], the Bur system, [10, 13], and [2, 18]:
In each layer the logic would be defined by a certain class of logic programs and
the corresponding connectionist systems would be recurrent neural networks.

For example, if the logic programs are propositional, then interpretations
are represented locally. The units in the corresponding recurrent neural net-
work are logical threshold units. If learning shall be applied, then the threshold
units in the hidden layer must be replaced by sigmoidal ones. If the programs
are datalogic programs, then the corresponding recurrent neural network must
be able to bind variables to constants which can be done by using phase coding
as in Shruti and Bur. If the logic programs are full first order, then inter-
pretations shall be represented by vectors of real numbers and models are only
approximated, etc.

The logics in such a theory shall not only be the standard monotonic ones,
but we should also consider nonmonotonic ones. By the way, nonmonotonic
reasoning was originally proposed as a technique for “jumping to a conclusion”.
Nowadays conventional nonmonotonic reasoning systems have time and space
complexities which are not at all in accordance with the original goal. It may well
be that connectionist techniques may help to put the research in nonmonotonic
reasoning techniques back on track.

A general theory for the integration of logic and connectionist systems could
also be developed for symmetric networks [28]. Pinkas has shown that the prob-
lem of finding a model for a propositional logic formula is equivalent to finding a
global minimum in an energy function [38]. He has extended his results to some
nonmonotonic [37] and first-order logics [36]. Again, the picture is far from being
complete.

3.9 Can such a theory be applied in a real domain outperforming
conventional approaches?

All applications of connectionist inference systems that we have seen so far are
toy examples. We have to come up with applications in real domains which
outperform conventional approaches. This can only be done if we use hardware
which exploits the massive parallelism of connectionist networks. If we are rea-
soning in a logic whose entailment problem is in NC and an efficient or optimal
parallel algorithm for deciding this problem is known, then it does not suffice

9



to simulate this algorithm on a computer with just a few processors.
Because a general theory for integrating logic and connectionist systems may

be layered, applications we are looking for should have a similar structure. It
may be worth while to look for such an application in the area of integrating
the low-level control of a real robot with the high-level control developed in the
area of cognitive robotics. Such an application would also be a good showcase
for learning and rule extraction: Even if such a robot is initialized with some
knowledge, it must learn to behave in its environment, and this learning never
stops. Consequently, the knowledge is constantly updated.

4 Summary

In this paper we have given an overview on how first-order logic programs can
be represented in a connectionist setting and outlined various challenges for de-
veloping a truly connectionist system capable of representing structured objects
and performing structure-sensitive processes.

References

[1] M. J. Adamson and R. I. Damper. B-RAAM: A connectionist model which
develops holistic internal representations of symbolic structures. Connec-
tion Science, 11(1):41–71, 1999.

[2] S. Bader and P. Hitzler. Logic programs, iterated function systems, and re-
current radial basis function networks. Journal of Applied Logic, 2(3):273–
300, 2004.

[3] S. Bader, S. Hölldobler, and A. Scalzitti. Semiring artificial neural networks
and weighted automata – and an application to digital image encoding –.
In Proceedings of the 27th German Conference on Artificial Intelligence,
Ulm, Germany, September 2004, LNAI. Springer, 2004. To appear.

[4] M. Barnsley. Fractals Everywhere. Academic Press, San Diego, 1993.
[5] A. Batarekh and V. S. Subrahmanian. Topological model set deformations

in logic programming. Fundamenta Informaticae, 12:357–400, 1989.
[6] A. Beringer and S. Hölldobler. On the adequateness of the connection

method. In Proceedings of the AAAI National Conference on Artificial
Intelligence, pages 9–14, 1993.

[7] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

[8] H. A. Blair, F. Dushin, D. W. Jakel, A. J. Rivera, and M. Sezgin. Con-
tinuous models of computation for logic programs. In K. R. Apt, V. W.
Marek, M. Truszczyński, and D. S. Warren, editors, The Logic Program-
ming Paradigm: A 25-Year Persepective, pages 231–255. Springer, 1999.

[9] A. Browne and R. Sun. Connectionist inference models. Neural Networks,
14(10):1331–1355, 2001.

[10] A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Symbolic knowledge
extraction from trained neural networks: A sound approach. Artificial In-
telligence, 125:155–207, 2001.

[11] A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Neural-Symbolic Learn-
ing Systems — Foundations and Applications. Perspectives in Neural Com-
puting. Springer, 2002.

10



[12] A. S. d’Avila Garcez and D. M. Gabbay. Fibring neural networks. In
Proceedings of the 19th National Conference on Artificial Intelligence. San
Jose, California, USA, July 2004, pages 342–347. AAAI Press, 2004.

[13] A. S. d’Avila Garcez and G. Zaverucha. The connectionist inductive ler-
arning and logic programming system. Applied Intelligence, Special Issue
on Neural networks and Structured Knowledge, 11(1):59–77, 1999.

[14] J. A. Feldman and D. H. Ballard. Connectionist models and their proper-
ties. Cognitive Science, 6(3):205–254, 1982.

[15] M. Fitting. Fixpoint semantics for logic programming — A survey. Theo-
retical Computer Science, 278(1–2):25–51, 2002.

[16] J. A. Fodor and Z. W. Pylyshyn. Connectionism and cognitive architecture:
A critical analysis. In Pinker and Mehler, editors, Connections and Symbols,
pages 3–71. MIT Press, 1988.

[17] K.-I. Funahashi. On the approximate realization of continuous mappings
by neural networks. Neural Networks, 2:183–192, 1989.

[18] P. Hitzler, S. Hölldobler, and A.K. Seda. Logic programs and connectionist
networks. Journal of Applied Logic, 2(3):245–272, 2004.

[19] P. Hitzler. Corollaries on the fixpoint completion: studying the stable se-
mantics by means of the clark completion. In D. Seipel, M. Hanus, U. Geske,
and O. Bartenstein, editors, Proceedings of the INAP’04 and WLP’04,
Potsdam, Germany, March 2004, volume 327 of Technichal Report, pages
13–27. Universität Würzburg, Institut für Informatik, 2004.

[20] P. Hitzler and A. K. Seda. Generalized metrics and uniquely determined
logic programs. Theoretical Computer Science, 305(1–3):187–219, 2003.

[21] S. Hölldobler. A structured connectionist unification algorithm. In Pro-
ceedings of the AAAI National Conference on Artificial Intelligence, pages
587–593, 1990.

[22] S. Hölldobler. Automated inferencing and connectionist models. Technical
Report AIDA–93–06, Intellektik, Informatik, TH Darmstadt, 1993. (Post-
doctoral Thesis).

[23] S. Hölldobler and Y. Kalinke. Towards a massively parallel computational
model for logic programming. In Proc. of the ECAI94 Workshop on Com-
bining Symbolic and Connectionist Processing, pages 68–77. ECCAI, 1994.

[24] S. Hölldobler, Y. Kalinke, and H. Lehmann. Designing a counter: Another
case study of dynamics and activation landscapes in recurrent networks. In
Proceedings of the KI97: Advances in Artificial Intelligence, volume 1303
of LNAI, pages 313–324. Springer, 1997.

[25] S. Hölldobler, Y. Kalinke, and J. Wunderlich. A recursive neural network
for reflexive reasoning. In S. Wermter and R. Sun, editors, Hybrid Neural
Symbolic Integration, number 1778 in LNAI, pages 46–62. Springer, 2000.

[26] S. Hölldobler and F. Kurfess. CHCL – A connectionist inference system. In
B. Fronhöfer and G. Wrightson, editors, Parallelization in Inference Sys-
tems, pages 318 – 342. Springer, LNAI 590, 1992.

[27] S. Hölldobler, Y. Kalinke, and H.-P. Störr. Approximating the semantics of
logic programs by recurrent neural networks. Applied Intelligence, 11:45–58,
1999.

[28] J. J. Hopfield. Neural networks and physical systems with emergent col-
lective computational abilities. In Proceedings of the National Academy of
Sciences USA, pages 2554 – 2558, 1982.

11



[29] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2:359–366, 1989.

[30] Y. Kalinke. Using connectionist term representation for first–order deduc-
tion – a critical view. In F. Maire, R. Hayward, and J. Diederich, editors,
Connectionist Systems for Knowledge Representation Deduction. Queens-
land University of Technology, 1997. Proc. CADE–14 Workshop.

[31] Y. Kalinke and H. Lehmann. Computations in recurrent neural networks:
From counters to iterated function systems. In G. Antoniou and J. Slaney,
editors, Advanced Topics in Artificial Intelligence, volume 1502 of LNAI,
Springer, 1998. Proceedings of the 11th Australian Joint Conference on
Artificial Intelligence (AI’98).

[32] T. E. Lange and M. G. Dyer. Frame selection in a connectionist model
of high-level inferencing. In Proceedings of the Annual Conference of the
Cognitive Science Society, pages 706–713, 1989.

[33] J. W. Lloyd. Foundations of Logic Programming. Springer, 1988.
[34] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent

in nervous activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943.
[35] A. Newell. Physical symbol systems. Cognitive Science, 4:135–183, 1980.
[36] G. Pinkas. Expressing first-order logic in symmetric connectionist net-

works. In L. N. Kanal and C. B. Suttner, editors, Informal Proceedings of
the International Workshop on Parallel Processing for AI, pages 155–160,
Sydney, Australia, August 1991.

[37] G. Pinkas. Propositional non-monotonic reasoning and inconsistency in
symmetrical neural networks. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 525–530, 1991.

[38] G. Pinkas. Symmetric neural networks and logic satisfiability. Neural Com-
putation, 3:282–291, 1991.

[39] J. B. Pollack. Recursive auto-associative memory: Devising compositional
distributed representations. In Proceedings of the Annual Conference of the
Cognitive Science Society, pages 33–39, 1988.

[40] J. B. Pollack. Recursive distributed representations. Artificial Intelligence,
46:77–105, 1990.

[41] S. Prieß-Crampe and P. Ribenboim. Ultrametric spaces and logic program-
ming. The Journal of Logic Programming, 42:59–70, 2000.

[42] A. K. Seda. Topology and the semantics of logic programs. Fundamenta
Informaticae, 24(4):359–386, 1995.

[43] L. Shastri and V. Ajjanagadde. From associations to systematic reasoning:
A connectionist representation of rules, variables and dynamic bindings
using temporal synchrony. Behavioural and Brain Sciences, 16(3):417–494,
1993.

[44] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the
stable model semantics. Artificial Intelligence. To appear.

[45] G. G. Towell and J. W. Shavlik. Knowledge-based artificial neural networks.
Artificial Intelligence, 70(1–2):119–165, 1994.

[46] M. Wendt. Unfolding the well-founded semantics. Journal of Electrical
Engineering, Slovak Academy of Sciences, 53(12/s):56–59, 2002.

[47] S. Willard. General Topology. Addison-Wesley, Reading, MA, 1970.

12


