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Abstract. Epistemic extensions of description logics (DLs) have been
introduced several years ago in order to enhance expressivity and query-
ing capabilities of these logics by knowledge base introspection. We ar-
gue that unintended effects occur when imposing the semantics tradi-
tionally employed on the very expressive DLs that underly the OWL 1
and OWL 2 standards. Consequently, we suggest a revisited semantics
that behaves more intuitive in these cases and coincides with the tradi-
tional semantics on less expressive DLs. Moreover, we introduce a way
of answering epistemic queries to OWL knowledge bases by a reduction
to standard OWL reasoning. We provide an implementation of our ap-
proach and present first evaluation results.

1 Introduction

Enrichment of query languages has been widely studied in knowledge
base and database communities. Reiter [7] takes the approach of treat-
ing databases as first order theories, and queries as formulas of the lan-
guage (of the database) extended by epistemic modal operator. Similar
notions has been introduced in querying knowledge bases formulated in
description logic(DLs)—well-known family of logic-based knowledge rep-
resentation formalisms [3]. With such operators one can express ques-
tions not only about external world described in the knowledge base,
but also the knowledge base itself i.e., about what the knowledge base
knows. In [2], the language of the description logic ALC [8], has been ex-
tended by the epistemic operator K. It has been shown how such enriched
description logics can formalise non first-order aspects of frame-based
systems, like epistemic queries and procedural rules as well as impose
integrity constraints. In this work we mainly focus on epistemic querying.
For a detail treatment of all this features, we refer the readers to [2].

In description logics, concept descriptions are the basis for express-
ing knowledge. These descriptions are constructed from concept names
and roles using constructors available in the logic. Concept names denote



classes of object in certain domain e.g., Course, Graduate, etc whereas roles
are binary relation among the domain objects e.g., teachers, enrolled, etc.
Different description logics allow for different set of constructors. Further,
the syntax also allows for individual names (constants), which along with
concept descriptions describe properties of the objects of a domain. Like
first-order modal logic [9], the enrichment of the syntax of a description
logic with the K-operator is quite straight forward (see Defintion 3), i.e.,
we allow the K-operator in front of each concept description and roles. For
example, from the concept description ∀hasChild.Doctor , which represents
people with only Doctor as their children, we can easily get the concept
description

∀KhasChild.KDoctor (1)

The operator K is to be read as ”knows”. The intended meaning of K is
to talk about the known objects of the domain, for example (1) represents
the class of people whose all known children are known to be doctors. Thus
it allows us to question the introspective aspects of a knowledge base. For
example, in order to formalise the query ”all known father which are not
known to have daughters”, we could do an instance retrieval w.r.t. the
(epistemic) concept

C ≡ K(Male ⊓ Parent) ⊓ ¬∃KhasChild.Female

The instances of C are all those known fathers who are not explicitly
stated to be fathers of some daughter as well as those for whom there is
no evidence (explicit or implicit) of their being father of some daughter.
Consider the following knowledge base

Σ = {Male(john),Parent(john), hasChild(john, mary)}

Querying for the instances of C w.r.t. Σ results in {john} as we don’t have
the assertion ¬∃hasChild.Female(john) in Σ neither we have any evidence of
john being a father of a daughter, as it is not stated that mary is a female.
Now considering the concept obtained by dropping K in C for querying
will lead to an empty result. Hence, in the spirit of non-monotonicity,
there are cases where more interesting results can be derived via epistemic
querying than in conventional sense.

For the semantics, one has to consider how to interpret the epistemic
operator. In literature, the approach adopted for the semantics of the
epistemic extensions of description logics is to extend the notion of the
possible world models for propositional epistemic logic. The semantic ob-
tained this way considers each standard DL interpretations as a possible



world and the accessibility relation as an equivalence relation among these
interpretations, thus allowing both for positive introspection as well as
negative introspection – the transitivity of the relation allows for the pos-
itive introspection, i.e., Σ knows what it knows. Similarly, the transitivity
and symmetry of the relation allows for the negative introspection [4].

Under this semantics, the concept descriptions with no occurrence of
the K-operator are interpreted as in standard DL semantics by assigning
a subset of the domain of the interpretation to the concept descriptions,
a binary relation over the domain to the roles and an element of the do-
main to the constants, and interpret the constructors accordingly. As in
epistemic logic, the interpretation of the K-operator requires one to con-
sider all the accessible worlds from the current world. In other words, the
interpretation of a concept of the form KC is given by the set of all ob-
jects which belong to the class specified by concept C in every accessible
interpretation. When providing the semantics of an epistemic extension
of a DL, certain issues arise like the assumption about the domains of the
interpretations, the relationship between the domain of two interrelated
(via accessibility relation) interpretations, the interpretation of constants
(e.g., john in the above example) etc. The assumptions made in common
are usually the Comman Domain Assumption requiring that the domain
of each interpretation in such semantics to share a common infinite do-
main and the Rigid Term Assumption requiring each individual to be
interpreted rigidly. In the upcoming sections, we will see that the notion
of knowledge base consistency and other reasoning related notions are
quite dependent upon these two assumptions, and restrict us to a certain
set of constructors in the language of the knowledge bases. Allowing for
a richer knowledge base language, can cause severe problems regarding
the consistency of the knowledge bases. Thereby, we propose a new se-
mantics which does not enforce any of the assumptions. The rest of the
report is organised in the following way. We start by presenting some
preliminaries in Section 2, by providing syntax and semantics of the de-
scription logic SROIQ. It is not only one of the most expressive DLs
but also the underlying logic of the web ontology language OWL [6]. In
2.2 of this section, we present the K-extension of SROIQ, which we call
SROIQK, by providing its syntax and semantics. Note that all the no-
tions presented here can easily be restricted to any fragment of SROIQ.
We also introduce the notion of epistemic entailment. We then, present a
technique for checking such epistemic entailment using standard reason-
ers. This as well as the formal proof of the correctness of the technique
is presented in Section 3. In Subsection 4, we discuss why we need to



restrict the language of the knowledge base to SRIQ \ U1 (a fragment
of SROIQ without nominals and the universal role), which if not taken
into consideration can lead to certain unavoidable problems. To allow for
a richer language for the knowledge bases, we introduce a new semantics
in Section ??. Like for the current semantics, in Section 6 we present
a similar technique for checking epistemic entailment under the new se-
mantics and also provide the formal correctness. In the same section, we
establish the compatibility of both the semantics for SRIQ knowledge
bases so far the epistemic entailment is concerned. Once all the theoretical
details are provided, we realise our technique by providing a system for
checking epistemic entailment. With this regard, in Section 7 we present
a system and discuss several implementation issues involved as well ob-
servation made during some early tests. Finally we conclude in Section 8
and identify some future works.

2 Preliminaries

In this section, we present an introduction to the description logic SROIQ [?]
and its extension with the epistemic operator K.

2.1 Description Logics SROIQ

We start by presenting the syntax and semantics of SROIQ. It is an
extension of ALC [8] by inverse roles(I), role hierarchies(H), nominals(O)
and qualifying number restrictions(Q). Besides it also allows for several
role constructs and axioms.

Definition 1. For the signature of SROIQ we have countably infinite
disjoint sets NC , NR and NI of concept names, role names and individual
names respectively. Further the setNR is partitioned into two sets namely,
Rs and Rn of simple and non-simple roles respectively. The set R of
SROIQ roles is

R := U | NR | N−
R

where U is a special role called the universal role. Further, we define a
function Inv on roles such that Inv(R) = R− ifR is a role name, Inv(R) = S
if R = S− and Inv(U) := U .

The set of SROIQ concepts (or simply concepts) is the smallest set
satisfying the following properties:

1 From now onward by a SRIQ knowledge base we mean knowledge base without
use of the universal role U .



– every concept name A ∈ NC is a concept;

– ⊤(top) and ⊥ (bottom) are concepts;

– if C,D are concepts, R is a role, S is a simple role, a1, . . . , an are
individual names and n a non-negative integer then following are con-
cepts:

¬C (negation)
∃S.Self (self)
C ⊓D (conjunction)
C ⊔D (disjunction)
∀R.C (universal quantification)
∃R.C (existential quantification)
≤ nS.C (at least number restriction)
≥ nS.C (at most number restriction)

{a1, . . . , an} (nominals / one-of)

An RBox axiom is an expression of one the following forms:

1. R1 ◦ · · · ◦Rn ⊑ R where R1, . . . , Rn, R ∈ R and if n = 1 and R1 ∈ Rs

then R ̸∈ Rn,

2. Ref(R) (reflexivity), Tra(R) (transitivity), Irr(R) (irreflexivity), Dis(R,R′)
(role disjointness), Sym(R) (Symmetry), Asy(R) (Asymmetry) with
R,R ∈ R.

RBox axioms of the first form i.e., R1 ◦ · · · ◦ Rn ⊑ R are called role
inclusion axioms (RIAs). An RIA is complex if n > 1. Whereas the RBox
axioms of the second form e.g., Ref(R), are called role characteristics. A
SROIQ RBox R is a finite set of RBox axioms such that the following
conditions are satisfied:2

– there is a strict (irreflexive) partial order ≺ on R such that

• for R ∈ {S, Inv(S)}, we have that S ≺ R iff Inv(S) ≺ R and

• every RIA is of the form R ◦R ⊑ R, Inv(R) ⊑ R, R1 ◦ . . . Rn ⊑ R,
R◦R1◦· · ·◦Rn ⊑ R or R1◦· · ·◦Rn◦R ⊑ R where R,R1 . . . , Rn ∈ R
and Ri ≺ R for 1 ≤ i ≤ n.

– any role characteristic of the form Irr(S), Dis(S, S′) or Asy(S) is such
that S, S′ ∈ Rs i.e., we allow only for simple role in these role char-
acteristics.

2 These conditions are enforced to avoid cycles in the RBoxes, which, if not taken
care, would lead to undecidability. We usually call an RBox to be regular because
of the first condition.



A general concept inclusion axiom (GCI) is an expression of the form
C ⊑ D, where C and D are SROIQ concepts. A TBox is a finite set of
GCIs.

An ABox axiom is of the form C(a), R(a, b), a
.
= b or a ̸ .= b for the

individual names a and b, a role R and a concept C. A ABox is a finite
set of ABox axioms.

A SROIQ knowledge base is a tuple (T ,R,A) where T , R and A are
SROIQ TBox, RBox and ABox respectively. ♢

To define the semantics of SROIQ, we introduce the notion of inter-
pretations.

Definition 2. A SROIQ interpretation I = (∆I , ·I) is composed of a
non-empty set ∆I , called the domain of I and a mapping function ·I such
that:

– AI ⊆ ∆I for every concept name A;

– RI ⊆ ∆I ×∆I for every role name R ∈ NR;

– aI ∈ ∆I for every individual name a.

Further the universal role U is interpreted as a total relation on ∆I i.e.,
UI = ∆I×∆I . The bottom concept ⊥ and top concept ⊤ are interpreted
by ∅ and ∆I respectively. Now the mapping .I is extended to roles and
concepts as follows:

(R−)I = {(x, y) | (y, x) ∈ RI}
(¬C)I = ∆I \ CI

(∃S.Self)I = {x | (x, x) ∈ SI}
(C ⊓D)I = CI ∩DI

(C ⊔D)I = CI ∪DI

(∀R.C)I = {p1 ∈ ∆I | ∀p2.(p1, p2) ∈ RI → p2 ∈ CI}
(∃R.C)I = {p1 ∈ ∆I | ∃p2.(p1, p2) ∈ RI ∧ p2 ∈ CI}

(≤ nS.C)I = {p1 ∈ ∆I | #{p2 | (p1, p2) ∈ SI ∧ p2 ∈ CI} ≤ n}
(≥ nS.C)I = {p1 ∈ ∆I | #{p2 | (p1, p2) ∈ SI ∧ p2 ∈ CI} ≥ n}

{a1, . . . , an}I = {aI1 , . . . , aIn}
♢

where C,D are concepts, R,S are roles, n is a non-negative integer and
#M represents the cardinality of the set M .

Given an axiom α (TBox, RBox or ABox axiom), we say the an inter-
pretation I satisfies α, written I |= α, if it satisfies the condition given
in Table 1. Similarly I satisfies a TBox T , written I |= T , if it satisfies



all the axioms in T . The satisfaction of an RBox and an ABox by an
interpretation is defined in the same way. We say I satisfies a knowledge
base Σ = (T ,R,A) if it satisfies T , R and A. We write I |= Σ. We call
I a model of Σ. A knowledge base is said to be consistent if it has a model.

We now present the extension of the DL SROIQ by the epistemic
operator K. We call this extension SROIQK.

Table 1. Semantics of SROIQ axioms

Axiom α I |= α, if

R1 ◦ · · · ◦Rn ⊑ R RI
1 ◦ · · · ◦RI

n ⊆ RI

Tra(R) RI ◦RI ⊆ RI

Ref(R) (x, x) ∈ RI for all x ∈ ∆I

Irr(S) (x, x) ̸∈ SI for all x ∈ ∆I

Dis(S,T) (x, y) ∈ SI implies (x, y) ̸∈ T I for all x, y ∈ ∆I

Sym(S) (x, y) ∈ SI implies (y, x) ∈ SI for all x, y ∈ ∆I

Asy(S) (x, y) ∈ SI implies (y, x) ̸∈ SI for all x, y ∈ ∆I

C ⊑ D CI ⊆ DI

C(a) aI ∈ CI

R(a, b) (aI , bI) ∈ RI

a
.
= b aI = bI

a ̸ .= b aI ̸= bI

2.2 K-extensions of SROIQ

The embedding of the epistemic operator K into the description logicALC
was first proposed in [1]. The logic obtained is called ALCK. A similar
approach has been taken in [2], which we follow in this work, although we
extend the DL SRIQ rather than ALC i.e., we consider SROIQ as the
basis DL and call its K-extension SROIQK. In SROIQK we allow K
in front of the concepts and roles. In the following we provide the formal
syntax and semantics of such language where NC , NR, NI , R are as in
Definition 1.

Definition 3. A SROIQK role is defined as follows:

– every R ∈ R is a SROIQK role;
– if R is a SROIQK role then so are KR and R−.



We call a SROIQK role an epistemic role if K occurs in it. An epistemic
role is simple if it is of the form KS where S is a simple SROIQ role.
Now SROIQK concepts are defined as follows:

– every SROIQ concept is an SROIQ concept;
– if C and D are SROIQK concepts, and S and R are SROIQK roles

with S being simple, then the following are SROIQK concepts:

KC | ¬C | C ⊓D | C ⊔D | ∀R.C | ∃R.C |≤ nS.C |≥ nS.C ♢

The semantics of SROIQK is given as possible world semantics in
terms of epistemic interpretations. Thereby following assumptions are
made:

1. all interpretations are defined over a fixed infinite domain∆ (Common
Domain Assumption);

2. for all interpretations, the mapping from individuals to domains ele-
ments is fixed: it is just the identity function (Rigid Term Assump-
tion).

Definition 4. An epistemic interpretation for SROIQK is a pair (I,W)
where I is a SROIQ interpretation and W is a set of SROIQ interpre-
tations, where I and all of W have the same infinite domain ∆ with
NI ⊂ ∆. The interpretation function ·I,W is then defined as follows:

aI,W = a for a ∈ NI

AI,W = AI for A ∈ NC

RI,W = RI for R ∈ NR

⊤I,W = ∆ (the domain of I)
⊥I,W = ∅

(C ⊓D)I,W = CI,W ∩DI,W

(C ⊔D)I,W = CI,W ∪DI,W

(¬C)I,W = ∆ \ CI,W

(∀R.C)I,W = {p1 ∈ ∆ | ∀p2.(p1, p2) ∈ RI,W → p2 ∈ CI,W}
(∃R.C)I,W = {p1 ∈ ∆ | ∃p2.(p1, p2) ∈ RI,W ∧ p2 ∈ CI,W}

(≤ nR.C)I,W = {d | #{e ∈ CI,W | (d, e) ∈ RI,W} ≤ n}
(≥ nR.C)I,W = {d | #{e ∈ CI,W | (d, e) ∈ RI,W} ≥ n}

(KC)I,W =
∩

J∈W(CJ ,W)
(KR)I,W =

∩
J∈W(RJ ,W)

where C andD are SROIQK concepts and R is a SROIQK role. Further
for an epistemic role (KR)−, we set [(KR)−]

I
:= (KR−)I . It also follows

from the semantics that the extension of both KKP and KP , for a role
P , are equal. Hence, from now onward, whenever we encounter a role of
the form KP , we safely assume that P is K-free. ♢



From the above one can see that KC is interpreted as the set of ob-
jects that are in the interpretation of C under every interpretation in W.
Note that the rigid term assumption implies the unique name assump-
tion (UNA) i.e., for any interpretation I ∈ W and for any two distinct
individual names a and b we have that aI ̸= bI .

The notions of GCI, assertion, role hierarchy, ABox, TBox and knowl-
edge base, and their interpretations as defined in Definition 1 and 2 can
be extended to that of SROIQK by allowing for SROIQK concepts and
SROIQK roles in their definitions. One notational exception is that we
use ||= instead of |= while expressing a satisfaction relation. For exam-
ple, if an epistemic interpretation (I,W) satisfies a TBox T , we write
(I,W) ||= T .

An epistemic model for a SROIQK knowledge base Ψ = (T ,R,A) is
a maximal non-empty set W of SROIQ interpretations such that (I,W)
satisfies T , R and A for each I ∈ W. A SROIQK knowledge base
Ψ is said to be satisfiable if it has an epistemic model. The knowledge
base Ψ entails an axiom φ, written Ψ ||= φ, if for every epistemic model
W of Ψ , we have that for every I ∈ W, the epistemic interpretation
(I,W) satisfies φ. By definition every SROIQ knowledge base is an
SROIQK knowledge base. Note that a given SROIQ knowledge base
Σ has up to isomorphism only one unique epistemic model which is the
set of all models of Σ having infinite domain and satisfying the unique
name assumption. We denote this model by M(Σ).

Note that for the signature, we usually assumeNI to countably infinite
set. Here, however, we replace it assuming NI to be finite and containing
all the individuals occurring in the knowledge base under consideration.
This should not cause an technical difficulty as we can always extend NI

when required.

3 Deciding Entailment of Epistemic Axioms

We now present a method for deciding epistemic entailment based on
techniques for non-epistemic standard reasoning. Given a knowledge base
Σ, we consider the problem of checking if an epistemic axiom α is entailed
by Σ. Like in [5], [7] etc, we distinguish between the querying language
and the modelling language. More precisely, on one hand we restrict the
language of Σ to SRIQ, the DL obtained from SROIQ by disallowing
nominals and the universal role. On the other hand, we allow for a richer



language, namely, SROIQK for the query language i.e., epistemic axioms
like α are formulated in SROIQK. One could argue for a richer language
like SROIQ for formalising Σ. We will justify the reason for restricting
the use of nominals and the universal role in Section 4.

The basic idea behind our technique is to decide entailment of an
axiom containing K operators is to disassemble the axiom and call a
reasoner acquiring all the named individuals3 contained in extensions for
every sub-expression preceded by K. The results obtained is then used
to rewrite the axiom into a K-free one by expressing the individual set
as one-of concept. For example, we will see how a SROIQK concept
is rewritten into an equivalent SROIQ. This method of rewriting will
be justified by providing a formal proof of its correctness. Nevertheless,
certain problems arise as the consequence of the assumptions taken in
current epistemic semantics. In the following we discuss these problems
and ways to overcome them.

The rigid term assumption requires that an individual name to be
interpreted rigidly i.e., under every interpretation, an individual is inter-
preted by the same element of the domain. This enforces the condition of
interpreting two distinct individuals by different elements of the domain
as NI ⊂ ∆ (see Definition 4). This condition is usually referred as the
Unique Name Assumption (UNA). Now as we reduce epistemic entail-
ment to standard reasoning steps and since the standard DL semantics
does not ensure UNA in general, we need to explicitly axiomatize this
condition.

Definition 5. Given a SRIQ knowledge base Σ, we denote by ΣUNA

the knowledge base Σ ∪ {a ̸ .= b | a, b ∈ NI , a ̸= b}. ♢

Fact 6. The set of models of ΣUNA is exactly the set of those models of
Σ that satisfy the unique name assumption.

Note that since Σ has a unique epistemic interpretation M(Σ) and
each I ∈ M(Σ) satisfies UNA, it follows from the above fact that I |=
ΣUNA.

The common domain assumption requires the domain of an epistemic
interpretation to be infinite. Nevertheless, the standard DL reasoners ad-
heres to a semantics that allows for both finite and infinite models. Hence,
in order to be able to deploy a standard reasoner for our purpose, we have

3 By a named individual we mean an individual which is the interpretation of some
individual name occurring in the knowledge base. Individuals lacking this property
are referred to as anonymous individuals.



to show that considering only the infinite models suffices and one can
easily drop the finite models without changing the consequences. This is
possible for SRIQ knowledge bases i.e., for any finite model of a given
SRIQ knowledge base, we can come up with an infinite model such that
both behave in a similar way in terms of satisfaction of axioms. The
following definition and lemma provide a concrete construction for this.

Definition 7. For any SRIQ interpretation I, the lifting of I to ω is
the interpretation Iω defined as follows:

– ∆Iω := ∆I × N,
– aIω := ⟨aI , 0⟩ for every a ∈ NI ,

– AIω := {⟨x, i⟩ | x ∈ AI and i ∈ N} for each concept name A ∈ NC ,

– rIω := {(⟨x, i⟩, ⟨x′, i⟩) | (x, x′) ∈ rI and i ∈ N} for every role name
r ∈ NR. ♢

Lemma 8. For all ⟨x, i⟩ ∈ ∆Iω and all SRIQ concepts C that ⟨x, i⟩ ∈
CIω if and only if x ∈ CI .

Proof. The proof is by the induction on the structure of C:

– For the atomic concept, ⊤ or ⊥ it follows immediately from the defi-
nition of Iω.

– Let C = ¬D. For any x ∈ ∆I we have that
x ∈ (¬D)I

⇔ x ̸∈ DI

⇔ ⟨x, i⟩ ̸∈ DIω for i ∈ N (Induction)
⇔ ⟨x, i⟩ ∈ (¬D)Iω for i ∈ N.

– Let C = C1 ⊓ C2. For any x ∈ ∆I we have that
x ∈ (C1 ⊓ C2)

I

⇔ x ∈ CI
1 and x ∈ CI

2

⇔ ⟨x, i⟩ ∈ CIω
1 and ⟨x, i⟩ ∈ CIω

2 for i ∈ N (Induction)
⇔ ⟨x, i⟩ ∈ (C1 ⊓ C2)

Iω for i ∈ N.
– Let C = ∃R.D for R ∈ R. For any x ∈ ∆I we have that

x ∈ (∃R.D)I

⇔ there is a y ∈ ∆I such that (x, y) ∈ RI and y ∈ DI

⇔ there is ⟨y, i⟩ ∈ ∆Iω for i ∈ N with (⟨x, i⟩, ⟨y, i⟩) ∈ RIω and ⟨y, i⟩ ∈
DIω (Def 7 and Induction)
⇔ ⟨x, i⟩ ∈ (∃R.D)Iω

– The rest of the cases can be proved analogously.



Lemma 9. Let Σ be a SRIQ knowledge base. For any interpretation I
we have that

I |= Σ if and only if Iω |= Σ.

Proof. First we note that it follows immediately from the definition of
Iω that for any SRIQ-role R ∈ R and (⟨x, i⟩, ⟨y, i′⟩) ∈ ∆Iω for i, i′ ∈ N
we have that (⟨x, i⟩, ⟨y, i′⟩) ∈ RIω if an only if (x, y) ∈ RI and i = i′ for
an interpretation I. Now for any RIA R1 ◦ . . . Rn ⊑ R we have that:
I |= R1 ◦ . . . Rn ⊑ R
⇔ I |= RI

1 ◦ . . . RI
n ⊆ RI

⇔ for any x0, . . . , xn ∈ ∆I , whenever (xi−1, xi) ∈ RI
i for 1 ≤ i ≤ n then

(x0, xn) ∈ RI

⇔ for any x0, . . . , xn ∈ ∆I and any j ∈ N, whenever (⟨xi−1, j⟩, ⟨xi, j⟩) ∈
RIω

i for 1 ≤ i ≤ n then (⟨x0, j⟩, ⟨xn, j⟩) ∈ RIω

⇔ Iω |= R1 ◦ . . . Rn ⊑ R.
The second last equivalence holds as (xi−1, xi) ∈ RI

i for 1 ≤ i ≤ n and
any non-negative integer j implies that (⟨xi−1, j⟩, ⟨xi, j⟩) ∈ RIω

i . Similary
(⟨xi−1, ji−1⟩, ⟨xi, ji⟩) ∈ RIω for 1 ≤ i ≤ n implies that (xi−1, xi) ∈ RI

and that all ji, s are equal. And the same holds for the role R.

Similary, for any role characteristic Ref(R), we have that:
I |= Ref(R)
⇔ (x, x) ∈ RI for all x ∈ ∆I

⇔ (⟨x, j⟩, ⟨x, j⟩) ∈ RIω for any j ∈ N and x ∈ ∆I

⇔ (⟨x, j⟩, ⟨x, j⟩) ∈ RIω for any ⟨x, j⟩ ∈ ∆Iω as ∆Iω = ∆I × N
⇔ Iω |= Ref(R).
In the same way, we can prove for any of the rest of the role characteristics
that whenever I models it so does Iω. Consequently we have that for any
role hierarchy R, I |= R if and only if Iω |= R.

Now for any GCI C ⊑ D and for any interpretation I, invoking
Lemma 8 yields CI ⊆ DI if and only if CIω ⊆ DIω . Further for any
TBox T , I |= T if and only if Iω |= T .

Finally for an ABox A we show that for each assertion in α ∈ A,
I |= α if and only if Iω |= α.

– α is of the form C(a): Now for an interpretation I it follows from the
definition of Iω that aIω = (aI , 0). As we have already shown that
aI ∈ CI if and only if (aI , i) ∈ CIω for i ∈ N. Hence we get that
aI ∈ CI if and only if (aI , 0) ∈ CIω .

– Analogously we can show an interpretation I satisfies an assertion if
and only if Iω does so.



In our technique, given a knowledge base Σ, any axiom containing Ks
is rewritten into a K-free one by replacing the sub-expression preceded by
K with a one-of concept containing all the (named) individual that are
retrieved as instances of the sub-expression w.r.t. Σ. The justification for
this is that only named element can be long to the extension of expression
of the form KC for some concept C. To prove this we exploit certain
symmetries on the model set M(Σ). The idea is that one can freely swap
or permute anonymous individuals in a model of Σ without compromising
its modelhood. To prove it formally, we first require the following notion.

Definition 10. Given an interpretation I = (∆I , ·I), a set ∆ with NI ⊆
∆, and a bijection φ : ∆I → ∆ with φ(aI) = a for all a ∈ NI , the renam-
ing of I according to φ, denoted by φ(I), is defined as the interpretation
(∆, ·φ(I)) with:

– aφ(I) = φ(aI) = a for every individual name a

– Aφ(I) = {φ(z) | z ∈ AI} for every concept name A

– Pφ(I) = {(φ(z), φ(w)) | (z, w) ∈ P I} for every role name P ♢

Lemma 11. Let Σ be a SRIQ knowledge base and let I be a model of
Σ with infinite domain. Then, every renaming φ(I) of I satisfies φ(I) ∈
M(Σ).

Proof. By definition, the renaming satisfies the common domain and
rigid term assumption. Modelhood w.r.t. Σ immediately follows from the
isomorphism lemma of first-order interpretations [10] since I and φ(I)
are isomorphic and φ is an isomorphism from I to φ(I). �

Note that by semantics, KD represents all the individuals which are
in the extension of D under every interpretation I ∈ M(Σ) for a given
knowledge base Σ. If D is not a universal concept, then any anonymous
individual in the extension of D, under some model of Σ, can be swapped
into the position of another individual not in the extension of D. Since
the modelhood is preserved, this serves as a counter example. Hence, one
can prove that KD contains merely named individual, provided D is not
universal. Formally,

Lemma 12. Let Σ be a SRIQ knowledge base. For any epistemic con-
cept C =KD with ΣUNA ̸|= D ≡ ⊤ and x ∈ ∆, we have that x ∈ CI,M(Σ)

iff x is named such that there is an individual name a ∈ NI with x =
aI,M(Σ) and ΣUNA |= D(a).



Proof. ” ⇒ ”
Suppose that x ∈ CI,M(Σ). It means that

x ∈
∩

J∈M(Σ)

DJ

To the contrary, suppose that there is no a ∈ NI such that aI,M(Σ) =
x and ΣUNA |= D(a) i.e., x is an anonymous element. Since ΣUNA ̸|=
⊤ ≡ D, there is a model I ′ of ΣUNA such that DI′ ̸= ∆I′

. This implies
that there is a y ∈ ∆I′

such that y ̸∈ DI′
. Considering I ′

ω, we can
invoke Lemma 9 to ensure I ′

ω |= ΣUNA, moreover Lemma 8 guarantees
⟨y, 1⟩ ̸∈ DI′

ω . On the other hand, by construction, ⟨y, 1⟩ is anonymous.
Let φ : ∆I′ ×N → ∆ be a bijection such that φ(aI

′
ω) = aI for all a ∈ NI

and φ(⟨y, 1⟩) = x. Such a φ exists, as |∆I′ ×N| = |∆| and I ′
ω satisfies the

unique name assumption. By Lemma 11, we get that φ(I ′
ω) ∈ M(Σ).

By the choice of φ we get x ̸∈ Dφ(I′
ω) due to ⟨y, 1⟩ ̸∈ DI′

ω and the fact
that φ is an isomorphism. In particular,

x ̸∈
∩

J∈M(Σ)

DJ

which is a contradiction.
” ⇐ ”
Suppose there is a ∈ NI such that aI,M(Σ) = x and ΣUNA |= D(a). This
implies that for any I ∈ M(Σ) we have that x ∈ DI as each such I
satisfies UNA. Hence we get that x ∈ KDI,M(Σ).

Similarly for epistemic roles, we can prove that only certain individuals
can belong to their extensions. But we have to take care of the exceptional
case of the universal role.

Claim 13. Let Σ be a knowledge base. For the universal role U we have:

KUI,M(Σ) = UI,M(Σ)

The claim follows trivially as UJ = ∆ × ∆ for any J ∈ M(Σ). This
means that

∩
J∈M(Σ) U

J = ∆ × ∆. Thus, as in the case of concepts,
whenever an epistemic concept contains a role of the form KU , it will be
simply replaced by U . That, for SRIQ knowledge bases, no other role
than U is universal (in all models) is straightforward and can be shown
using the construction from Definition 7.



We now prove that the extension of every role preceded by K (ex-
cept for the universal one), only contains individual which satisfy certain
properties.

Lemma 14. Let Σ be a SRIQ knowledge base. For any epistemic role
R = KP with P ̸= U , and x, y ∈ ∆ we have that (x, y) ∈ RI,M(Σ) iff at
least one of the following holds:

1. there are individual names a, b ∈ NI such that aI,M(Σ) = x, bI,M(Σ) =
y and ΣUNA |= P (a, b).

2. x = y and ΣUNA |= ⊤ ⊑ ∃P.Self.

Proof
” ⇐ ”
Depending on which case hold, we make the following case distinction:

– Suppose that x = y andΣUNA |= ⊤ ⊑ ∃P.Self. AsM(Σ) the epistemic
model of Σ, therfore every interpretation in J ∈ M(Σ) satisfies the
UNA and by Fact 6 we get that J |= ΣUNA. This means for every
interpretation J ∈ M(Σ) we have that (x′, x′) ∈ P I,M(Σ) i.e.,

(x′, x′) ∈
∩

J∈M(Σ)

PJ ,M(Σ)

for any x′ ∈ ∆. By semantics, therefore, (x′, x′) ∈ KP I,M(Σ) for any
x′ ∈ ∆. In particular, we have that (x, y) ∈ KP I,M(Σ) as x = y.

– Suppose there are a, b ∈ NI with x = aI,M(Σ), y = bI,M(Σ) and
ΣUNA |= P (a, b). By assumption we have thatΣUNA |= P (a, b). There-
fore, we have that (x, y) ∈ P I for any interpretation I ∈ M(Σ) as
each such I satisfies UNA. Hence (x, y) ∈ KP I,M(Σ).

” ⇒ ”
We first suppose that the second case of the lemma does not hold. There-
fore, we have to show that there are a, b with x = aI,M(Σ), y = bI,M(Σ)

and ΣUNA |= P (a, b). To the contrary suppose that there is no such
a, b ∈ NI . We distinguish two cases.

– There are a, b with x = aI,M(Σ) and y = bI,M(Σ) but ΣUNA ̸|= P (a, b).
Now Σ ̸|= P (a, b) implies that there is an interpretation I ′ with
(aI

′
, bI

′
) ̸∈ P I′

. Considering I ′
ω, we can invoke Lemma 9 to ensure

I ′
ω |= ΣUNA and by construction we also obtain (aI

′
ω , bI

′
ω) ̸∈ P I′

ω . Let
φ : ∆I′ × N → ∆ be a bijection such that φ(cI

′
ω) = cI for all c ∈ NI .



Such a φ exists, as |∆I′ ×N| = |∆| and I ′
ω satisfies the unique name

assumption. By Lemma 11, we get that φ(I ′
ω) ∈ M(Σ). Moreover

(aφ(I
′
ω), bφ(I

′
ω)) = (φ(aI

′
ω), φ(bI

′
ω)) ̸∈ Pφ(I′

ω). In particular,

(aI , bI) = (x, y) ̸∈
∩

J∈M(Σ)

PJ

which is a contradiction.
– Assume at least one of x, y is anonymous. W.l.o.g. let x be anonymous,

the other case follows by symmetry. Considering Iω, we again have
Iω |= ΣUNA by Lemma 9. By construction, ⟨x, 1⟩ is anonymous and
(⟨x, 1⟩, ⟨y, 0⟩) ̸∈ P Iω . Let φ : ∆I × N → ∆ be a bijection such that
φ(⟨x, 1⟩) = x and φ(⟨y, 0⟩) = y. Such a φ exists, since |∆I × N| =
|∆| and Iω satisfies the unique name assumption. By Lemma 11, we
get that φ(Iω) ∈ M(Σ). Moreover (φ(⟨x, 1⟩), φ(⟨y, 0⟩)) ̸∈ Pφ(Iω). In
particular,

(x, y) ̸∈
∩

J∈M(Σ)

PJ

which again is a contradiction.

Now we suppose that the first case does not hold. We have to show that
x = y and Σ |= ⊤ ⊑ ∃P.Self. Again we assume to its contrary and make
the following case distinction:

– x ̸= y:
Now either both of x and y are named individuals but Σ ̸|= P (a, b)
or at least one of them is anonymous. We can generate contradiction
as above.

– x = y and but ΣUNA ̸|= ⊤ ⊑ ∃P.Self:
We have to distinguish two cases. First, suppose that x is a named
individual i.e., there is a ∈ NI with aI = x. Now as ΣUNA ̸|= P (a, a),
this leads to contradiction as shown above.
Second, suppose that x is anonymous. Since every J ∈ M(Σ) satisfies
UNA, therefore, it follows from Fact 6 that J |= ΣUNA for every
J ∈ M(Σ). This along with the fact that ΣUNA ̸|= ⊤ ⊑ ∃P.Self
implies that there is some I ′ ∈ M(Σ) such that (u, u) ̸∈ P I′

for
some u ∈ ∆. We define a bijection φ : ∆ → ∆ such that φ(u) = x.
By Lemma 11, we get that φ(I ′) ∈ M(Σ). Moreover (φ(u), φ(u)) ̸∈
Pφ(I′). In particular,

(φ(u), φ(u)) = (x, x) ̸∈
∩

J∈M(Σ)

PJ



and therefore, by semantics, (x, y) ̸∈ KP I,M(Σ) which is a contradic-
tion. �

Based on Lemma 12 and 14, for given a knowledge base Σ we now
define a translation procedure that maps epistemic concept expression to
non-epistemic ones which are equivalent in all models of Σ.

Definition 15. Given a SRIQ knowledge base Σ, we define the function
ΦΣ mapping SROIQK concept expressions to SROIQ concept expres-
sions as follows (where we let {} = ∅ = ⊥)4:

ΦΣ :



C 7→ C if C is an atomic or one-of concept, ⊤ or ⊥;

KD 7→
{
⊤ if ΣUNA |= ΦΣ(D) ≡ ⊤
{a ∈ NI | ΣUNA |= ΦΣ(D)(a)} otherwise

∃KS.Self 7→
{
∃S.Self if ΣUNA |= ⊤ ⊑ ∃S.Self
{a ∈ NI | ΣUNA |= S(a, a)} otherwise

C1 ⊓ C2 7→ ΦΣ(C1) ⊓ ΦΣ(C2)
C1 ⊔ C2 7→ ΦΣ(C1) ⊔ ΦΣ(C2)

¬C 7→ ¬ΦΣ(C)
∃R.D 7→ ∃R.ΦΣ(D) for non-epistemic role R

∃KP.D 7→
⊔

a∈NI
{a} ⊓ ∃P.({b ∈ NI | ΣUNA |= P (a, b)} ⊓ ΦΣ(D))

⊔
{
ΦΣ(D) if ΣUNA |= ⊤ ⊑ ∃P.Self
⊥ otherwise

∀R.D 7→ ∀R.ΦΣ(D) for non-epistemic role R;
∀KP.D 7→ ¬ΦΣ(∃KP.¬D)
>nS.D 7→ >nS.ΦΣ(D) for non-epistemic role S;

>nKS.D 7→
{⊔

a∈NI
{a} ⊓>nP.({b ∈ NI | ΣUNA |= P (a, b)} ⊓ ΦΣ(D)) if n > 1

ΦΣ(∃KP.D) otherwise
6nS.D 7→ 6nS.ΦΣ(D) for non-epistemic role S;

6nKS.D 7→ ¬ΦΣ(>(n+1)KS.D)
ΞKU.D 7→ ΞU.ΦΣ(D) for Ξ ∈ {∀, ∃, >n, 6n}

♢

We now proceed toward the formal proof of the correctness of the
presented translation procedure. In the following lemma, we show that
for given knowledge base Σ and SROIQK concept C, the extension of
C and ΦΣ(C) agree under each model in M(Σ).

Lemma 16. Let Σ be a SRIQ knowledge base, x be an element of ∆,
and C be a SROIQK concept. Then for any interpretation I ∈ M(Σ),
we have that CI,M(Σ) = (ΦΣ(C))I,M(Σ).

Proof. It suffices to show that for any x ∈ ∆, x ∈ CI,M(Σ) exactly when
x ∈ ΦΣ(C)I,M(Σ). To show this we use induction on the structure of the

4 W.l.o.g. we assume that in the definition of ΦΣ , n ≥ 1.



C. For the base case (C is an atomic concept) and the cases where C = ⊤
or C = ⊥, the lemma follows immediately from the definition of ΦΣ . For
the cases, where C = C1 ⊓ C2, C = C1 ⊔ C2 or C = ¬D, it follows from
the standard semantics and induction hypothesis. We focus on the rest of
the cases in the following.

i. C = KD and ΣUNA ̸|= D ≡ ⊤:
By Lemma 12, x ∈ (KD)I,M(Σ) if and only if there is an a ∈ NI

with x = aI,M(Σ) and ΣUNA |= D(a). This is equivalent to x ∈
{a ∈ NI | ΣUNA |= D(a)}I,M(Σ) and hence, by definition of ΦΣ , to
x ∈ [ΦΣ(KD)]I,M(Σ).

ii. C = KD and ΣUNA |= D ≡ ⊤:
Note that it trivially holds that if x ∈ CI,M(Σ) then x ∈ (ΦΣ(C))I,M(Σ)

as ΦΣ(C) = ⊤. Hence we just prove that whenever x ∈ (ΦΣ(C))I,M(Σ)

then x ∈ CI,M(Σ) also. To contrary, suppose this is not the case i.e.,
x ∈ (ΦΣ(C))I,M(Σ) but x ̸∈ CI,M(Σ). Hence, by definition, we get
that

x ̸∈
∩

J∈M(Σ)

DJ

Therefore, there is an interpretation I ′ ∈ M(Σ) such that x ̸∈ DI′
.

Since M(Σ) is the epistemic model of Σ, hence I ′ ∈ M(Σ) respects
the unique name assumption and therefore, I ′ |= ΣUNA withDI′ ̸= ∆.
Hence ΣUNA ̸|= D ≡ ⊤, which is a contradiction.

iii. C = ∃KS.Self
“ ⇒ ”
We have to distinguish two cases.
First, we suppose that ΣUNA |= ⊤ ⊑ ∃S.Self, therefore by defi-
nition ΦΣ(∃KS.Self) = ∃S.Self. Now x ∈ [∃KS.Self]I,M(Σ) implies
that for each J ∈ M(Σ), we have that (x, x) ∈ SJ ,M(Σ). In par-
ticular, (x, x) ∈ SI,M(Σ). Therefore, x ∈ [∃S.Self]I,M(Σ) and hence
x ∈ [ΦΣ(∃KS.Self)]I,M(Σ).
Second, suppose that ΣUNA ̸|= ⊤ ⊑ ∃S.Self. As x ∈ [∃KS.Self] implies
that (x, x) ∈ KSI,M(Σ), by Lemma 14 there is a ∈ NI such that
aI = x and ΣUNA |= S(a, a) i.e., a ∈ {c ∈ NI | ΣUNA |= S(c, c)}
which immediately implies that x = aI ∈ [ΦΣ(∃KS.Self)]I,M(Σ) as
per definition of ΦΣ .
“ ⇐ ”
Suppose that ΦΣ(∃KS.Self) = ∃KS.Self. Hence it is the case that
ΣUNA |= ⊤ ⊑ ∃S.Self. Now as each model in M(Σ) satisfies UNA,
by Fact 6, we have that J |= ΣUNA and hence J |= ⊤ ⊑ ∃S.Self for



each J ∈ M(Σ) i.e., for every u ∈ ∆, we have that (u, u) ∈ SJ ,M(Σ).
In other words, for every u ∈ ∆, we have that (u, u) ∈ KSI,M(Σ). In
particular, we have that x ∈ KP I,M(Σ) and therefore by semantics,
x ∈ [∃KS.Self]I,M(Σ).
Assume that ΦΣ(∃KS.Self) = {c ∈ NI | ΣUNA |= S(c, c)}. Conse-
quently, there is a ∈ NI with aI = x and ΣUNA |= S(a, a) which by
Lemma 14, implies that (x, x) ∈ KSI,M(Σ). Therefore, we get that
x ∈ [∃KS.Self]I,M(Σ).

iv. C = ∃P.D and P is a simple role:
By semantics, x ∈ (∃P.D)I,M(Σ) if and only if there is y ∈ ∆ such
that (x, y) ∈ P I,M(Σ) and y ∈ DI,M(Σ), therefore by induction, y ∈
[ΦΣ(D)]I,M(Σ). Hence it is equivalent to x ∈ (ΦΣ(KD))I,M(Σ).

v. C = ∃KP.D:
“ ⇒ ”
x ∈ [∃KP.D]I,M(Σ) implies that there is some y ∈ ∆ with (x, y) ∈
KP I,M(Σ) such that y ∈ DI,M(Σ), therefore by induction, y ∈ [ΦΣ(D)]I,M(Σ).
By Lemma 14, (x, y) ∈ KP I,M(Σ) implies that at least one of the fol-
lowing should hold.
– There are a, b ∈ NI with aI = x and bI = y such that ΣUNA |=

P (a, b): Consequently we have that y = bI ∈ [{c ∈ NI | ΣUNA |=
P (a, c)} ⊓ ΦΣ(D)]I,M(Σ). Now as M(Σ) is an epistemic model,
every interpretation in M(Σ) satisfies the UNA, and hence by
Fact 6, for every J ∈ M(Σ) we have that J |= ΣUNA. This along
with ΣUNA |= P (a, b) implies that (aI , bI) = (x, y) ∈ P I,M(Σ) and
therefore, x ∈ [∃P.({c ∈ NI | ΣUNA |= P (a, c)} ⊓ ΦΣ(D))]I,M(Σ).
Hence, x = aI ∈ [{a}⊓{c ∈ NI | ΣUNA |= P (a, c)}⊓ΦΣ(D)]I,M(Σ),
which by definition of ΦΣ implies that x ∈ [ΦΣ(∃KP.D)]I,M(Σ).

– x = y and ΣUNA |= ⊤ ⊑ ∃P.Self: As y ∈ [ΦΣ(D)]I,M(Σ), therefore
it immediately follows from the definition that x ∈ [ΦΣ(∃KP.D)]I,M(Σ).

“ ⇐ ”
Suppose that x ∈ [ΦΣ(∃KP.D)]I,M(Σ). This means that at least one
of the following should hold.
– x ∈ [ΦΣ(∃KP.D)]I,M(Σ):

It implies that there is an a ∈ NI such that aI = x and aI ∈
[∃P.({c ∈ NI | ΣUNA |= P (a, c)} ⊓ ΦΣ(D))]I,M(Σ). Consequently
there is some b ∈ NI such that bI ∈ [[{c ∈ NI | ΣUNA |= P (a, c)}⊓
ΦΣ(D)]]I,M(Σ) i.e., ΣUNA |= P (a, b) and bI ∈ [ΦΣ(D)]I,M(Σ),
therefore by induction, bI ∈ DI,M(Σ). By Lemma 14, ΣUNA |=
P (a, b) implies that (aI , bI) ∈ KP I,M(Σ). Therefore we get that
x = aI ∈ [∃KP.D]I,M(Σ).



– x ∈ [ΦΣ(D)]I,M(Σ) and ΣUNA |= ⊤ ⊑ ∃P.Self:
Note that each J ∈ M(Σ) satisfies UNA, therefore, J |= ΣUNA.
This implies that J |= ⊤ ⊑ ∃P.Self. In other words, for every
u ∈ ∆, we have that (u, u) ∈ PJ for each J ∈ M(Σ) and there-
fore, by semantics, we get that (u, u) ∈ KP I,M(Σ). In particu-
lar, (x, x) ∈ KP I,M(Σ). Now as x ∈ [ΦΣ(D)]I,M(Σ), we get that
x ∈ [∃KP.D]I,M(Σ).

vi. C = >nKS.D:
“ ⇒ ”
Depending on n we distinguish the following cases.
– n = 1:

x ∈ [>1KS.D]I,M(Σ) means that x ∈ [∃KS.D]I,M(Σ). Earlier we
showed that this is the case iff x ∈ [ΦΣ(∃KS.D)]I,M(Σ) and there-
fore by definition, x ∈ [ΦΣ(>1KS.D)]I,M(Σ).

– n > 1:
x ∈ [>nKS.D]I,M(Σ) implies that there are y1, . . . , ym with m ≥ n
such that (x, yi) ∈ KSI,M(Σ) and yi ∈ DI,M(Σ) for each i ≤ m.
By induction, yi ∈ [ΦΣ(D)]I,M(Σ) for each i ≤ m. By Lemma 14,
we have a, b1, . . . , bn ∈ NI such that aI = x, bIi = yi and ΣUNA |=
S(a, bi) for each i ≤ m. Now as m ≥ n and bIi ∈ [ΦΣ(D)]I,M(Σ)

for i ≤ m, it follows from the semantics that x = aI ∈ [>nS.({c ∈
NI | ΣUNA |= S(a, c)}⊓ΦΣ(D))]I,M(Σ). Hence, using definition of
ΦΣ , we obtain that x ∈ [ΦΣ(>nKS.D)]I,M(Σ) as x ∈ {a}I,M(Σ).

“ ⇐ ”
Suppose that n > 1. Therefore,

ΦΣ(>nKS.D) =
⊔

c∈NI

{c}⊓>nS.({c′ ∈ NI | ΣUNA |= S(c, c′)}⊓ΦΣ(D))

Now x ∈ [ΦΣ(>nKP.D)]I,M(Σ) implies that there are a, b1, . . . , bm ∈
NI , for m ≥ n, such aI = x, ΣUNA |= S(a, bi) and bIi ∈ [ΦΣ(D)]I,M(Σ)

for each i ≤ m. Since each J ∈ M(Σ) satisfies UNA, therefore,
J |= ΣUNA and hence we get that (aJ , bJi ) ∈ SJ for each J ∈ M(Σ).
Hence, It follows from the semantics that (aI , bIi ) ∈ KSI,M(Σ) for each
i ≤ m. Now as m ≥ n and bIi ∈ DI,M(Σ)(by induction), we get that
x ∈ [>nKS.D]I,M(Σ).
Now assume that n = 1. Hence, ΦΣ(>nKS.D) = ΦΣ(∃KS.D). Now
for x ∈ [∃KS.D]I,M(Σ) at least one of the following holds:
– there is a, b ∈ NI with aI = x such that ΣUNA |= S(a, b) and

bI ∈ [ΦΣ(D)]I,M(Σ), therefore by induction, bI ∈ DI,M(Σ). By
Lemma 14, we get that (aI , bI) ∈ KSI,M(Σ) which along with
bI ∈ DI,M(Σ) implies that x = aI ∈ [>1KS.D]I,M(Σ).



– x ∈ [ΦΣ(D)]I,M(Σ) and ΣUNA |= ⊤ ⊑ ∃S.Self. By Lemma 14,
we get that (x, x) ∈ KSI,M(Σ). By induction we have that x ∈
DI,M(Σ) which immediately implies that x ∈ [>1KS.D]I,M(Σ).

vii. The rest of the cases can be proved in a similar fashion.

Moreover Lemma 16 allows us to establish the result that the transla-
tion function ΦΣ can be used to reduce the problem of entailment of
SROIQK axioms by SRIQ knowledge bases to the problem of entail-
ment of SROIQ axioms, formally put into the following theorem.

Theorem 17. For a SRIQ knowledge base Σ, SROIQK concepts C,
D and an individual a, the following hold:

1. Σ ||= C(a) exactly if ΣUNA |= ΦΣ(C)(a).
2. Σ ||= C ⊑ D exactly if ΣUNA |= ΦΣ(C) ⊑ ΦΣ(D).

Proof. For the first case, we see thatΣ ||= C(a) is equivalent to aI,M(Σ) ∈
CI,M(Σ) which by Lemma 14 is the case exactly if aI,M(Σ) ∈ ΦΣ(C)I,M(Σ)

for all I ∈ M(Σ). Since ΦΣ(C) does not contain any Ks, this is equiv-
alent to aI ∈ ΦΣ(C)I and hence to I |= ΦΣ(C)(a) for all I ∈ M(Σ).
Now we can invoke Fact 6 and Lemma 9 to see that this is the case if and
only if ΣUNA |= ΦΣ(C)(a). The second case is proven in exactly the same
fashion. �

Theorem 17 justifies the use of a standard DL reasoner in answering
epistemic queries. A straightforward observation is that the translation
procedure according to the definition of ΦΣ , may require deciding sev-
eral classical entailment problems and hence involves many calls to the
reasoner. Nevertheless, the number of reasoner calls is bounded by the
number of Ks occurring in the query.

4 Semantical Problems Caused by Nominals and the
Universal Role

In Section 2, we have mentioned that one of the basic assumptions that
is made regarding the epistemic interpretations is the common domain
assumption. This requires the commonality of the domain of interpreta-
tion in each world as well as enforces this domain to be infinite. However,
there is no prima facie reason, why the domain that is described by a
knowledge base should not be finite, yet finite models are excluded from
the consideration entirely. In the previous section, we have seen that for
the DL upto SRIQ, this assumption is not a hurdle because of the fact



that every finite model of a SRIQ knowledge base can be raised to an
infinite one without compromising their behaviour (i.e. the two models
cannot be distinguished by means of the underlying logic), as shown in
Lemma 9. We have also seen how the current (epistemic) semantics seems
feasible for epistemic entailment for SRIQ knowledge bases. However,
once we allow for nominals or the universal role, we encounter epistemic
inconsistency of certain knowledge bases. As an example the knowledge
base containing the axioms ⊤ ⊑ {a, b, c} or ⊤ ⊑ 63U.⊤ has only models
with at most three elements. Consequently, according to the prevailing
epistemic semantics, these axioms are epistemically unsatisfiable.

We believe that this phenomenon is not intended but rather a side
effect of a semantics crafted for and probed against less expressive de-
scription logics, as it contradicts the intuition behind the K operator. To
overcome such a problem, we present a refinement of the semantics in the
next section.

5 Extended Semantics for SROIQK

In this new semantics, we neither enforce the common domain assump-
tion nor the rigid term assumption. Hence, the domain we consider in a
possible world can be of arbitrary size, (non-empty essentially) composed
of arbitrary elements and different individual names can stand for dif-
ferent elements in each possible world i.e., we interpret individual names
non-rigidly. Note that under the current semantics, by the extension of
an epistemic concept KC we mean all the elements which belong to the
extension of C in every possible world. This justifies intersecting of the
interpretation of C under each interpretation as in Definition 4. But in
the new semantics as we don’t enforce any of the assumptions i.e., CDA
or RTA, interpreting KC in this manner leads to unsatisfiability. For ex-
ample, in a world, we can interpret C by the set of individuals in way
that none of these individual occurs in the extension of C in any other
world. As intersecting all these extensions yields to an empty set, there-
fore, to unsatisfiability of the concept KC. To overcome this problem, we
propose the notion of designators. The idea here is to extend a standard
interpretation I by a mapping from the set NI ∪N to the domain ∆I of
I. To this end, we define the notion of an extended interpretation.

Definition 18. An extended SROIQ interpretation Ĩ is a tuple (∆Ĩ , ·Ĩ , φĨ)
such that

1. (∆Ĩ , ·Ĩ) is a standard SROIQ interpretation,



2. φĨ is a surjective function φĨ : NI ∪N→ ∆Ĩ , such that for all a ∈ NI

we have that φĨ(a) = aĨ .

We extend the definition of φĨ to subsets of NI∪N. For a set S, φĨ(S) :=
{φĨ(t) | t ∈ S}. Similarly we extend φĨ to order pairs and set of order
pairs on NI ∪N as follows:

– φĨ((s, t)) := (φĨ(s), φĨ(t)) for some ordered-pair (s, t) ∈ (NI ∪N)2.

– φĨ(T ) := {φĨ((s, t)) | (s, t) ∈ T} for some set T ⊆ (NI ∪N)2. ♢

We also define the inverse φĨ
−1 of the mapping φĨ for an extended inter-

pretation Ĩ as follows:

– φĨ
−1(x) := {t ∈ NI ∪N | φĨ(t) = x} for every x ∈ ∆Ĩ .

– φĨ
−1(E) := {φĨ

−1(x) | x ∈ E} for E ⊆ ∆Ĩ .

– φĨ
−1((x, y)) := φĨ

−1(x) × φĨ
−1(y) = {(x′, y′) | x′ ∈ φĨ

−1(x) and y′ ∈
φĨ
−1(y)} for any ordered-pair (x, y) ∈ ∆Ĩ ×∆φĨ .

– φĨ
−1(H) :=

∪
(x,y)∈H φĨ

−1((x, y)) for any H ⊆ ∆Ĩ ×∆Ĩ .

Note that for any extended interpretation Ĩ, the definition of φĨ guar-
antees that each individual name a is the designator of the interpretation
of a under Ĩ. For the rest of the elements of ∆Ĩ , we use elements of N as
their designators. As we noted in Section 3, the extension of any concept
(role) of the form KC (KR) is composed of named individuals (couple of
named individuals) only. This is reason that we treat individual names
differently. Based on the notion of extended interpretation we now provide
a new semantics for SROIQK.

Definition 19. (extended semantics for SROIQK)

An extended epistemic interpretation for SROIQK is a pair (Ĩ, W̃),
where Ĩ is an extended SROIQ interpretation and W̃ is a set of extended
SROIQ interpretations. Similar to epistemic interpretations, we define



an extended interpretation function ·Ĩ,W̃ :

aĨ,W̃ = aĨ for a ∈ NI

AĨ,W̃ = AĨ for A ∈ NC

RĨ,W̃ = RĨ for R ∈ NR

⊤Ĩ,W̃ = ∆Ĩ (the domain of Ĩ)
⊥Ĩ,W̃ = ∅

(C ⊓D)Ĩ,W̃ = C Ĩ,W̃ ∩DĨ,W̃

(C ⊔D)I,W = CI,W ∪DI,W

(¬C)Ĩ,W̃ = ∆Ĩ \ C Ĩ,W̃

(∀R.C)Ĩ,W̃ = {p1 ∈ ∆Ĩ | ∀p2.(p1, p2) ∈ RĨ,W̃ → p2 ∈ C Ĩ,W̃}
(∃R.C)Ĩ,W̃ = {p1 ∈ ∆Ĩ | ∃p2.(p1, p2) ∈ RĨ,W̃ ∧ p2 ∈ C Ĩ,W̃}

(≤ nR.C)Ĩ,W̃ = {d | #{e ∈ C Ĩ,W̃ | (d, e) ∈ RĨ,W̃} ≤ n}
(≥ nR.C)Ĩ,W̃ = {d | #{e ∈ C Ĩ,W̃ | (d, e) ∈ RĨ,W̃} ≥ n}

(KC)Ĩ,W̃ = φĨ

(∩
J̃ ∈W̃ φJ̃

−1
(
CJ̃ ,W̃

))
(KR)Ĩ,W̃ = φĨ

(∩
J̃ ∈W̃ φJ̃

−1
(
RJ̃ ,W̃

))
Again, for an epistemic role (KR)−, we set [(KR)−]J̃ ,W̃ := (KR−)J̃ ,W̃ .
Like in Definition 4, KKR and KR are interpreted identically under an
epistemic interpretation. Hence, it suffices to consider only epistemic roles
of the form KR, with R being non-epistemic. ♢

Note that unlike the epistemic interpretations we don’t force the common
domain assumption— the domains of Ĩ and that of every extended inter-
pretation in W̃ need not to be infinite nor identical. Similarly we don’t
enforce the rigid term assumption either. When interpreting a concept of
the form KC (and similarly for the role), we consider the intersection of
the set of the designators of the elements of the extensions of C under
each interpretation. We then consider the elements of the domain of the
current interpretation, for which these designators stand. In contrast to
current semantics, an element x is in the extension of KC exactly when
for every possible world, there is some element in the extension of C in
that world, which has the same designator as that of x. This to some
extend justifies the use of separate designators for the interpretations of
the named individuals.

The semantics of GCI, assertion, role hierarchy, ABox, TBox, RBox
and knowledge base under an extended epistemic interpretation can be
defined in a straight forward way like in Definition 2. Here, instead |=
as the symbol of the satisfaction relation, we use the symbol ||=e , where



e indicates that the relation is w.r.t. the extended semantics. Like the
epistemic models, we introduce the notion of an extended epistemic model
of a knowledge base.

Definition 20. An extended epistemic model of a SROIQK knowledge
base Ψ = (T ,R,A) is a maximal non-empty set W̃ of extended SROIQ
interpretations such that (Ĩ, W̃) satisfies T , R and A for each Ĩ ∈ W̃.
A SROIQK knowledge base Ψ is satisfiable (under the extended seman-
tics) if it has an extended epistemic model. Similarly the knowledge base
Ψ entails an axiom α, written Ψ ||=e α, if for every extended epistemic
model W̃ of Ψ , we have that for every Ĩ ∈ W̃, the extended epistemic
interpretation (Ĩ, W̃) satisfies α. Like in case of the current semantics, a
standard DL-knowledge base Σ, one without any occurence of K, admits
a unique extended epistemic model, which is the set of all models of Σ
extended by all possible surjective mappings that map individuals names
and elements of N to the elements of their domain. We denote this model
by M̃(Σ).

Note that when considering non-epistemic axioms, the notions of satis-
faction under the extended semantics and under the standard semantics
coincide. More precisely, given a standard interpretation I, by E(I) we

mean the set of all extended interpretation Ĩ such that ∆Ĩ = ∆I and
the mappings ·I and ·Ĩ are identical. In other words, E(I) represents
all the extended interpretations obtained by augmented some mapping
φĨ : NI ∪N→ ∆I satisfying φĨ(a) = aĨ for each a ∈ NI . Based on this
notion, we have the following

Fact 21. For any SROIQ knowledge base Σ, we have that

M̃(Σ) = {Ĩ | Ĩ ∈ E(I) for each I ∈ M(Σ)}

We abbreviate this by writing M̃(Σ) = E(M(Σ)).

Further the following relation holds between an interpretation I and
E(I).

Lemma 22. Let C be a non-epistemic concept, R a non-epistemic role
and I a standard interpretation. Then

– for any x ∈ ∆I and for each Ĩ ∈ E(I), we have that

x ∈ CI iff x ∈ C Ĩ



– for any (x, y) ∈ ∆I ×∆I and for each Ĩ ∈ E(I), we have that

(x, y) ∈ RI iff (x, y) ∈ RĨ

Proof Note that as C contains no occurrence of K, the mapping φĨ
play no role in interpreting C under Ĩ. Hence, by simple induction, the
proof follows simply from the definition of the extended interpretation.
Similarly, for the case of roles, it follows immediately from the definition
of the extended interpretations. �

Since the interpretation of any axiom, depends on the interpretation of
concept names and role names occuring in it and since the interpretation
of a knowledge base, depends on the interpretation of its axioms, as a
consequence of the above lemma, we get

Corollary 23. For any non-epistemic axiom α and a standard interpre-
tation I, we have that

I |= α iff Ĩ ||=e α for each Ĩ ∈ E(I).

Similarly, for a standard (non-epistemic) knowledge base Σ and a stan-
dard interpretation I, we have that

I |= Σ iff Ĩ ||=e Σ for each Ĩ ∈ E(I).

Now it is easy to see that the (non-epistemic) consequences of a stan-
dard knowledge under both, the current semantics and the extended one,
coincide.

Corollary 24. For a given non-epistemic knowledge base Σ and a non-
epistemic axiom α, we have

Σ |= α if and only if Σ ||=e α

As for the common domain assumption and the rigid term assump-
tion, we don’t enforce the unique assumption. Hence, this new semantics
is more compatible with standard inference engines. Moreover, with this
new semantics, the problem, arose when allowing for nominals and uni-
versal role in the language of a knowledge base, is avoided. Thus, making
it more suitable and appropriate choice for K-extensions of expressive
description logics, like SROIQ. In the following section, we extend the
translation procedure, presented in Definition 15, in the sense that it
allows for SROIQ as the language of the knowledge base.



6 Deciding Entailment of Extended Epistemic Axioms

In this section, we mainly extend the definition of ΦΣ (see Definition 15)
such that it also handles a richer knowledge base language like, SROIQ.
The idea is exactly the same as in case of current semantics presented
in Section 3. Nevertheless, there are some slight changes. For the formal
proof of the correctness of this procedure, there are several points worth
mentioning. Firstly, note that under the new semantics, we don’t enforce
the UNA, hence, no need to axiomatize it in the knowledge base explic-
itly. Secondly, we allow for both finite and infinite models of the knowl-
edge base. In fact, a property similar to Lemma 9, can not be proved for
SROIQ knowledge bases i.e., for any finite model of a SROIQ knowl-
edge base, the existence of an infinite one with similar behaviour is not
guaranteed. Hence a complete different approach is taken in proving the
correctness of the extended ΦΣ . More notably, in the current epistemic
semantics, Lemma 11 allows us to interchange the role of any two anony-
mous individuals in a model without compromising its modelhood prop-
erty. This holds in the extended semantics case as well, but does not
suffice in showing formal correctness of ΦΣ . Instead, we use the definition
of φĨ for an extended interpretation Ĩ.

Like in Section 3, before presenting the extended translation proce-
dure, we first proof two lemmas similar to Lemma 12 and 14. That is, we
first show that only named individual can belong to the extension of an
epistemic concept of the form KC. Formally,

Lemma 25. Let Σ be a SROIQ-knowledge base and C = KD an epis-
temic concept with Σ ̸|= D ≡ ⊤. For an extended interpretation Ĩ ∈
M̃(Σ) and x ∈ ∆Ĩ , we have that x ∈ C Ĩ,M̃(Σ) iff x is named such that

there is an individual name a ∈ NI with x = aĨ,M̃(Σ) and Σ |= D(a).

Proof
“ ⇒ ”
Suppose x ∈ C Ĩ,M̃(Σ). It means that

x ∈ φĨ(
∩

J̃ ∈M̃(Σ)

φJ̃
−1(DJ̃ ))

To contrary suppose that there is no a ∈ NI such that aĨ,M̃(Σ) = x and
Σ ̸|= D(a).

Since Σ ̸|= D ≡ ⊤, there is a model I ′ of Σ such that ∆I′ ̸= DI′
. In

other words, there is a y ∈ ∆I′
with y ̸∈ DI′

. By Lemma 22, y ̸∈ DĨ′



for each Ĩ ′ ∈ E(I ′). As by definition, E(I ′) contains all the extended
interpretation obtained from I ′ by augmenting any mapping from NI ∪N
to ∆I′

, therefore, there is an extended interpretation J̃ ′ ∈ E(I ′) such that
φJ̃ ′

−1(y) = φĨ
−1(x) as φĨ and φJ̃ ′ share the same domain, namely NI ∪N.

Since I ′ |= Σ (as I ′ ∈ M(Σ)), by corollary 23 we get that J̃ ′ ||=e Σ and

therefore J̃ ′ ∈ M̃(Σ). Now y ̸∈ DJ̃ ′

⇒ φJ̃ ′
−1(y) ̸⊆ φJ̃ ′

−1(DJ̃ ′
)

⇒ φJ̃ ′
−1(y) ̸⊆

∩
J̃ ∈M̃(Σ) φJ̃

−1(DJ̃ ) as J̃ ′ ∈ M̃(Σ)

⇒ φĨ
−1(x) ̸⊆

∩
J̃ ∈M̃(Σ) φJ̃

−1(DJ̃ ) as φĨ
−1(x) = φJ̃ ′

−1(y)

⇒ x ̸∈ φĨ

(∩
J̃ ∈M̃(Σ) φJ̃

−1(DJ̃ )
)

�

which is a contradiction.
“ ⇐ ”
Suppose there is a ∈ NI such that aĨ,M̃(Σ) = x and Σ |= D(a). Corol-
lary 23 along with the fact that both Σ and D are non-epistemic implies
that Σ ||=e D(a). This implies that for each J̃ ∈ M̃(Σ) we have that aJ̃ ∈
DJ̃ , which by definition of φJ̃ implies that φJ̃

−1(aJ̃ ) ⊆ φJ̃
−1(DJ̃ ). Now

as aJ̃ = φJ̃ (a) for any J̃ ∈ M̃(Σ), we get that φJ̃
−1(φJ̃ (a)) ⊆ φJ̃

−1(DJ̃ ).

This implies that a ∈ φJ̃
−1(DJ̃ ) for any J̃ ∈ M̃(Σ). In other words,

a ∈
∩

J̃ ∈M̃(Σ)

φJ̃
−1(DJ̃ )

By definition of φĨ ,

φĨ(a) ∈ φĨ(
∩

J̃ ∈M̃(Σ)

φJ̃
−1(DJ̃ ))

Now as, φĨ(a) = aĨ , therefore,

aĨ ∈ φĨ(
∩

J̃ ∈M̃(Σ)

φJ̃
−1(DJ̃ ))

and hence

x ∈ φĨ(
∩

J̃ ∈M̃(Σ)

φJ̃
−1(DJ̃ ))

as aĨ = aĨ,M̃(Σ) = x. By semantics of K, we get that x ∈ C Ĩ,M̃(Σ).



A similar property can be proved for the roles as well. But again, here
we have to be careful about the exceptional case of the roles equivalent
to the universal role. The idea is that the extension of a role KR, with
R equivalent to the universal role U , and that of the role R, under the
extended semantics, coincides. As for the justification, we formulate this
as follows.

Claim 26. Let Σ be a non-epistemic knowledge base. For any non-epistemic
role R with Σ |= R ≡ U and for each extended interpretation Ĩ ∈ M̃(Σ),
we have:

KRĨ,M̃(Σ) = RĨ,M̃(Σ)

Proof Note that by definition

KRĨ,M̃(Σ) = φĨ

( ∩
J̃ ∈M̃(Σ)

φJ̃
−1(RJ̃ )

)
(∗)

Since Σ |= R ≡ U , RI = ∆I ×∆I for each I ∈ M(Σ). Now as both R
and Σ are K-free, by Fact 21 we get M̃(Σ) = E(M(Σ)) and therefore, it

follows from Lemma 22 that RJ̃ = ∆J̃ ×∆Ĩ for each J̃ ∈ M̃(Σ). This
together with (∗) implies that

KRĨ,M̃(Σ) = φĨ(NI ∪N×NI ∪N)

as NI ∪N is the domain of φJ̃ for each J̃ ∈ M̃(Σ). Now since φĨ is a

surjective mapping from NI ∪N to ∆Ĩ , we get that KRĨ,M̃(Σ) = ∆Ĩ×∆Ĩ

and hence KRĨ,M̃(Σ) = RĨ,M̃(Σ) as RĨ,M̃(Σ) = ∆Ĩ ×∆Ĩ .

Like in case of concepts, we can now show that the extension of ev-
ery role preceded by K consists only of pairs of individuals with certain
characteristics, provided it is not equivalent to the universal role.

Lemma 27. Let Σ be a SROIQ knowledge base. Let R = KP be an
epistemic role such that Σ ̸|= P ≡ U . For any extended interpretation

Ĩ ∈ M̃(Σ) and any x, y ∈ ∆Ĩ , we have that (x, y) ∈ RĨ,M̃(Σ) if and only
if at least one of the following holds:

(a) there are individual names a, b ∈ NI such that aĨ,M̃(Σ) = x, bĨ,M̃(Σ) =
y and Σ |= P (a, b).

(b) there is an individual name a ∈ NI with aĨ = x and Σ |= ⊤ ⊑
∃P−.{a}.

(c) there is an individual name b ∈ NI with bĨ = y and Σ |= ⊤ ⊑ ∃P.{b}.



(d) x = y and Σ |= ∃P.Self.

Proof
“ ⇒ ”
Suppose that (x, y) ∈ RĨ,M̃(Σ) but neither of (a), (b), (c) or (d) hold. We
distinguish the following cases:

(1) There are a, b ∈ NI with aĨ,M̃(Σ) = x and bĨ,M̃(Σ) = y. Regardless of
whether x ̸= y or Σ ̸|= ⊤ ⊑ ∃P.Self, since (a) does not hold, we have
that Σ ̸|= P (a, b). It means that there is an interpretation I such
that I |= Σ but I ̸|= P (a, b) i.e., (aI , bI) ̸∈ P I . Define an extended
interpretation K̃ as follows:

– ∆K̃ = ∆I

– ·K̃ = ·I
– φK̃(c) = cK̃ for each c ∈ NI

By definition, K̃ ∈ E(I). As I |= Σ, by Corollary 23, we get that Ĩ ||=e
Σ and by Lemma 22, we get that (aK̃, bK̃) ̸∈ P K̃. Now by definition

of φK̃ we have that φK̃(c) = cK̃ for each c ∈ NI and therefore,

φK̃
−1(φK̃(a))× φK̃

−1(φK̃(b)) ̸⊆ φK̃
−1(P K̃)

This means that

(a, b) ̸∈ φK̃
−1(P K̃)

Since K̃ ∈ M̃(Σ), we get

(a, b) ̸∈
∩

J̃ ∈M̃(Σ)

(φJ̃
−1(P J̃ ))

By definition of φĨ ,

(φĨ(a), φĨ(b)) ̸∈ φĨ(
∩

J̃ ∈M̃(Σ)

(φJ̃
−1(P J̃ )))

But φĨ(a) = aĨ = x and φĨ(b) = bĨ = y, therefore

(x, y) ̸∈ φĨ(
∩

J̃ ∈M̃(Σ)

(φJ̃
−1(P J̃ )))

And therefore by semantics of K, we get that (x, y) ̸∈ KP Ĩ,M̃(Σ) as
KP = R, which is a contradiction.



(2) y is anonymous and there is a ∈ NI such that aĨ,M̃(Σ) = x. As
(d) does not hold, therefore, either x ̸= y or Σ ̸|= ⊤ ⊑ ∃P.Self. In
any of the cases, by the assumption it follows from (b) in particular
that Σ ̸|= ⊤ ⊑ ∃P−.{a}. Therefore, there is an interpretation I with
I |= Σ but I ̸|= ⊤ ⊑ ∃P−.{a} i.e., there is a u ∈ ∆I such that
u ̸∈ [∃P−.{a}]I which implies that (aI , u) ̸∈ P I . By the definition
of E(I), there is an extended interpretation Ĩ ′ ∈ E(I) such that
φĨ′

−1(u) = φĨ
−1(y). Again this is the case as both φĨ and φĨ′ share

the common domain NI ∪N. Since (aI , u) ̸∈ P I and Ĩ ′ ∈ E(I), by
Lemma 22, therefore, (aĨ

′
, u) ̸∈ P Ĩ′

which implies

φĨ′
−1(aĨ

′
)× φĨ′

−1(u) ̸⊆ φĨ′
−1(P Ĩ′

)

⇒ φĨ′
−1(φĨ′

(a))× φĨ′
−1(u) ̸⊆ φĨ′

−1(P Ĩ′
) as aĨ

′
= φĨ′

(a)

⇒ {a} × φĨ′
−1(u) ̸⊆ φĨ′

−1(P Ĩ′
) as aĨ

′
= φĨ′

(a)

⇒ {a} × φĨ′
−1(u) ̸⊆

∩
J̃ ∈M̃(Σ) φJ̃

−1(P J̃ ) as Ĩ ′ ∈ M̃(Σ)

⇒ {a} × φĨ
−1(y) ̸⊆

∩
J̃ ∈M̃(Σ) φJ̃

−1(P J̃ ) as φĨ′
−1(u) = φĨ

−1(y)

⇒ (φĨ(a), φĨ(φĨ
−(y))

)
̸∈ φĨ

(∩
J̃ ∈M̃(Σ) φJ̃

−1(P J̃ )
)

by Def. of φĨ

⇒ (φĨ(a), y) ̸∈ φĨ

(∩
J̃ ∈M̃(Σ) φJ̃

−1(P J̃ )
)

⇒ (x, y) ̸∈ φĨ

(∩
J̃ ∈M̃(Σ) φJ̃

−1(P J̃ )
)

as φĨ(a) = aĨ = x

⇒ (x, y) ̸∈ KP I,M(Σ) = RĨ,M̃(Σ) by semantics

which is a contradiction.
(3) x is anonymous and there is b ∈ NI with bĨ,M̃(Σ) = y. Again as (d)

does not hold, either x ̸= y or Σ ̸|= ⊤ ⊑ ∃P.Self. In either of the cases,
it follows from (c) particularly that Σ ̸|= ⊤ ⊑ ∃P.{b}. In other words,
there is an interpretation I such that I |= Σ but I ̸|= ⊤ ⊑ ∃P.{b} i.e.,
there is a u ∈ ∆I such that u ̸∈ [∃P.{b}]I . Consequently, (u, bI) ̸∈ P I .
Again by the definition of E(I), there is an extended interpretation Ĩ ′

such that φĨ′
−1(u) = φĨ

−1(x). Now by Lemma 22, (u, bI) ̸∈ P I implies

(u, bĨ
′
) ̸∈ P Ĩ′

⇒ φĨ′
−1(u)× φĨ′

−1(φĨ′(b)) ̸⊆ φĨ′
−1(P Ĩ′

)

⇒ φĨ′
−1(u)× φĨ′

−1(φĨ′(b)) ̸⊆
∩

J̃ ∈M̃(Σ) φJ̃
−1(P J̃ ) as Ĩ ′ ∈ M̃(Σ)

⇒ φĨ
−1(x)× {b} ̸∈

∩
J̃ ⊆M̃(Σ) φJ̃

−1(P J̃ ) as φĨ′
−1(u) = φĨ

−1(x)

⇒ (φĨ(φĨ
−1(x)), φĨ(b)) ̸∈ φĨ

(∩
J̃ ∈M̃(Σ) φJ̃

−1(P J̃ )
)

⇒ (x, y) ̸∈ φĨ

(∩
J̃ ∈M̃(Σ) φJ̃

−1(P J̃ )
)

as φĨ(b) = bĨ = y

⇒ (x, y) ̸∈ KP Ĩ,M̃(Σ) = RĨ,M̃(Σ) by semantics

�



which is a contradiction.

“ ⇐ ”
Suppose either (a), (b), (c) or (d) holds. We have to show then (x, y) ∈
RĨ,M̃(Σ). We make the following case distinction:

(1) There are a, b ∈ NI such that aĨ,M̃(Σ) = x and bĨ,M̃(Σ) = y and
Σ |= P (a, b):
Since both P and Σ contain no occurrence of K, by Corollary 24 we
get that Σ ||=e P (a, b) i.e., for each J̃ ∈ M̃(Σ), (aJ̃ , bJ̃ ) ∈ P J̃ which
implies that

φJ̃
−1(aJ̃ )× φJ̃

−1(bJ̃ ) ⊆ φJ̃
−1(P J̃ )

for any J̃ ∈ M̃(Σ). As cJ̃ = φJ̃ (c) for c ∈ NI and J̃ ∈ M̃(Σ),
therefore,

φJ̃
−1(φJ̃ (a))× φJ̃

−1(φJ̃ (b))) ⊆ φJ̃
−1(P J̃ )

for any J̃ ∈ M̃(Σ) i.e.,

(a, b) ∈
∩

J̃ ∈M̃(Σ)

(φJ̃
−1(P J̃ ))

which, using the definition of φĨ , implies that

(φĨ(a), φĨ(b)) ∈ φĨ(
∩

J̃ ∈M̃(Σ)

(φJ̃
−1(P J̃ )))

Finally, as φĨ(a) = aĨ = x and φĨ(b) = bĨ = y, therefore,

(x, y) ∈ φĨ(
∩

J̃ ∈M̃(Σ)

(φJ̃
−1(P J̃ ))) = KP Ĩ,M̃(Σ)

Hence, (x, y) ∈ RĨ,M̃(Σ) as R = KP .

(2) There is an individual a ∈ NI with aĨ,M̃(Σ) = x and Σ |= ⊤ ⊑
∃P−.{a}:
By Corollary 24 and the fact that Σ |= ⊤ ⊑ ∃P−.{a}, we get that
Σ ||=e ⊤ ⊑ ∃P−.{a} as neither Σ nor ⊤ ⊑ ∃P−.{a} contains any
occurrence of K. Hence, for each extended interpretation J̃ ∈ M̃(Σ),

we get that J̃ |= ⊤ ⊑ ∃P−.{a}, i.e., every u ∈ ∆J̃ is such that

u ∈ [∃P−.{a}]J̃ . This means that for every J̃ ∈ M̃(Σ) and u ∈ ∆J̃ ,



we have that (aJ̃ , u) ∈ P J̃ . Now, using the definition of φJ̃
−1, for

J̃ ∈ M̃(Σ), we get that

φJ̃
−1(aJ̃ )× φJ̃

−1(u) = φJ̃
−1(φJ̃ (a))× φJ̃

−1(u) ⊆ φJ̃
−1(P J̃ )

for any u ∈ ∆Ĩ and J̃ ∈ M̃(Σ). Note that a ∈ φJ̃
−1(φJ̃ (a)). Further

since φJ̃ has domain NI ∪ N and u ∈ ∆J̃ is arbitrary, for each

J̃ ∈ M̃(Σ), we get (a, t) ∈ φJ̃
−1(P J̃ ) for each t ∈ (NI ∪N) i.e.,

(a, t) ∈
∩

J̃ ∈M̃(Σ)

φJ̃
−1(P J̃ )

Using the definition of φĨ , therefore,

(φĨ(a), φĨ
−1(t)) ∈ φĨ

( ∩
J̃ ∈M̃(Σ)

φJ̃
−1(P J̃ )

)
Since φĨ(a) = aĨ = x and φĨ is a surjective mapping with range ∆Ĩ ,

therefore, for every v ∈ ∆Ĩ we get that

(x, v) ∈ φĨ

( ∩
J̃ ∈M̃(Σ)

φJ̃
−1(P J̃ )

)
In particular,

(x, y) ∈ φĨ

( ∩
J̃ ∈M̃(Σ)

φJ̃
−1(P J̃ )

)
which, by semantics implies that (x, y) ∈ KP Ĩ,M̃(Σ) = RĨ,M̃(Σ) as
R = KP .

(3) There is b ∈ NI with bĨ,M̃(Σ) = y and Σ |= ⊤ ⊑ ∃P.{b}:
By Corollary 24, we get aht Σ ||=e ⊤ ⊑ ∃P.{b} as both Σ and ⊤ ⊑
∃P.{b} are K-free. In other words, for every J̃ ∈ M̃(Σ), we have that

(u, bJ̃ ) ∈ P J̃ ,M̃(Σ) for any u ∈ ∆J̃ . Now as φJ̃ (b) = bJ̃ , using the
definition of φJ̃

−1 we get that

φJ̃
−1(u)× φJ̃

−1(φJ̃ (b)) ⊆ φJ̃
−1(P J̃ )

for any J̃ ∈ M̃(Σ) and u ∈ ∆J̃ . Again as b ∈ φJ̃
−1(φJ̃ (b)) and φJ̃

has domain NI ∪N for each J̃ ∈ M̃(Σ), we get (t, b) ∈ φJ̃
−1(P J̃ ) and

therefore,

(t, b) ∈ φJ̃
−1

∩
J̃ ∈M̃(Σ)

(P J̃ )



for each t ∈ (NI ∪N). Using definition of φĨ we get

(φĨ(t), φĨ(b)) ∈ φĨ
( ∩
J̃ ∈M̃(Σ)

φJ̃
−1(P J̃ )

)
for any t ∈ (NI ∪ N). Since φĨ(b) = bJ̃ = y and φĨ is a surjective

mapping with range ∆Ĩ , we get that

(v, y) ∈ φĨ
( ∩
J̃ ∈M̃(Σ)

φJ̃
−1(P J̃ )

)
for any v ∈ ∆Ĩ . In particular,

(x, y) ∈ φĨ
( ∩
J̃ ∈M̃(Σ)

φJ̃
−1(P J̃ )

)
which by semantics implies that (x, y) ∈ RĨ,M̃(Σ) as R = KP .

(4) x = y and Σ |= ⊤ ⊑ ∃P.Self:
As both Σ and the axiom ⊤ ⊑ ∃P.Self are K-free, Corollary 24 implies
that Σ ||=e ⊤ ⊑ ∃P.Self i.e., for each J̃ ∈ M̃(Σ) and u ∈ ∆J̃ , we

have that (u, u) ∈ P J̃ and by definition of φJ̃
−1, therefore, φJ̃

−1(u)×
φJ̃
−1(u) ⊆ φJ̃

−1(P J̃ ). But as φJ̃ , for each J̃ ∈ M̃(Σ), is a mapping

with domain NI ∪ N, we get (t, t) ∈ φJ̃
−1(P J̃ ) for each J̃ ∈ M̃(Σ)

and t ∈ (NI ∪N). In other words,

(t, t) ∈
∩

J̃ ∈M̃(Σ)

φJ̃
−1(P J̃ ,M̃(Σ))

for each t ∈ (NI ∪N). Now using the definition of φĨ , we get that

(φĨ(t), φĨ(t)) ∈ φĨ
( ∩
J̃ ∈M̃(Σ)

P J̃ ,M̃(Σ)
)
= KP Ĩ,M̃(Σ)

for each t ∈ (NI ∪ N). As φĨ is a surjective mapping from NI ∪ N
to ∆Ĩ , therefore, (v, v) ∈ KP Ĩ,M̃(Σ) for every v ∈ ∆Ĩ . In particular,

(x, x) ∈ KP Ĩ,M̃(Σ) and therefore (x, x) ∈ RĨ,M̃(Σ) as R = KP .

The correspondence we establish in Lemma 25 and 27 lets us to extend the
translation procedure ΦΣ of Definition 15 in a way that it maps (complex)
epistemic concept expressions to non-epistemic ones which are equivalent
in all models of the given SROIQ knowledge base Σ. We represent this
extension by Φ̃Σ .s



Definition 28. Given a SROIQ knowledge base Σ, we define a function
Φ̃Σ mapping SROIQK concept expressions to SROIQ concept expres-
sions (where we let {} = ∅ = ⊥):

Φ̃Σ :



C 7→ C if C is an atomic or one-of concept, ⊤ or ⊥;

KD 7→
{
⊤ if Σ |= Φ̃Σ(D) ≡ ⊤
{a ∈ NI | Σ |= Φ̃Σ(D)(a)} otherwise

∃KS.Self 7→
{
∃S.Self if Σ |= ⊤ ⊑ ∃S.Self
{a ∈ NI | Σ |= S(a, a)} otherwise

C1 ⊓ C2 7→ Φ̃Σ(C1) ⊓ Φ̃Σ(C2)

C1 ⊔ C2 7→ Φ̃Σ(C1) ⊔ Φ̃Σ(C2)

¬C 7→ ¬Φ̃Σ(C)

∃R.D 7→ ∃R.Φ̃Σ(D) for non-epistemic role R

∃KP.D 7→



⊔
a∈NI

{a} ⊓ ∃P.({b ∈ NI | Σ |= P (a, b) ⊓ Φ̃Σ(D)})
⊔∃P.

(
{b ∈ NI | Σ |= ⊤ ⊑ ∃P.{b}} ⊓ Φ̃Σ(D)

)
⊔{a ∈ NI | Σ |= ⊤ ⊑ ∃P−{a}} ⊓ ∃P.Φ̃Σ(D)

⊔
{
Φ̃Σ(D) if Σ |= ⊤ ⊑ ∃P.Self
⊥ otherwise

∀R.D 7→ ∀R.Φ̃Σ(D) for non-epistemic role R;

∀KP.D 7→ ¬Φ̃Σ(∃KP.¬D)

>nS.D 7→ >nS.Φ̃Σ(D) for non-epistemic role S;

>nKS.D 7→



⊔
a∈NI

{a} ⊓>nS.({b ∈ NI | Σ |= S(a, b) ⊓ Φ̃Σ(D)})
⊔{a ∈ NI | Σ |= ⊤ ⊑ ∃S−.{a}} ⊓>nS.Φ̃Σ(D)

⊔>nS.({b ∈ NI | Σ |= ⊤ ⊑ ∃S.{b}} ⊓ Φ̃Σ(D))

⊔


>(n− 1)S.

(
{b ∈ NI | Σ |= ⊤ ⊑ ∃S.{b}} ⊓ Φ̃Σ(D)

)
⊓

Φ̃Σ(D) ⊓ ¬{a | a ∈ NI} if Σ |= ⊤ ⊑ ∃S.Self
⊥ otherwise

6nS.D 7→ 6nS.Φ̃Σ(D) for non-epistemic role S;

6nKS.D 7→ ¬Φ̃Σ(>(n+1)KS.D)

ΞKR.D 7→ ΞR.Φ̃Σ(D) for Ξ ∈ {∀, ∃, >n, 6n} and Σ |= R ≡ U

♢

We now prove that a method based on the translation function Φ̃Σ as in
Definition 28 is indeed correct. In the following Lemma, we show that the
extension of a SROIQK concept and the extension of SROIQ concept
obtained using the translation function Φ̃Σ , agree under each extended
interpretation in M̃(Σ).

Lemma 29. Let Σ be a SROIQ-knowledge base and C be a SROIQK
concept. Then for any extended interpretation Ĩ ∈ M̃(Σ), we have that

C Ĩ,M̃(Σ) = [Φ̃Σ(C)]Ĩ,M̃(Σ).

Proof For the proof we use induction on the structure of C and show
that for each x ∈ ∆Ĩ , we have that x ∈ C Ĩ,M̃(Σ) if and only if x ∈



(Φ̃Σ(C))Ĩ,M̃(Σ). For the base case; C is atomic or one-of concept, and
the cases where C = ⊤ and C = ⊥, the lemma follows immediately from
the definition of Φ̃Σ . For the cases, where C = C1 ⊓ C2, C = C1 ⊔ C2 or
C = ¬D, it follows from the induction hypothesis. The non-trivial cases
are considered in the following.

(i) C = KD and Σ ̸|= D ≡ ⊤:

By Lemma 27, x ∈ KDĨ,M̃(Σ) iff there is an a ∈ NI with aĨ = x and
Σ |= D(a). This is equivalent to x ∈ {a ∈ NI | Σ |= D(a)}Ĩ,M̃(Σ)

and hence, by definition of Φ̃Σ , to x ∈ [Φ̃Σ(KD)]Ĩ,M̃(Σ).

(ii) C = KD and Σ |= D ≡ ⊤:
By Corollary 24 we get hat Σ ||=e D ≡ ⊤ i.e., for each J̃ ∈ M̃(Σ)

we have that DJ̃ ,M̃(Σ) = ∆Ĩ . Consequently, we get

φĨ(
∩

J̃∈M̃

φJ̃
−1(DJ̃ ,M̃(Σ))) = φĨ(NI ∪N)

as φĨ
−1 is a surjective mapping from NI ∪ N to ∆J̃ for each J̃ ∈

M̃(Σ). Now φĨ(NI ∪N) yields ∆Ĩ as it is a surjective mapping to

∆Ĩ . Hence we get that KDĨ,M̃(Σ) = ∆Ĩ = ⊤Ĩ , which by defini-
tion of Φ̃Σ yields that KDĨ,M̃(Σ) = [Φ̃Σ(KD)]Ĩ,M̃(Σ). Consequently,

x ∈ KDĨ,M̃(Σ) iff x ∈ Φ̃Σ(KD)Ĩ,M̃(Σ).

(iii) C = ∃KS.Self:
“ ⇒ ”
Suppose that Σ |= ⊤ ⊑ ∃S.Self. By semantics, x ∈ [∃KS.Self]Ĩ,M̃(Σ)

implies that for each J̃ |= M̃(Σ) we have that (x, x) ∈ SJ̃ ,M̃(Σ).

In particular, (x, x) ∈ SĨ,M̃(Σ) i.e., x ∈ [∃S.Self]Ĩ,M̃(Σ). Therefore,

x ∈ [Φ̃Σ(∃KS.Self)]Ĩ,M̃(Σ) as by definition Φ̃Σ(∃KS.Self) = ∃S.Self.
Suppose that it is not the case that Σ |= ⊤ ⊑ ∃S.Self. By semantics,

x ∈ [∃KS.Self]Ĩ,M̃(Σ) implies (x, x) ∈ KSĨ,M̃(Σ). By Lemma 27,

there is aĨ = x such that Σ |= S(a, a). Hence, a ∈ {c ∈ NI |
Σ |= S(c, c)}, which implies that x ∈ [Φ̃Σ(∃KS.Self)]Ĩ,M̃(Σ) as by
definition Φ̃Σ(∃KS.Self) = {c ∈ NI | Σ |= S(c, c)}.
“ ⇐ ”
Suppose that x ∈ [Φ̃Σ(∃KS.Self)]Ĩ,M̃(Σ). Based on the definition of
Φ̃Σ we distinguish the following cases.
– Φ̃Σ(∃KS.Self) = ∃S.Self:

Like in (4) of Lemma 27, we can show that x ∈ [∃KS.Self]Ĩ,M̃(Σ).



– Φ̃Σ(∃KS.Self) = {c ∈ NI | Σ |= S(c, c)}:
x ∈ [Φ̃Σ(∃KS.Self)]Ĩ,M̃(Σ) implies that there some a ∈ NI with

aĨ = x such that Σ |= S(a, a). By Lemma 27, it means that

(aĨ , aĨ) = (x, x) ∈ KSĨ,M̃(Σ) and hence x ∈ [∃KS.Self]Ĩ,M̃(Σ).

(iv) C = ∃P.D and P is a non-epistemic role:

By the semantics, x ∈ [∃P.D]Ĩ,M̃(Σ) iff there is a y ∈ ∆Ĩ with

(x, y) ∈ P Ĩ,M̃(Σ) and y ∈ DĨ,M̃(Σ), therefore by induction, y ∈
[Φ̃Σ(D)]Ĩ,M̃(Σ). Hence, it is equivalent to x ∈ [∃P.Φ̃Σ(D)]Ĩ,M̃(Σ)

which, by definition, is the case if and only if x ∈ [Φ̃Σ(∃P.D]Ĩ,M̃(Σ).

(v) C = ∃KP.D:

x ∈ (∃KP.D)Ĩ,M̃(Σ) implies x ∈ [Φ̃Σ(∃KP.D)]Ĩ,M̃(Σ):

By semantics, x ∈ (∃KP.D)Ĩ,M̃(Σ) means that there is a y ∈ ∆Ĩ

with (x, y) ∈ (KP )Ĩ,M̃(Σ) and y ∈ DĨ,M̃(Σ) hence, by induction

y ∈ Φ̃Σ(D)Ĩ,M̃(Σ). By Lemma 27, (x, y) ∈ KP Ĩ,M̃ implies at least
one of the following should hold:

– there are a, b ∈ NI with aĨ = x, bĨ = x and Σ |= P (a, b). This
means that b ∈ {c ∈ NI | Σ |= P (a, c)}, therefore,

bĨ ∈ [{c ∈ NI | Σ |= P (a, c)}]Ĩ,M̃(Σ)

Now as y ∈ [Φ̃Σ(D)]Ĩ,M̃(Σ), therefore,

x ∈ [{a} ⊓ ∃P.({c ∈ NI | Σ |= P (a, c)} ⊓ Φ̃Σ(D))]Ĩ,M̃(Σ)

which by definition of Φ̃Σ implies that x ∈ [Φ̃Σ(∃KP.D)]Ĩ,M̃(Σ)

– there is an a ∈ NI with aĨ = x and Σ |= ⊤ @ ∃P−.{a}. This
means that a ∈ {c ∈ NI | Σ |= ⊤ ⊑ ∃P−{c}}, therefore,

aĨ ∈ [{c ∈ NI | Σ |= ⊤ ⊑ ∃P−{c}}]Ĩ,M̃(Σ)

Now as Σ is K-free, by Corollary 24 Σ |= ⊤ ⊑ ∃P−.{a} im-

plies that Σ ||=e ⊤ ⊑ ∃P−.{a} i.e., (aJ̃ , u) ∈ P J̃ ,M̃(Σ) for each

J̃ ∈ M̃(Σ) and u ∈ ∆J̃ . In particular, (aĨ , y) = (x, y) ∈
P Ĩ,M̃(Σ). Consequently, we get that x ∈ [∃P.Φ̃Σ(D)]Ĩ,M̃(Σ) as

y ∈ [Φ̃Σ(D)]Ĩ,M̃(Σ). This along with (∗) implies that x = aĨ ∈
[Φ̃Σ(∃KP.D)]Ĩ,M̃(Σ) as per definition of Φ̃Σ .



– there is a b ∈ NI with bĨ = y and Σ |= ⊤ ⊑ ∃P.{b} i.e., b ∈ {c ∈
NI | Σ |= ⊤ ⊑ ∃P.{c}} which implies that

bĨ ∈ [{c ∈ NI | Σ |= ⊤ ⊑ ∃P.{c}}]Ĩ,M̃(Σ) (∗)

Since Σ is K-free we get from Corollary 24 that Σ ||=e ⊤ ⊑ ∃P.{b}
i.e., for each J̃ ∈ M̃(Σ) and u ∈ ∆Ĩ we have that (u, bJ̃ ) ∈
P J̃ ,M̃(Σ). In particular, (x, bĨ) = (x, y) ∈ P Ĩ,M̃(Σ), which along

with (∗) and the fact that y ∈ [Φ̃Σ(D)]Ĩ,M̃(Σ) immediately im-

plies that x ∈ [∃KP.D]Ĩ,M̃(Σ) as per definition of Φ̃Σ .

– x = y and Σ |= ⊤ ⊑ ∃P.Self. As Φ̃Σ(∃KP.D) = Φ̃Σ(D), there-

fore, we get that x ∈ [Φ̃Σ(∃KP.D)]Ĩ,M̃(Σ) as x = y ∈ [Φ̃Σ(D)]I,M(Σ).

x ∈ [Φ̃Σ(∃KS.D)]Ĩ,M̃(Σ) implies x ∈ [∃KS.D]Ĩ,M̃(Σ) :

According to the definition of Φ̃Σ , we make the following case dis-
tinction.

– there is an a ∈ NI such that aĨ = x and x ∈ [∃P.({c ∈ NI |
Σ |= P (a, c)} ⊓ Φ̃Σ(D))]Ĩ,M̃(Σ) i.e., there is some b ∈ NI such

that bĨ ∈ [Φ̃Σ(D)]Ĩ,M̃(Σ) and Σ |= P (a, b). This, by Lemma 27,

implies that (aĨ , bĨ) ∈ KP Ĩ,M̃(Σ). Hence, we get that x = aĨ ∈
[∃KP.D]Ĩ,M̃(Σ) as bĨ ∈ DĨ,M̃(Σ) by induction.

– x ∈ [∃P.({c ∈ NI | Σ |= ⊤ ⊑ ∃P.{c}} ⊓ Φ̃Σ(D))]Ĩ,M̃(Σ) which
implies that there is some b ∈ NI such that Σ |= ⊤ ⊑ ∃P.{b} and
bĨ ∈ [Φ̃Σ(D)]Ĩ,M̃(Σ). It follows from Lemma 27, that (x, bĨ) ∈
KP Ĩ,M̃(Σ) which immediately implies that x ∈ [KP.D]Ĩ,M̃(Σ) as

bĨ ∈ DĨ,M̃(Σ) by induction.

– there is an a ∈ NI with aĨ = x such that Σ |= ⊤ ⊑ ∃P−.{a}
and x ∈ [∃P.Φ̃Σ(D)]Ĩ,M̃(Σ). It means that there is a y ∈ ∆Ĩ such

that y ∈ [Φ̃Σ(D)]Ĩ,M̃(Σ). By Lemma 27, we get that (x, y) ∈
KP Ĩ,M̃(Σ) and hence, by semantics, x ∈ [∃KP.D]Ĩ,M̃(Σ) as y ∈
DĨ,M̃(Σ) by induction.

– x ∈ [Φ̃Σ(D)]Ĩ,M̃(Σ), therefore by induction x ∈ DĨ,M̃(Σ). Since
it is the case that Σ |= ∃P.Self, Lemma 27 implies that (x, x) ∈
KP Ĩ,M̃(Σ) and therefore, x ∈ [∃KP.D]Ĩ,M̃(Σ).

(vi) C = >nKS.D

x ∈ [>nKS.D]Ĩ,M̃(Σ) implies x ∈ [Φ̃Σ(>nKS.D)]Ĩ,M̃(Σ)

By semantics, x ∈ [>nKS.D]Ĩ,M̃(Σ) implies that there are pair-wise



distinct y1, . . . , ym ∈ ∆Ĩ with m ≥ n such that (x, yi) ∈ KSĨ,M̃(Σ)

and yi ∈ DĨ,M̃(Σ), therefore by induction, yi ∈ Φ̃Σ(D)Ĩ,M̃(Σ) for
i ≤ m. By Lemma 27, this implies that at least one of the following
should hold:
– there are a, b1, . . . , bm with aĨ = x and bĨi = yi such that Σ |=

S(a, bi) for i ≤ m i.e., bi ∈ {c ∈ NI | Σ |= (a, c)}. Since Σ
is K-free, it follows from Corollary 24 that Σ ||=e S(a, bi) for

i ≤ m. This implies that (aĨ , bĨi ) = (x, yi) ∈ SĨ,M̃(Σ) for each
i ≤ m. As m ≥ n and bi ∈ {c ∈ NI | Σ |= S(a, c)} with

yi = bĨi ∈ [Φ̃Σ(D)]Ĩ,M̃(Σ), therefore, we get that aĨ ∈ [>nS.({c ∈
NI | Σ |= S(a, c)} ⊓ Φ̃Σ(D))]Ĩ,M̃(Σ) which immediately implies

that x ∈ [Φ̃Σ(>nKS.D)]Ĩ,M̃(Σ) as x ∈ {a}Ĩ,M̃(Σ).

– there is an a ∈ NI with aĨ = x such that Σ |= ⊤ ⊑ ∃S−.{a}.
This implies that

a ∈ {c ∈ NI | Σ |= ⊤ ⊑ ∃S−.{c}} (∗)

Now by Corollary 24, Σ |= ⊤ ⊑ ∃S−.{a} implies that Σ ||=e
⊤ ⊑ ∃S−.{a}. It means that for any J̃ ∈ M̃(Σ), we have that

(aJ̃ , v) ∈ SJ̃ for arbitrary v ∈ ∆J̃ . In particular, (x, yi) ∈
SĨ,M̃(Σ) as aĨ = x and yi ∈ ∆Ĩ for i ≤ m. Now since yi ∈
Φ̃Σ(D)Ĩ,M̃(Σ) and m ≥ n, it follows from the semantics that

x ∈ [>nS.ΦΣ(D)]Ĩ,M̃(Σ). This along with (∗) implies that x ∈
[{c ∈ NI | Σ |= ⊤ ⊑ ∃S−.{c} ⊓ >nS.Φ̃Σ(D)]Ĩ,M̃(Σ) and there-
fore, by definition of Φ̃Σ , we get that x ∈ [Φ̃Σ(>nKS.D)].

– there are b1, . . . , bm ∈ NI with bĨi = yi and Σ |= ⊤ ⊑ ∃S.{bi} for
i ≤ m. This means that

{b1, . . . , bm} ⊆ {c ∈ NI | Σ |= ⊤ ⊑ ∃P.{c}} (∗)

Now by Corollary 24, Σ |= ⊤ ⊑ ∃S.{bi} implies that Σ ||=e ⊤ ⊑
∃S.{bi} for i ≤ m. Therefore, we get that for each J̃ ∈ M̃(Σ),

(u, bJ̃i ) ∈ SJ̃ ,M̃(Σ) for arbitrary u ∈ ∆Ĩ and i ≤ m. In particular,

we have that for each i ≤ m, (x, bĨi ) ∈ SĨ,M̃(Σ). Now as bĨi =

yi ∈ Φ̃Σ(D)Ĩ,M̃(Σ) for i ≤ m, consequently, it follows from (∗) ,
that

x ∈ [>nS.({c ∈ NI | Σ |= ⊤ ⊑ ∃S.{c}} ⊓ ΦΣ(D))]Ĩ,M̃(Σ)

as m ≥ n and therefore, x ∈ [ΦΣ(>nKS.D)]Ĩ,M̃(Σ) as per defi-
nition of Φ̃Σ .



– there is a y ∈ {y1, . . . , ym} such that x = y andΣ |= ⊤ ⊑ ∃S.Self.
Hence we have that

x ∈ [Φ̃Σ(D)]Ĩ,M̃(Σ) (∗)

Note that if x is named, we can proceed as the first two cases of
the proof. Here hence, we assume that x is unnamed i.e.,

x ∈ [¬{a | a ∈ NI}]Ĩ,M̃(Σ) (∗∗)

Suppose that x ̸∈ [>(n − 1)S.({b ∈ NI | Σ |= ⊤ ⊑ ∃S.{b}} ⊓
Φ̃Σ(D))]Ĩ,M̃(Σ). This means that there are b1, . . . , bk ∈ NI with
k < (n − 1)such that bi ∈ [{b ∈ NI | Σ |= ⊤ ⊑ ∃S.{b}} ⊓
Φ̃Σ(D))]Ĩ,M̃(Σ). Note that Σ |= ⊤ ⊑ ∃S.Self, by Corollary 24
implies that Σ ||=e ⊤ ⊑ ∃S.Self. Hence, we get that (x, x) ∈
KSĨ,M̃(Σ) which along with the fact that x = y ∈ DĨ,M̃(Σ)

implies that x[>1S.D]Ĩ,M̃(Σ). By the assumption here we get

that there are distinct z1, . . . , zm′ ∈ ∆Ĩ with (x, zi) ∈ KSĨ,M̃(Σ)

and zi ∈ DĨ,M̃(Σ) for i ≤ m′ and m′ is at most (n−1). Which is

a contradiction as x ∈ [>nKS.D]Ĩ,M̃(Σ). Therefore, it must be
the case that x ∈ [>(n − 1)S.({b ∈ NI | Σ |= ⊤ ⊑ ∃S.{b}} ⊓
Φ̃Σ(D))]Ĩ,M̃(Σ) which along with (∗) and (∗∗) implies that x ∈
[Φ̃Σ(>nKS.D)]Ĩ,M̃(Σ) as per definition of Φ̃Σ .

x ∈ [Φ̃Σ(>nKS.D)]Ĩ,M̃(Σ) implies x ∈ [>nKS.D]Ĩ,M̃(Σ)

According to the definition of ΦΣ , at least one of the following is
the case.

– there are a, b1, . . . , bm ∈ NI with aĨ = x such that Σ |= S(a, bi)

and bĨi ∈ [Φ̃Σ(D)]Ĩ,M̃(Σ) for i ≤ m. By Lemma 27, therefore,

(x, bĨi ) = (aĨ , bĨi ) ∈ KSĨ,M̃(Σ) and by induction bĨi ∈ DĨ,M̃(Σ)

for i ≤ m. This immediately implies that x = aĨ ∈ [>nKS.D]Ĩ,M̃(Σ)

as m ≥ n.

– Φ̃Σ(>nKS.D) = {c ∈ NI | Σ |= ⊤ ⊑ ∃S−.{c}} ⊓>nS.Φ̃Σ(D):

x ∈ [{c ∈ NI | Σ |= ⊤ ⊑ ∃S−.{c}} ⊓>nS.Φ̃Σ(D)]Ĩ,M̃(Σ) implies

that there is an a ∈ NI with aĨ = x and aĨ ∈ [>nS.Φ̃Σ(D)]Ĩ,M̃(Σ)

i.e., there are pair-wise disjoint y1, . . . , ym ∈ ∆Ĩ with m ≥ n
such that yi ∈ [Φ̃Σ(D)]Ĩ,M̃(Σ) for i ≤ m. By induction, there-

fore, for i ≤ m we have that yi ∈ DĨ,M̃(Σ). Now Σ |= ⊤ ⊑
∃S−.{a} implies that (x, y) ∈ SĨ as aĨ = x and therefore, by

Lemma 27, (x, y) ∈ KSĨ,M̃(Σ) for each y ∈ ∆Ĩ . In particular,



(x, yi) ∈ KSĨ,M̃(Σ) for i ≤ m. As yi ∈ DĨ,M̃(Σ) for i ≤ m and

m ≥ n, consequently we get that x ∈ [>nKS.D]Ĩ,M̃(Σ).
– Φ̃Σ(>nKS.D) = >nS.({c ∈ NI | Σ |= ⊤ ⊑ ∃S.{c}} ⊓ Φ̃Σ(D)):

x ∈ [>nS.({c ∈ NI | Σ |= ⊤ ⊑ ∃S.{c}} ⊓ΦΣ(D))]Ĩ,M̃(Σ) implies
that there are distinct b1, . . . , bm ∈ NI with m ≥ n, such that
Σ |= ⊤ ⊑ ∃S.{bi} and bĨi ∈ [Φ̃Σ(D)]Ĩ,M̃(Σ), therefore by induc-

tion bĨi ∈ DĨ,M̃(Σ) for i ≤ m. By Lemma 27, Σ |= ⊤ ⊑ ∃S.{bi}
implies that (x, bĨi ) ∈ KSĨ,M̃(Σ) for i ≤ m which immediately

yields that x ∈ [>nKS.D]Ĩ,M̃(Σ).

– x is anonymous with x ∈ [Φ̃Σ(D)]Ĩ,M̃(Σ) and x ∈ [>(n−1)S.({c ∈
NI | Σ |= ⊤ ⊑ ∃S.{c}} ⊓ Φ̃Σ(D))]Ĩ,M̃(Σ), which, as already
proved in the previous case, implies

x ∈ [>(n− 1)KS.D]Ĩ,M̃(Σ) (∗)

Now by Lemma 27, we have that (x, x) ∈ KSĨ,M̃(Σ). This along

with (∗) implies that x ∈ [>nKS.D]Ĩ,M̃(Σ) as x ∈ DĨ,M̃(Σ) by
induction.

(vii) C = ΞKR.D for Ξ ∈ {∀, ∃, >n, 6n} and Σ |= R ≡ U :

By Claim 26, we have that KRĨ,M̃(Σ) = RĨ,M̃(Σ). Hence, by induc-
tion, it follows immediately that x ∈ [ΞKR.D]Ĩ,M̃(Σ) if and only if

x ∈ [ΞR.Φ̃Σ(D)]Ĩ,M̃(Σ) = [Φ̃Σ(ΞKR.D)]Ĩ,M̃(Σ).
(viii) the rest of the cases can be proved analogously. �

In the following, based on Lemma 29 we can show the result that the
translation function Φ̃Σ indeed can be used to reduce the problem of en-
tailment in SROIQK axioms by SROIQ knowledge bases to the prob-
lem of entailment of SROIQ axioms. Formally,

Theorem 30. For a SROIQ knowledge base Σ, SROIQK concept C,
D, and an individual a, the following hold:

1 Σ ||=e C(a) if and only if Σ |= Φ̃Σ(C)(a).
2 Σ ||=e C ⊑ D if and only if Σ |= Φ̃Σ(C) ⊑ Φ̃Σ(D).

Proof. For the first case, note that Σ ||=e C(a) is equivalent to aĨ,M̃(Σ) ∈
C Ĩ,M̃(Σ) which by Lemma 29 implies that aĨ,M̃(Σ) ∈ Φ̃Σ(C)Ĩ,M̃(Σ) for
all Ĩ ∈ M̃(Σ). Since Σ and Φ̃Σ(C) are K-free, by Fact 21 we get M̃ =
E(M(Σ)) and therefore by Lemma 22 we get the equivalent statement
that aI ∈ Φ̃Σ(C)I for each I ∈ M(Σ) and therefore, Σ |= C(a). We can
prove the second case with similar arguments. �



Note that the definition of ΦΣ and Φ̃Σ coincide for a SRIQ knowledge
base Σ. This allows us to establish a correspondence between both no-
tions of entailment, i.e., entailment under the current semantics (||=) and
entailment under the extended semantics (||=e). Formally,

Corollary 31. For a given SRIQ knowledge base Σ, epistemic concepts
C, D and an individual name a, we have that

1. Σ ||=e C(a) under the unique name assumption if and only if Σ ||=
C(a), similarly

2. Σ ||=e C ⊑ D under the unique name assumption if and only if Σ ||=
C ⊑ D

Proof. For the proof of the first part, note that by Theorem 17Σ ||= C(a)
is equivalent to Σ ||= ΦΣ(C)(a). Since Σ is a SRIQ knowledge base
and that ΦΣ behaves similar to Φ̃Σ (as the unique name assumption
is satisfied), therefore we get that Σ |= ΦΣ(C)(a) if and only if Σ |=
Φ̃Σ(C)(a), which by Theorem 30 is equivalent to Σ ||=e C(a). The second
part can be proved analogously. �

7 A System

To check the feasibility of our method in practice, we have implemented
a system that we called EQuIKa5 and performed some first experiments
for epistemic querying.
Implementation: The EQuIKa system implements the transformation
of an epistemic concept to its non-epistemic version from Definition 28
involving calls to an underlying standard DL reasoner that offers the rea-
soning task of instance retrieval. To obtain an efficient implementation of
ΦΣ it is crucial to keep the number of calls to the DL reasoner minimal.
With Algorithm 1 we provide such an efficient implementation, exploit-
ing the fact that extension of an epistemic role P (that occur in role
restrictions) only contain known individuals provided Σ ̸|= ⊤ ⊑ ∃P.Self.
It shows the transformation in terms of virtual recursive translation func-
tions for the various cases of epistemic concept expressions.

An important point, so far optimisation is concerned, is to reduced
the number of calls to the underlying DL reasoner. From Algorithm 1,
it can be seen that the number of calls to the underlying DL reasoner
is at most twice the number of K-operators that occur in the original

5 Epistemic Querying Interfance Karlsruhe.



Algorithm 1 translate (Σ, C) – Translate epistemic query concepts to
non-epistemic ones
Require: a SRIQ knowledge base Σ, an epistemic concept C
Ensure: the return value is the non-epistemic concept ΦΣ(C)

translate (Σ, C = KD)
X := retrieveInstances (Σ, translate (Σ,D))
return {. . . , oi, . . . } , oi ∈ X

translate (Σ, C = ∃KR.D)
X := ⊥
XD := retrieveInstances (Σ, translate (Σ,D))
for each a ∈ NI

XR := retrieveInstances (Σ, ∃.R−{a})
X := X ⊔ ({a} ⊓ ∃R.(XR ⊓ XD))

if Σ |= ⊤ ⊑ ∃R.Self
X := X ⊔ XD

return X
translate (Σ, C = ∀KR.D)

XD̄ := retrieveInstances (Σ, translate (Σ,¬D))
X := retrieveInstances (Σ, ∃R.{. . . , oi, . . . }) , oi ∈ XD̄

return ¬{. . . , oi, . . . } , oi ∈ X
translate (Σ, C = . . . )

. . .

query. This is much better than a naive implementation of ΦΣ according
to Definition 15 with iteration over intermediate retrieved individuals.

The EQuIKa system is implemented on top of the OWL-API6 ex-
tending its classes and interfaces with constructs for epistemic concepts
and roles, as shown by the UML class diagram in Figure 1. The new
types OWLObjectEpistemicConcept and OWLObjectEpistemicRole are de-
rived from the respective standard types OWLBooleanClassExpression and
OWLObjectPropertyExpression to fit the design of the OWL-API.

Using these types, the transformation ΦΣ is implemented in the class
Translator following the visitor pattern mechanism built in the OWL-API,
which is indicated by the virtual translation functions with different argu-
ments in Algorithm 1. Finally, the EQuIKaReasoner uses both a Translator
together with an OWLReasoner to perform epistemic reasoning tasks.
Experiments: For the purpose of testing, we consider two versions of the
wine ontology7 with 483 and 1127 instances. As a measure, we consider
the time required to translate an epistemic concept to a non-epistemic
equivalent one and the instance retrieval time of the translated concept.

6 http://owlapi.sourceforge.net/
7 http://www.w3.org/TR/owl-guide/wine.rdf



Fig. 1. The EQuIKa-system extending the OWL-API

Table 2. Concepts used for instance retrieval experiments.

C1 ∃hasWineDescriptor.WineDescriptor

EC1 ∃KhasWineDescriptor.KWineDescriptor

C2 ∀hasWineDescriptor.WineDescriptor

EC2 ∀KhasWineDescriptor.KWineDescriptor

C3 ∃hasWineDescriptor.WineDescriptor ⊓ ∃madeFromFruit.WineGrape

EC3 ∃KhasWineDescriptor.KWineDescriptor ⊓ ∃KmadeFromFruit.KWineGrape

C4 WhiteWine ⊓ ¬∃locatedIn.{FrenchRegion}
EC4 KWhiteWine ⊓ ¬∃KlocatedIn.{FrenchRegion}
C5 Wine ⊓ ¬∃hasSugar .{Dry} ⊓ ¬∃hasSugar .{OffDry} ⊓ ¬∃hasSugar .{Sweet}
EC5 KWine ⊓ ¬∃KhasSugar .{Dry} ⊓ ¬∃KhasSugar .{OffDry} ⊓ ¬K∃hasSugar .{Sweet}

This suffices as entailment check can not be harder than instance re-
trieval. We consider different epistemic concepts. For each such concept
C, we consider a non-epistemic concept obtained from C by dropping
the K-operators from it (see Table 2). Given a concept C, t(C) and |Ci|
represent the time in seconds required to compute the instances and the
number of instances computed for Ci. Finally for an epistemic concept
ECi, tT(ECi) represents the time required by EQuIKa to translate ECi to
its non-epistemic equivalent. Table 3 provides our evaluation results.

One can see from the evaluation results in Table 3 that the time
required to compute the number of instances is feasible; it is roughly in
the same order of magnitude as for non-epistemic concepts. Note also that
the runtime comparison between epistemic concepts ECi and their non-
epistemic counterparts Ci should be taken with a grain of salt as they are
semantically different in general, as also indicated by the fact that there



Table 3. Evaluation

Ontology Concept t(Ci) |Ci| Concept tT(ECi) t(ECi) |ECi|

Wine 1
C1 2.13 159 EC1 46.98 0.04 3
C2 0.01 483 EC2 0.18 0.00 0
C3 28.90 159 EC3 79.43 6.52 3
C4 0.13 0 EC4 95.60 107.82 72
C5 52.23 80 EC5 60.78 330.49 119

Wine 2
C1 8.51 371 EC1 351.78 0.13 308
C2 0.30 1127 EC2 0.127 0.00 0
C3 227.10 371 EC3 641.24 19.58 7
C4 0.34 0 EC4 865.04 840.97 168
C5 295.87 240 EC5 381.41 2417.65 331

are cases where retrieval for the epistemic concept takes less time than
for the non-epistemic version. As a general observation, we noticed that
instances retrieval for an epistemic concept where a K-operator occurs
within the scope of a negation, tends to require much time.

8 Conclusion and Outlook

We showed that some expressive features of today’s DLs such as SROIQ
cause problems when applying the hitherto used semantics to epistemi-
cally extended DLs. We suggested a revision to the semantics and proved
that this revised semantics solves the aforementioned problem while co-
inciding with the traditional semantics on less expressive DLs (up to
SRIQ \ U). Focusing on the new semantics, we provided a way of an-
swering epistemic queries to SROIQ knowledge bases via a reduction to
a series of standard reasoning steps, thereby enabling the deployment of
the available highly optimized off-the-shelf DL reasoners. Finally, we pre-
sented an implementation allowing for epistemic querying in OWL 2 DL.

Avenues for future research include the following: First, we will inves-
tigate to what extent the methods described here can be employed for
entailment checks on SROIQK knowledge bases, i.e., in cases where K
occurs inside the knowledge base. In that case, stronger non-monotonic
effects occur and the unique-epistemic-model property is generally lost.
On the more practical side, we aim at further developing our initial pro-
totype. We are confident that by applying appropriate optimizations such
as caching strategies and syntactic query preprocessing a significant im-
provement in terms of runtime can be achieved. Moreover, we intend to
perform extensive tests with different available OWL reasoners; in our



case an efficient handling of (possibly rather extensive) nominal concepts
is crucial for a satisfactory performance. In the long run, we aim at demon-
strating the added value of epistemic querying by providing an appropri-
ate user-front-end and performing user studies. Furthermore, we will pro-
pose an extension of the current OWL standard by epistemic constructs
in order to provide a common ground for future applications.
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