
Learning to Design a Computer
Overview of Hardware Design Subjects and Educational Software at Faculty of Electrical Engineering in Belgrade

Časlav Božić

Department of Computer Engineering , Faculty of Electrical Engineering , University of Belgrade

ABSTRACT

The objective of this paper and the presentation is to guide the
audience through the process of teaching hardware related
subjects on Department of Computer Engineering on Faculty
of Electrical Engineering at University of Belgrade and to
present special educational software developed for this
purpose.

The overview of curriculum is given at the beginning, stating
that one half of all classes are computer related and about one
third of these are hardware related.

The educational software specially developed for teaching in
subjects: "Introduction to Computer Engineering",
"Computer Architecture" and "Computer Architecture and
Organization" is presented in addition. Interesting is option of
self-testing over the Internet before taking a test in the
laboratory.

The next step in education is designing a microcomputer
system and designing a VLSI device using commercial
software ("Protel", "VHDL").

For conclusion some personal experiences from real-life
project carried out for international CSIDC competition are
presented, considering it needed synthesis of all acquired
knowledge.

1. INTRODUCTION

Faculty of Electrical Engineering has been founded in 1948,
and until now has issued over 13000 graduate, 1400 master
and 400 PhD degrees. Department of Computer
Engineering was established in 1993 and is the youngest
department on the Faculty of Electrical Engineering.

The tradition of high-quality teaching at the Faculty of
Electrical Engineering and the need for making the
adoption of knowledge in the field of computer design
easier, induced teachers of the Faculty to organize classes,
laboratory exercises and compulsory projects in the manner
that will help students understand matter and grasp the
essence of the knowledge, necessary for coping with
real-life problems they would meet in their professional
life.

This paper, together with corresponding presentation has
the goal to guide the audience through the process of
teaching hardware related subjects on Department of
Computer Engineering on Faculty of Electrical Engineering

at University of Belgrade. It was written from the student's
perspective, and incorporates experience collected while
following lectures in this subjects, finishing laboratory
exercises, doing compulsory projects and preparing and
taking exams.

The paper is organized as follows. Section 2 gives the
overview of the current curriculum for the Department of
Computer Engineering and some approaching changes.
Section 3 presents subjects and educational software used
in lower division courses, while Section 4 is dedicated to
higher division courses. Section 5 describes some personal
experience in using adopted knowledge in solving a
real-life problem. Section 6 concludes the paper.

2. CURRICULUM

Studying at the Faculty of Electrical Engineering is carried
out in 10 semesters, of which first 4 are common for all
courses of study. At the beginning of the 3rd year students
choose their major. After finishing all 5 years, students are
awarded diploma of the high education, and the title
graduate engineer.

For the analysis of the school curriculum, considering the
purpose of this paper, from the total set of subjects taught at
the Department of Computer Engineering, one subset of
computer-related subjects is distinguished. Outside this
group stayed common engineering educational classes
(mathematics, physics), common electrical engineering
educational classes (fundamentals of electrical engineering,
electrical circuit theory) and classes that introduce students
to the majors of all other courses of study (electronics,
telecommunications, automation, physics of materials).

Further, from the total number of computer-related subjects,
another subset is noticed, which is formed by subjects that
consider hardware design.

The total number of exams is 42, and the average number
of hours that students weekly spend at the University
throughout all five years is 28.55. Because the curriculum
of the fifth year consists of some compulsory and a number
of elective subjects, and also of completing 2 projects and
final exam, it is solely on student to choose the final course
of his/hers studies. That is why the data is given separately
for the first 8 semesters and separately for the last two.

In Table 1 column 1 denotes the number of classes that
students weekly spend at the University, the columns 2 and
3 represents the number of computer-related and hardware-
related classes per week, respectively. The last two columns
are showing the share that computer-related classes have in
all classes and the share that hardware-related classes have
in total number of computer classes. These data is given for
the first 8 semesters separately, and then the average value
for these 8 semesters.

 1 2 3 2/1 3/2
Semester Total Computer HW Computer HW
 [hour/week] [hour/week] [hour/week] [%] [%]

1 30 4 4 13.33 100.00
2 30 4 4 13.33 100.00
3 30 9 5 30.00 55.56
4 30 5 0 16.67 0.00
5 30 14 10 46.67 71.43
6 30 19 10 63.33 52.63
7 30 30 6 100.00 20.00
8 25.5 25.5 0 100.00 0.00

Average 29.44 13.81 4.88 46.92 35.29

TABLE 1: NUMBER OF CLASSES PER WEEK (FIRST 8 SEMESTERS)

The graphic representation of these data is given in Figure 1
in the form of bar chart. Figure 1 shows the increase in
number of computer classes during the studies, but also
states that the number of hardware classes has its maximum
in 5th and 6th semester.

0

5

10

15

20

25

30

Hours/
week

1 2 3 4 5 6 7 8 Average
Semester

Total
Computer
HW

Figure 1: Number of classes per week (first 8 semesters) - graphic

representation

 1 2 3 2/1 3/2

Semester Total Computer HW Computer HW
 [%] [%]

1 1 0 0 0.00
2 5 1 1 20.00 100.00
3 4 1 1 25.00 100.00
4 7 1 0 14.29 0.00
5 2 0 0 0.00
6 6 4 2 66.67 50.00
7 4 4 1 100.00 25.00
8 6 6 0 100.00 0.00

Sum 35 17 5 48.57 45.83

TABLE 2: NUMBER OF EXAMS (FIRST 8 SEMESTERS)

In Table 2 column 1 denotes the total number of exams, the
columns 2 and 3 represents the number of computer-related
and hardware-related exams, respectively. The last two
columns are showing the share that computer-related exams
have in all exams and the share that hardware-related exams
have in total number of computer exams. These data is
given for the first 8 semesters separately, and then the total
sum for these 8 semesters.

Figure 2 is the graphic representation of the Table 1.

0

1

2

3

4

5

6

7

Number
of exams

1 2 3 4 5 6 7 8

Semester

Total

Computer

HW

Figure 2: Number of exams (first 8 semesters) - graphic representation

The number of classes per week and number of exams in 9th
and 10th semester are given in Table 3 and Table 4,
respectively. Because of the adjustable curriculum, some of
the ratios are individual and different for each student thus
could not be given.

 1 2 3 2/1
Semester Total Computer HW Computer
 [hour/week] [hour/week] [hour/week] [%]

9 26 22 >=6 84.62
10 24 24 100.00

TABLE 3: NUMBER OF CLASSES PER WEEK (LAST 2 SEMESTERS)

 1 2 3 2/1

Semester Total Computer HW Computer
 [%]

9 6 5 >=1 83.33
10 1 1 100.00

TABLE 4: NUMBER OF EXAMS (LAST 2 SEMESTERS)

In the last year of studies, students have only 2 compulsory
subjects, with possibility to choose 3 subjects from the
group of 9 elective subjects. The list of elective subjects is
updated almost every year, depending on the appearing of
the new technologies and the interest of students. Currently
there are 3 subjects that consider advanced architecture and
organization of computers (Controlling computer systems,
Parallel computer systems and Multiprocessing systems)
That is one third of all subject, thus fitting into average
values for other years.

Last year authorities of Serbia and Montenegro signed the
Bologna Declaration, and the text of the new Law of
Education and Universities that corresponds to that
agreement is proposed, and it is still in public discussion.
When the law is accepted, the Faculties are going to be
obligated to change their organization and curriculums to
correspond with the law and the Bologna Declaration.
Some movements in that directions are already made at
Belgrade University and the Faculty of Electrical
Engineering.

It is easily noticeable that only about one half of all classes
are computer related classes, and that is mainly because of
the fact that the firs two years are common to all courses of
study. There are some subjects in the lover division that
broaden the knowledge of the student, but most likely the
student would not at all or would rarely need that
knowledge in his/her future job. That is why the changes
would incorporate students' decision of the major subject
and course of studies earlier, maybe even at enrollment.
That would allow reducing of the number of common
engineering educational classes and classes that introduce
students to the majors of other courses of study, in that way
changing the ratio in the favor of the computer-related
classes.

Other changes would be of organizational nature,
considering dividing multi-semester exams into more
single-semester, and introducing the system of ECTS
scoring. These changes are already influencing the studies
of the students enrolled during this year. Also awarding a
masters degree after finished 5 years and diploma after only
3 years is planed, while the curriculums of individual
subjects would stay more or less unchanged. The complete
curricula of the subjects connected with computer design,
with topics taught, are given in Appendix.

3. FIRST, SECOND AND THIRD YEAR

In this section an overview of three educational software
systems will be given, one for each subject taught. At the
end the system for on-line testing of students using the
Internet is described.

The teaching of the hardware-related subjects starts in very
first year of studies with subject "Introduction to Computer
Engineering". The first-year course covers the switching
functions, the combinational and sequential switching
circuits, the analyses and syntheses of switching circuits
and the standard modules such as multiplexers, decoders,
arithmetic and logic units, registers, counters, etc. The
second-year course in Computer Architecture covers the
basic concepts related to the most commonly found
structure of a computer, which includes the processor, the

memory, the input/output subsystem and the bus. The
course in Computer Architecture and Organization, that is
taught at the third year, goes one step further covering the
topics such as the architecture and organization of CISC
and RISC processors, the organization of pipelined
processors, the storage system, the interconnection
networks, and the memory system. These courses have
been lectured for a few years and cover the core topics in
computer architecture and organization identified by the
joint IEEE Computer Society and ACM Computer
Engineering Task Force [15].

Generally, a great problem in teaching any course in the
field of computer architecture and organization is to
provide means which would facilitate the students to make
a cognitive leap from the blackboard description of the
architecture and organization of a computer to its utilization
as a programmable device and connect their theoretical
knowledge with practical experience. The laboratory where
students get hands-on experience is crucial in helping them
to bridge this gap between theoretical knowledge and the
practical problems architects face in designing various
computer system modules. The commonest approach in
narrowing this gap relies on software simulators of
computer systems. Software simulators have several
advantages over "real" microcomputer platforms: they are
less expensive, more flexible and more appropriate for
lower division courses, which typically have a large number
of students. Additionally, graphical presentation and
animation help students to "experience" computer system
functioning and better understand various design issues.
Several specialized educational simulators of computer
systems have been developed at the Department of
Computer Engineering.

Figure 3: Screenshot from the educational software used in the first year

Students of the first year have the possibility to use digital
system design software, developed at our Department.

During the lab exercises or at home, students can
interconnect logical elements and standard modules into
combinational and sequential circuits, set their inputs, and
watch the output values. The logical states of the signal
lines are visually presented by color, where blue represents
low state or logical "0", while red denotes high state or
logical "1". This helps students to understand the matter
taught at the course Introduction to Computer Engineering
by creating a switching circuits by themselves and
interactively setting different input values and noticing
changes at the output. One example of digital circuit
designed using this software is given in Figure 3.

For the students in the second year another more
complicated software is developed. It covers the topics
taught in the course in "Computer Architecture" and it is
used in compulsory laboratory exercises, but also students
can use it at their home. One educational computer system
design called EDCOMP is used as a base for the simulation.
The structure of EDCOMP is given in Figure 4.

Figure 4: Structure of EDCOMP

The Web-based graphical simulator supports animation of
instruction execution and allows students to write their own
assembly programs, translate them, interactively set and
examine values of memory locations, registers, and
input/output units, and run simulation. It gives a visual
presentation of all parts of the computer system both at the
level of standard system modules and at the level of
combinational and sequential circuits. It also displays the
values of signals. Simulation can be performed at the level
of a clock cycle, an instruction, and a complete program.
Further, the timing diagrams of selected signals can be
displayed.

The simulator graphically presents parts of the computer
system and signal values, simulates the behavior of
EDCOMP, and displays simulation results in a user-
friendly manner. During a simulation run, two windows are
present on the screen. The larger window in the upper part
of the screen, named the Block Diagram Window, shows

parts of the computer system. Because a limited number of
elements can be displayed on a screen, a two-level
hierarchical scheme of screens is developed. The first level
screen gives the structure of the computer system at the
level of modules (shown in Figure 4), and the simulation
run begins with this screen. For a more detailed structure of
any of the modules, the student needs to point and click to
select a module and go to the second level of screens. The
second level screen gives the structure of the module’s
processing unit at the level of combinational and sequential
circuits, as presented in Figure 5. The exception is the
processor module for which the user goes from the first to
the second level through an intermediate level screen,
which gives the structure of the processor module at the
level of units. For each signal coming from another part of
the computer system, there is a link button with the name of
the module where the signal is generated; this provides an
easy and fast navigation through screens. A single line
changes its color depending on the current value and a bus
is accompanied by its current value.

The Main Window in the lower part of the screen (see
Figure 5) shows the status of simulation (PC – program
counter, T – step counter, Tclk – processor clock cycles
executed), the control signals generated for that clock
period, and a brief explanation of the actions to take place
during that clock period in the Sequence box. The
command buttons support navigation (UP, Hierarchy, and
Back), stop of simulation (Exit), simulation (Clk, Ins, Prg,
and Clear) and examination of simulation results (Show,
Clock, Signals), and saving the simulation context (Save).

Figure 5: Screenshot from the educational software used in the second year

The simulator flexibility allows students to focus on a
specific topic. For example, when studying integer multiply
instruction execution, students can run a simulation on a
clock-by-clock cycle basis, closely following the changes in
the relevant registers and ALU. On the other hand, when

learning I/O fundamentals, students can follow simulation
at the system level, where the processor is considered as a
black box, executing a program on the instruction-by-
instruction level.

The initial version of the simulator was developed as a
standalone application in Java. After several years of use, it
was decided to pursue a transition to a Web-based
environment due to following reasons. The number of
students enrolled in the course exceeds 400, thus posing a
tremendous pressure to laboratory equipment and staff.
Web-based environment allows students to prepare for lab
at home, at their own pace, thus reducing time needed for
successful completion of lab exercises. The Web-based
technology also offers seamless integration with knowledge
assessment and administrative tasks and cost reductions for
installations, updates, and maintenance.

More details regarding simulator capabilities can be found
at http://electra.etf.bg.ac.yu:8080/SIMCISCO/SIMCISCO.html.

As a complexity of the mater taught increases, more and
more complicated structures of software tools are needed.
For the purpose of teaching third-year course in "Computer
Architecture and Organization", and to help the students
take next step into advanced computer architecture, another
software package is developed by professor Dr. Jovan
Djordjevic and his associates. It consists of three self
contained systems: the RISC processor based educational
computer system (the RCS system), the CISC processor
based educational computer system (the CCS system), and
the educational hierarchical memory system (the HMS
system). It helps in understanding topics like pipelined
design, the difference between CISC and RISC
architectures, hierarchical cache memories and virtual
memories. The simulator based on RCS system is described
here, while the other two have similar user interface.

Figure 6: Units of the RCS system

Figure 6 shows the root of the hierarchical scheme of the
RCS with all relevant units. Each screen, in general, is
made up of the title bar, menu, and five windows.

The largest window in the upper left part of the screen,
named the Block diagram window, contains either only a
composition of combinatorial and sequential circuits or a
composition of subblocks, that can be further selected, and
combinatorial and sequential circuits. The upper right
window, named the Hierarchy window, shows the
hierarchical scheme of the CPU. Each block from the
hierarchical scheme is further presented with one or more
screens. The traversing through the blocks of the
hierarchical scheme can be achieved by selecting the
appropriate block, at any moment.

The lower left window, named the Info and Command
window contains the status of the simulation, a brief
explanation of the actions that are going to take place
during that clock period; command buttons for executing
the simulation to the next clock, or to complete the current
instruction, or the complete program; command buttons for
moving through the levels of hierarchy (Up, Main); and
some more buttons (Help, Clear button that returns the
simulation to the beginning)

The lower right window, named the Signal graph window,
shows the simulation control parameters and clock timing
diagrams. The bottom window, named the Status window,
shows the status information such as the description of the
Block diagram window, the current position inside the RCS
and the total number of system clocks elapsed.

Figure 7: Screenshot from the RCS simulator used in the third year

The running of the simulator with the hierarchy of screens
of the RCS is described briefly in the following. The first
screen with which the simulation begins is the root

hierarchical screen, which gives the block structure of the
RCS (shown in Figure 6). If student needs more detailed
structure of any of the blocks from Figure 6, he/she can
move one level down in the hierarchy by clicking at that
block. For example, by positioning the cursor at block
Register File, one goes one level down in the hierarchy and
gets the block structure of the Register File Unit. The same
actions applied this time to the GPR block, brings the
screen of the last level in the hierarchy (Figure 7). This
screen can be obtained directly at any time by clicking on
the GPR box in the Hierarchy window. Here one can see
the design of this block at the level of standard sequential
elements (registers, flip-flops, etc.) and combinatorial
elements (decoders, logical circuits, etc.) Groups of lines,
such as data and address bus are given either in green if
they are in the state of high impedance or in grey with the
valid values given in the hexadecimal form, while the
control bus lines and other signal lines are coloured either
in blue or red depending on whether the signal on that line
has logical value "0" or "1", respectively.

At any time during the simulation by activating button
More student can examine and set the memory, examine
and set registers, and get the timing diagram of selected
signals from the beginning of the simulation until the
current clock period, as shown in Figure 8. Buttons at this
screen allow students to move the time frame to the desired
clock, to the beginning, 8 clocks backward, 8 clocks
forward, or to the end. Any combination of signals can be
selected during the simulator set up.

Figure 8: Timing diagrams of the RCS

The organization of the simulator with the hierarchical
structure of screens makes it possible to carry out the
simulation of the functioning of the RCS at various
hierarchical levels. At higher levels, student can follow the
simulation at the level of signal exchanged between blocks
considered here as black boxes. At the lowest level, if it is

deemed interesting, student can follow the simulation at the
level of registers, flip-flops, logical circuits etc. This
provide abstracting the unnecessary details at the stage of
grasping the essence of the matters, but allow detailed
insight to the lowest levels of design, when the basics are
understood. This was proved as a good way of adopting the
knowledge.

As a part of classes for all of these three subjects
compulsory lab exercises are made. Each exercise has four
components: prelab preparation, in-lab knowledge
assessment, in-lab assignment, and written report. To
prepare for a particular lab, the students must review related
material from lectures and the textbook, and read the
related sections from the lab manual. They can also access
simulators from home and use it for self-study. Each lab
assignment is preceded by a short computer-based test
aimed to verify whether the students understand the topic
covered in the assignment. After passing the test, the
students select a predefined experiment, which results in the
initialization of the computer system from a file. Then, they
execute the programs, either at the instruction level or at the
clock level. Before, during, and after the simulation, the
students are requested to examine the values of relevant
memory locations and registers in the processor and the
input/output units, follow the values of selected signals at
combinational and sequential circuits, and draw their timing
diagrams. In some of the experiments the students are also
asked to develop their own assembly programs using the
Editor, the Translator, and the Loader and to verify their
correctness and determine performance. Based on the
observations made during the experiment, they answer
questions relevant to the topic and turn in a written report.

Knowledge assessment for all of these three subjects is
conducted in a lab by a testing software which is since last
year available on-line, through the Internet. This means that
student can take trial tests from any place at any time, from
any personal computer provided with Internet connection
and a web browser. In the addition, student can choose the
complexity of the questions, also the topics of interest and
the number of questions and then the questions matching
that criteria are randomly chosen from the database. It is
possible to define the time-limit for answering the
questions, so that allow students at home to make the
conditions similar to these in the laboratory. The statistical
overview tells the student in which topics he/she needs
improvement, and explanations given with the each answer
make possible for students to learn in this way.

When a student opens and log in at the web address:
http://electra.etf.bg.ac.yu:8080/Test, he/she will be offered to
configure the test parameters, and then to take the test.
Then he/she will be given a screen with the question and
offered answers, like in Figure 9. After a completion, the

results will be presented to the student, with correct answer
and explanation for each incorrectly given answer.

Figure 9: Screenshot of on-line testing software

This web tool facilitate the students with a way to
continually estimate their knowledge and the quick way of
spotting the lacks in it. The tool's flexibility is important
because of the different level of pre-knowledge of the
students entering the courses. In that manner, one can
choose to answer to questions only of lower complexity at
the beginning and then proceed with medium or higher
complexity, or can gradually decrease time-limit for
answering the questions. This allows everyone to learn at
his/hers own pace.

4. FOURTH AND FIFTH YEAR

Both courses in the higher division years have the goal to
prepare the students for the real-life projects, similar to that
the student is supposed to meet at his/hers future
professional life. This is usually achieved by teaching the
existing examples of the devices or systems, and
commenting implementation details, together with demand
on students to complete at least two projects individually.
Other part of the classes are practical, and are dedicated to
acquainting students with commercial tools needed for the
completing such a project.

The first of these constructive courses is "Microprocessor
Systems". The curriculum of this subject consists of several
case studies, in different topics starting at assembly level
programming, through theory and practice of pipelining,
branch prediction and multithreading to the theory and
practice of Pentium of newer generation. The home project
in this subject comprises development of microprocessor
system using Intel 8086 and 8051/52 microprocessors,
development of interfaces and needed software for special
purpose computing. This year home assignment required a
design of elementary operating system for the designed

microprocessor system. The commercial tools that are
generally used are Protel 99 SE for circuit design, different
assemblers, and Keil C extension of ANSI C.

The other course "VLSI Systems" is taught at the final year
of studies. The objective of this subject is to introduce
students to designing hardware VLSI device. The
curriculum consists of different topics, among them are
hardware design based on geometrical, logical and
functional symbols, design based on the method of standard
cells and FPGA chips. As a case study is used design of
microprocessor DARPA RISC MIPS on 200MHz carried
out by our teacher professor Dr. Veljko Milutinović. In the
addition the overview of newest commercial FPGA chips is
given; Max series by Altera and Spartan series by Xilinx
are described in detail and compared. The practical part of
the classes encompasses details of the VHDL and Verilog
hardware description languages.

Beside craft skills gain on these courses, there is another
component of the adopted knowledge: the designer's point
of view. Good designer has to be able to choose between
different possibilities for implementation, to weigh the
different tradeoffs, correctly estimate advantages and
disadvantages of chosen design. This is usually achieved by
experience, but for the students at the University this
process is accelerated by studying different case studies,
their implementation details, tradeoffs and problems
emerged.

The creators of the commercial tools used in these subjects
usually pay attention to usability and shortening of the
production process, rather than didactic and learning aspect
of the tool. However, the whole process of learning of this
topics can be made easier by allowing students to easily
exchange their thoughts and experience considering tool
usage or some design issue. This is attained by mailing
lists, and starting this year "Future Learning Environment".

Two mailing lists are created, one for each course. Any
student is free to subscribe or unsubscribe at any time
he/she likes. The majority of information considering the
classes, exams and individual projects go through this
mailing lists. That is why almost entire number of students
enrolled in these courses are subscribed to mailing lists.
Usually students use this lists to exchange experience or ask
different questions, and other students or the assisting
teacher answer these questions. These mailing lists have
very lively traffic with up to 200 messages per semester,
from which about 20% are posted by assisting teacher as a
various information or an answers to questions.

The FLE system started with test use this year, and it is
offered to students to freely join this computer supported
collaborative learning system placed on server with address

http://titan.etf.bg.ac.yu/titanium/FLE. This environment con-
sists of a personal Webtops. Webtops can be used to store
different items (documents, files, links to web etc.) related
to studies, organize them into folders and share them with
others. With Knowledge Building tool groups may carry
out knowledge building dialogues, theory building and
debates by storing their thoughts into a shared database.
The knowledge building discussions are structured by
knowledge types. Another part of FLE is Jamming tool.
Jamming is a tool for collaborative construction of digital
artifacts. Using jamming tool student can explore the
possibilities of changing a file by making new versions of
the starting artifact together with others [16].

Only small number of students utilized this environment
during its first semester of test use. Plans are to increase
this number and to induce students to collaborate, but some
of the basic assumptions of the environment of this kind
seem to be in contradiction with the demand for the
individual completion of the projects.

5. EXPERIENCES

As a member of team that represented Belgrade University
at international CSIDC 2004 competition, the author
together with three colleague students encountered several
challenges. During the work on the project "Small Sonar
Device" (see http://titan.etf.bg.ac.yu/csidc) the synthesis of
knowledge and learning some new things were necessary.
The knowledge gathered from the courses at the University
proved itself as very useful; accepted methodology of
learning and good basics made quick learning possible.

The project consisted of designing and implementing
handheld sonar device, that could be used in emergency
cases when the visibility is reduced. It had two parts:
hardware device, designed with DSP and ultrasound
sensors; and software for the handheld device to which
sonar would be attached (PDA, Java enabled mobile phone
etc.) The production of hardware device, besides topics
learned at classes, needed some special knowledge about
DSP and ultrasound sensor and some theory on sonar
functioning for developing the algorithm for recognizing
the objects. Software development considered assembly
level programming with the use of specific instructions of
DSP, and the use of the unique features of the handheld
devices in higher programming languages.

The communication between team members was
satisfactory. The mailing list was formed at the beginning
of the project, and the most of the information went through
it. Weekly meeting were used for defining the next week
assignments for each member; for clearing the dilemmas
and finding the answer to current questions. Content
management system (http://titan.etf.bg.ac.yu/titanium/plone)

named "Plone" was used for exchanging the documents
considering user manuals for different software tools,
design notes and working versions of programs. Each
member had password protected on-line storage space, and
could choose which of the uploaded documents are going to
be published and thus shared with other users of CMS. For
tracking the changes between different versions of
programs, and for allowing cooperation in writing these
programs, CVS system for version control was used
(http://titan.etf.bg.ac.yu/cvs/viewcvs.cgi). It works by checking
out the source program files from the on-line database,
changing them locally and then checking them back in. All
these services are available through the Internet.

At the end, things were complicated by lack of
understanding for educational affairs. Namely, the only
firm in Serbia that had the equipment enough sophisticated
for achieving resolution high enough for printing the
printed circuit board, refused the job. They had a big order
for PCBs going on from an international company, and did
not have time to deal with students. But that is the kind of
real-life problems we will have to cope with in future
everyday professional life. The final prototype was late, and
some lessons learned.

6. CONCLUSION

It is not the only goal of learning about computer hardware
to finally have enough skills to design one, but having
insight in computer architecture and organization is a way
of writing good optimized low-level software, operating
systems and it is a basics for understanding other, more
complicated architectures like distributed and
multiprocessor systems.

At the job fair "Career Days" held this April in Belgrade 38
companies offered jobs. Only 8 of them (about 20%)
searched for computer engineers. Further 10 companies
(25%) needed graduate students regardless of the course of
their studies. After three months about 100 graduate
students that visited this fair found job. There is no data of
how many computer engineers were among them.

The offer of hardware-related jobs is somewhat narrower
than the offer in software industry, especially in our
country, with its stage of development in technology. On
the other hand, though there are some more schools of
Belgrade University that give education in software
engineering, only engineers from Faculty of Electrical
Engineering have enough both software and hardware
knowledge to cope with jobs that require some hardware
design. So while others learn how to use the computer, we
learn how to design one. That is where the idea for the title
comes from.

APPENDIX

The official curricula of the subjects that consider hardware design are
given. The numbers in parentheses denotes the semester and the number of
lectures, practical classes and lab exercises per week, respectively.

Introduction to computer engineering (I: 2+2+0 II: 2+2+0)
Boolean algebra. Switching functions and circuits. Minimization of
switching functions (Karnaugh maps). Combinational and sequential
systems (coders, decoders, multiplexers, demultiplexers, adders, arithmetic
and logic units). Sequential systems (types, flip-flops, static and shift
registers, counters). Memory elements (ROM, RAM). Analysis and design
of combinational and sequential systems.
Computer architecture (III: 3+1+1)
Types of computer architectures. Machine code and Assembler. CPU
structure (ALU, registers, stack, operation modes). Control unit (design
using delay elements, counters and decoders; programmable units).
Microcomputing. Interrupts (hierarchy, masking). Input and output
(controllers, programmable IO). DMA. Memory (associative, LIFO and
FIFO memory, operating memory, cache). Data, address and control buses.
Fundamentals of operating systems (multitasking, process synchronization,
semaphores, queues). Data bases.
Pulse and digital electronics (V: 3+2+2 VI: 3+2+1)
Pulse electronics: Switching properties of diode, BJT and MOSFET. Logic
gates in bipolar technology (RTL, DTL, TTL, STTL, ASTTL, ALSTTL,
ECL, three stage output). Logic gates in NMOS and CMOS technology.
Flip-Flops (positive feedback concept, SR, T, JK, D and MS flip-flops;
TTL, ECL, NMOS and CMOS logic). Anstable and monostable circuits.
Comparators (differential, Schmidt trigger). Time base generators (Miller,
Bootstrap). Digital electronics: Registers. Shift registers. Combinational
digital systems (decoders, coders, multiplexers, demultiplexers, PAL,
PLA). Sequential digital systems (parallel and serial binary counters, bi-
directional counters). Memories (static, dynamic, ROM, PROM, EPROM,
EEPROM, NVRAM). Arithmetic and logic units (adders, multipliers).
A/D converters. D/A converters.
Computer architecture and organization (V: 2+1+0 VI: 2+2+1)
Introduction. Computer structure. Functional units. Processor. I/O devices.
Memory. Bus. Computer architecture. Registers. Instruction format. Types
of data. Addressing. Instruction set. Standard and special instructions.
Interrupt. Interrupt routine. Internal and external interrupts. Masking.
Priorities. Processor organization. Instruction execution phases.
Operational unit. Registers. ALU. Internal bus. Interrupt unit. Control unit.
Instruction flowchart. Control unit realization. Hardwired realization.
Microprogram realization. Horizontal, vertical, mixed and nano-
programming. I/O. I/O device controllers. Organization of I/O.
Programmed I/O using status register and interrupt. I/O using DMA
controller. I/O using I/O processor. Memory. Organization of operative
memory. Overlay. Distribution of the addresses. Cache. Associative,
direct, and set-associative copying. Word and block level copying.
Substitution algorithms. Data consistency. Virtual memory. Paged,
segmented and segment-paged organization. Associative, direct, and set-
associative copying. Bus. Asynchronous bus. Arbitration. Parallel and
serial arbitration. bus transfers. Read and write cycles. Multi-master
busses. Local busses. Synchronous bus. Pipeline. Instruction phases.
Pipeline stages. Conflicts and their solving. Read-ahead, alternative
buffers, continual loops, discontinual loops, jump prediction.
Microprocessor systems (VII: 3+1+2)
Theory and practice of microprocessor assembly level programming.
Examples. Case study: ix86. Class project: Ten assembly level programs
of interest for the students. Theory and practice of input/output
programming. Interrupt i/o, peripherals i/o, and DMA programming in
microprocessor environment. Examples. Case study: ix86. Class project:
One large i/o program which changes each semester. Theory and practice
of microprocessor interface hardware. Examples. Case study: ix86. Class
project: Assembly/disassembly or analysis/synthesis of a
hardware/software system for general purpose computing. Theory and
practice of microprocessor assembly level programming. Examples. Case
study: ix86. Class project: Assembly/disassembly or analysis/synthesis of
a hardware/software system for special purpose computing. Theory and

practice of Pentium, Pentium Pro, Pentium MMX, and Pentium II.
Architectural, organizational, and design issues. Pipeline, caching, branch
prediction, interrupt, support for SMP and DSM. Engineering issues.
Theory and practice of Merced and Beyond. Architectural, organizational,
and design issues. Instruction level parallelism, caching, branch prediction
strategies, i/o, multithreading, issues of interest for SMP and DSM.
VLSI systems (IX: 3+1+2)
Introduction to VLSI. Design based on geometrical, logical and functional
symbols. Hardware and software details of DARPA RISC MIPS
microprocessor on 200MHz. Description of internal resources in
architectural, organizational and design level. ISP language and ENDOT
simulation package. Design of the microprocessor by the method of
standard cells. Design using FPGA chips. Silicon compilation. Details of
VHDL and Verilog languages. Testing. Examples of implementations in
VHDL and Verilog. Examples of applications implemented on leading
world universities. Two compulsory projects.

REFERENCES

[1] Prof. Dr Borivoj Ž. Lazić: Logičko projektovanje računara, Nauka
Beograd 1998
[2] Dr Jovan Djordjević: Priručnik iz arhitekture računara, ETF 1998
[3] Dr Jovan Djordjević: Priručnik iz arhitekture i organizacije računara,
ETF 1999
[4] Milutinovic, V., Microprocessor and Multimicroprocessor Systems,
Copyright by Veljko Milutinovic, 1998
[5] Douglas V. Hall, Microprocessors and Interfacing - Programming and
Hardware, 2nd Edition, Macmilan/McGraw-Hill, USA
[6] I. Scott MacKenzie, The 8051 Microcontroller, Prentice Hall, USA
[7] Veljko Milutinović, Projektovanje Telekomunikacionih uređaja pomo-
ću mikroračunara, Institut "Mihajlo Pupin", Beograd
[8] Veljko Milutinovic, Dragan Božanic, Dejan Polomcic, Milivoje
Aleksic, Uvod u projektovanje racunarskih sistema, Beograd
[9] Veljko Milutinović, Projektovanje i arhitektura RISC procesora za
VLSI, Nauka, Beograd
[10] Peter J. Ashanden, The Designer's Guide to VHDL, Morgan
Koufmann Publishers, Inc, USA
[11] John L. Henessy, David A.Patterson, Computer Architecture a
Quantitative Approach, Second Edition, Morgan Koufmann Publishers,
Inc, USA
[12] Jovan Djordjević, Bosko Nikolić, Aleksandar Milenković: Flexible
Web-based Educational System for Teaching Computer Architecture and
Organization
[13] Jovan Djordjevic, Aleksandar Milenkovic, Nenad Grbanovic: An
Integrated Educational Environment for Teaching Computer Architecture
and Organisation
[14] J. Djordjevic, B. Nikolic, M. Mitrovic: A memory system for
education
[15] "Computer Engineering: Computing Curricula 2001," IEEE Computer
Society and ACM February 2003
[16] http://fle3.uiah.fi
[17] http://www.etf.bg.ac.yu/

