
Revisiting Acyclicity and Guardedness Criteria for
Decidability of Existential Rules

Technical Report 3011, Institute AIFB, KIT

Markus Krötzsch and Sebastian Rudolph

markus.kroetzsch@comlab.ox.ac.uk
University of Oxford, UK

sebastian.rudolph@kit.edu
KIT, Germany

Abstract. Existential rules, i.e. Datalog extended with existential quantifiers in
rule heads, are currently studied under a variety of names such as Datalog+/–, ∀∃-
rules, and tuple-generating dependencies. The renewed interest in this formalism
is fuelled by a wealth of recently discovered language fragments for which query
answering is decidable. This paper extends and consolidates two of the main ap-
proaches in this field – acyclicity and guardedness – by providing (1) complexity-
preserving generalisations of weakly acyclic and weakly (frontier-)guarded rules,
and (2) a novel formalism of glut-(frontier-)guarded rules that subsumes both.
This builds on an insight that acyclicity can be used to extend any existential
rule language while retaining decidability. Besides decidability, combined query
complexities are established in all cases.

1 Introduction

Rule-based knowledge representation has a long-standing history in AI and related ar-
eas such as databases and information systems. Function-free first-order Horn logic
(also referred to as Datalog) as one of the central paradigms, however, has been criti-
cised for its inability of stating or inferring the existence of domain entities not previ-
ously introduced as constants [Patel-Schneider and Horrocks, 2007]. Existential rules,
i.e. Datalog extended by value invention capabilities realised by existential quantifiers
in rule heads, overcome this restriction and are currently studied under a variety of
names such as Datalog+/–, ∀∃-rules, and – primarily in the database community –
tuple-generating dependencies (TGDs) [Baget et al., 2010; 2009; Calì et al., 2010a;
2010b; 2009; 2008; Fagin et al., 2005; Deutsch and Tannen, 2003]. The recent interest
in this formalism marks the convergence of two paradigms of knowledge represen-
tation research that used to be rather separated: rule-based approaches and ontology
languages.

This new ground was found to be very fertile, as witnessed by the above works’ dis-
coveries of many new rule languages for which query answering is decidable. Widely
varying data and combined complexities underline the richness of the field. Examples
of application areas for this new family of knowledge representation languages range

from data exchange and data integration [Fagin et al., 2005] to ontological data ac-
cess in the spirit of the ontology languages of the DL-Lite family [Calì et al., 2009;
Calvanese et al., 2007]. The wealth of recent contributions supports the development of
such applications, but also calls for a more unified view on the existing proposals, their
exact relationships, and formal properties. This is the general incentive for this work.

Concretely, we extend and consolidate two of the main notions commonly employed
to ensure decidability: acyclicity and guardedness. The main contributions are as fol-
lows.

1. We extend weak acyclicity and weak (frontier-) guardedness to obtain joint acyclic-
ity and joint (frontier-) guardedness. Both extensions use the observation that the
existing notions over-estimate how far values can be passed on within a rule set,
and that there is a refined criterion that still can be checked in polynomial time.

2. We present a new method of eliminating existential quantifiers from jointly acyclic
rule sets. The approach incurs an exponential blow-up but is still worst-case opti-
mal. The relevance of the method stems from the insight that a partial application
of the procedure can also simplify rule sets that are not jointly acyclic.

3. We apply this observation to combine guardedness and acyclicity in the language of
glut-(frontier-)guarded rules, based on identifying glut variables that may represent
an overabundance of “existentially invented” values. Only glut variables remain
affected by existential quantifiers after applying the elimination method introduced
for jointly acyclic rules.

An important insight of this work therefore is that a very general notion of acyclicity
can be combined “modularly” with existing rule languages without losing decidability.
Jointly frontier-guarded rules serve us as an example for this construction, and illus-
trate that further studies are needed to determine the exact complexity of reasoning in
each case. We determine exact combined worst-case complexities for all rule languages
introduced herein.

Section 2 provides the preliminaries and reviews the existing results in the field.
We then motivate and introduce the notion of joint acyclicity in Section 3, and present
a generic way of eliminating jointly acyclic variables in Section 4. Section 5 intro-
duces jointly frontier-guarded rules, and Section 6 combines all previous ideas to obtain
glut-(frontier-)guarded rules for which the combined complexity of query answering is
shown to be 3ExpTime-complete. Section 7 concludes.

2 Existential Rules

We now provide the basic notions of the logical framework we consider, followed by
an overview of a number of important approaches in this area.

Definition 1. Consider a signature 〈C,P,V〉 consisting of a finite set of constant sym-
bols C, a finite set of predicates P, and an infinite set of variables V, all of which are
mutually disjoint. A function ar : P → N associates a natural number ar(s) with each
predicate r ∈ P that defines the (unique) arity of r. The set of positions of a predicate r
is the set Πr = {〈r, 1〉, . . . , 〈r, ar(r)〉}.

– A term is a variable x ∈ V or a constant c ∈ C.
– An atom is a formula of the form r(t1, . . . , tn) if t1, . . . , tn are terms, and r ∈ P is a

predicate with ar(r) = n.
– An existential rule (or simply rule in the context of this paper) is a formula of the

form
∀x.

(
B1 ∧ . . . ∧ Bk → ∃y.H1 ∧ . . . ∧ Hl

)
,

where B1, . . . , Bk,H1, . . . ,Hl are atoms all of whose variables are in the scope of
some quantifier, and where no variable occurs more than once in x, y.1 We use sets
of atoms as a convenient notation for conjunctions of atoms. A Datalog rule is a
rule with no existential quantifiers. A rule with k = 0 is called a fact (a head that is
unconditionally true), and a rule with l = 0 is called a constraint (a body that must
never be true).

The premise of a rule is called the body while the conclusion is called the head. Since
all variables in rules are quantified, we will often omit the explicit preceding universal
quantifier.

A rule set Σ is renamed apart if each variable name is bound in at most one quantifier
in Σ.

The rule language hereby introduced is a syntactic fragment of first-order predicate
logic, and we consider it under the according semantics. This also means that every rule
set is semantically equivalent to one that is renamed apart. Moreover, note that we do
not exclude non-safe rules, i.e. rules with universally quantified variables that occur in
the head but not in the body; all of our results apply in any case.

Definition 2. Let Σ be a set of rules. We call Σ satisfiable if it has a model according to
the standard semantics of first-order logic. Two rule sets Σ and Σ′ are equisatisfiable if
either both or none of them is satisfiable. A boolean conjunctive query (BCQ) is a set of
atoms. We say that a BCQ Q is entailed by Σ, if ∃x.Q (with x containing all variables
occurring in Q) is a logical consequence of Σ according to standard first-order logic
semantics.

Checking satisfiability and BCQ entailment for unrestricted existential rules is un-
decidable [Chandra et al., 1981b; Beeri and Vardi, 1981] even with very strong re-
strictions on the vocabulary or the number of rules [Baget et al., 2010]. Therefore, a
large body of work has been devoted to the identification of restricted rule languages
which retain decidability and still allow for sufficient expressiveness. A generic tool
for establishing decidability results is the chase introduced by Maier et al. [1979] and
extended to query containment by Johnson and Klug [1982]. Intuitively the chase pro-
cedure starts with a given set of factual data (ground facts) and “applies” rules in a
production rule style by introducing new domain elements whenever required by an
existentially quantified variable in a rule head. In general, termination of this procedure
cannot be guaranteed, and an infinite set of new domain elements and facts may be
created.

1 We freely use x, t, etc. to denote vectors of the form 〈x1, . . . , xn〉, 〈t1, . . . , tn〉, etc. throughout
this paper.

Many of the decidable rule classes come about by establishing properties about the
chase they create. Finiteness of the chase is a straightforward criterion for ensuring
decidability, and rule sets with this property are called finite extension sets [Baget et
al., 2010]. This criterion is undecidable in general, but several sufficient conditions on
rule sets for chase-finiteness have been identified. Pure Datalog (also known as full
implicational dependencies [Chandra et al., 1981b] or total TGDs [Beeri and Vardi,
1981]) is an immediate case, as no new domain elements are created at all. A more
elaborate concept is (weak) acyclicity [Deutsch and Tannen, 2003; Fagin et al., 2005]
which we review and extend in Section 3. Another approach that pursues a similar goal
by different means is to require acyclicity of the graph of rule dependencies introduced
by Baget et al. [2009].

An even more relaxed condition than finiteness of the chase is that the (possibly
infinite) chase enjoys a variant of the bounded treewidth property, leading to bounded
treewidth sets [Baget et al., 2010]. Decidability of BCQ entailment follows from known
decidability results for first-order logic theories with the bounded treewidth model prop-
erty [Courcelle, 1990]. Again rules with this property are not recognisable in general,
but a variety of sufficient conditions has been established. The most prominent exam-
ples are a number of guardedness conditions that we review and extend in Section 5.

Independently of the chase, other decidability criteria can be established by consid-
ering rewritings of the query in a backward-chaining manner. In analogy to the finite
chase condition, one can define finite unification sets where this rewriting procedure
terminates and yields a finite set of rewritten queries [Baget et al., 2010]. First-order
rewritability also implies a sub-polynomial AC0 data complexity for BCQ entailment
checking. Again, recognising finite unification sets is undecidable, and various decid-
able sublanguages are known. Examples include atomic-hypothesis rules and domain
restricted rules [Baget et al., 2010], linear Datalog+/– [Calì et al., 2009], sticky sets of
TGDs, and sticky-join sets of TGDs [Calì et al., 2010a; 2010b].

3 Joint Acyclicity

This section introduces joint acyclicity, which is a proper generalisation of the following
notion of weak acyclicity [Deutsch and Tannen, 2003; Fagin et al., 2005]:

Definition 3. For a set of rules Σ, the dependency graph is a directed graph that has
the positions of predicates in Σ as its nodes. For every rule ρ ∈ Σ, and every variable x
at position 〈r, p〉 in the head of ρ, the graph contains edges as follows:

– If x is universally quantified, and x occurs in a body atom at position 〈s, q〉, there
is an edge from 〈s, q〉 to 〈r, p〉.

– If x is existentially quantified, and the body of ρ contains a (necessarily universally
quantified) variable y at 〈s, q〉, then there is a special edge from 〈s, q〉 to 〈r, p〉.

Σ is weakly acyclic if its dependency graph has no cycle going through a special edge.

Intuitively, non-special edges encode the possible passing of values in bottom-up
reasoning, whereas special edges encode the dependency between the premise that a
rule was applied to and the new individuals that the application of this rule entails. A

cycle over special edges may indicate that newly invented values can recursively be used
in premises which require the invention of further values ad infinitum. For instance, the
rule

r(x, y)→ ∃z.r(y, z) (1)

may lead to the construction of an infinite r-chain of new elements, and indeed the
dependency graph has a special edge from 〈r, 2〉 to itself. But weak acyclicity also ex-
cludes cases where no infinite recursion would occur:

r(x, y) ∧ c(y)→ ∃z.r(y, z) (2)

The dependency graph contains the same cycle as before, yet the rule cannot be applied
recursively since invented values are not required to belong to c. Note that this remains
true even if there are other rules with existentially quantified variables at 〈c, 1〉. We cap-
ture this by shifting our focus from positions to variables (which can occur in multiple
positions):

Definition 4. Consider a renamed apart set of rules Σ. For a variable x, let ΠB
x (ΠH

x)
be the set of all positions where x occurs in the body (head) of a – necessarily unique –
rule. Now for any existentially quantified variable, letΩx be the smallest set of positions
such that (1) ΠH

x ⊆ Ωx, and (2) ΠH
y ⊆ Ωx for every universally quantified variable y

with ΠB
y ⊆ Ωx.

The existential dependency graph of Σ has the existentially quantified variables of
Σ as its nodes. There is an edge from x to y if the rule where y occurs contains a
universally quantified (body) variable z with ΠB

z ⊆ Ωx.
Σ is jointly acyclic if its existential dependency graph is acyclic.

Thus Ωx contains the positions in which values invented for x may appear. This cap-
tures the effect of non-special edges in Definition 3, whereas special edges correspond
to edges in the existential dependency graph. Definition 3 is obtained by modifying
condition (2) in Definition 4 to require ΠB

y ∩ Ωx , ∅ instead of ΠB
y ⊆ Ωx. This states

that a value is propagated by a rule if it satisfies some – instead of all – of the rule’s
premises. Joint acyclicity therefore appears to be the more natural condition.

The following rule is jointly acyclic (as a singleton set) but not weakly acyclic: its
existential dependency graph does not have any edges whereas its dependency graph is
a clique of special edges.

r(x, y)∧ s(x, y)→∃v,w.r(x,v)∧ r(w, y)∧ s(x,w)∧ s(v, y) (3)

In spite of this generalisation, joint acyclicity is easy to recognise. Detecting cycles
in a directed graph and checking inclusion of a position in Ωx is possible in polynomial
time. The latter problem is also hard for P since propositional Horn logic entailment
can be expressed using unary predicates with a single variable to encode propositions.

4 Reducing Jointly Acyclic Variables

We now present a method for eliminating existential quantifiers from rule sets. Applied
iteratively to jointly acyclic rules, this procedure yields a Datalog program that faith-
fully represents all consequences of the original rule set. This establishes decidability

and optimal complexity bounds for jointly acyclic rules. For the general case, the proce-
dure still allows semantically faithful simplifications of rules that can be used to extend
other decidable rule languages as in Section 6.

Our transformation simulates Skolemisation, the replacement of existentially quan-
tified variables with Skolem terms, where we “flatten” function terms to represent them
in Datalog. For example, Skolemising the rule r(x, y) → ∃v.s(x, v) yields r(x, y) →
s(x, f (x, y)) where f is a fresh function symbol. We express this without functions by
considering f as a constant and replacing s by a predicate s′ of higher arity: r(x, y) →
s′(x, f , x, y). Other predicates may need to be extended analogously in positions where
the Skolem term might be relevant; those are exactly the positions in Ωv. Conversely,
some uses of s may not require all the new positions, and we use a special symbol � as
a filler. For example, a fact s(a, b) is represented as s′(a, b,�,�).

Definition 5. Consider a renamed apart rule set Σ, such that there is an existentially
quantified variable x that does not have incoming edges in the existential dependency
graph.

Let k be the number of universally quantified variables in the rule containing x. For
a predicate r define nr B #{〈r, p〉 ∈ Ωx | 1 ≤ p ≤ ar(r)} where # denotes set cardinality.
If nr > 0 let r̂ denote a fresh predicate of arity ar(r̂) = ar(r) + nrk; if nr = 0 let r̂ denote
r. Let f and � be fresh constant symbols.

Σ x is the set of rules that contains, for each rule ρ ∈ Σ, the rule ρx that is obtained
by replacing each atom r(t1, . . . , tar(r)) in ρ by the atom r̂(s1, . . . , sar(r)) where the term
vectors si are defined as follows:

– If 〈r, i〉 < Ωx then si B ti.
For the remaining cases, assume that 〈r, i〉 ∈ Ωx.

– If ti = x then si B 〈 f , y1, . . . , yk〉 where y1, . . . , yk are all universally quantified
variables in the rule.

– If ti = y is universally quantified and occurs only in positions in Ωx, then si B
〈y0, y1, . . . , yk〉 where the same fresh universally quantified variable names y j are
used in all replacements of y but nowhere else.

– In all other cases, si B 〈ti,�, . . . ,�〉 where this is a vector of length k + 1.

Quantifiers for ρ are updated accordingly: new universal quantifiers are introduced for
all variables of the form y j, and the existential quantifier for x is deleted.

Given a boolean conjunctive query Q over the signature of Σ, the BCQ Qx is defined
as the body of the rule ∀y.Qx → that is obtained by applying the above transformation
to the rule ∀y.Q→.

Note that this definition is well. In particular, for each r we find that nr of the vectors
si are of length k + 1, and all others are of length 1, yielding the required ar(r) + nrk
arguments of r̂. Applying this transformation to v in rule (3), we have k = 2 and Ωv =
{〈r, 2〉, 〈s, 1〉}, and so obtain:

r̂(x, y,�,�) ∧ ŝ(x,�,�, y)→ ∃w.r̂(x, f , x, y) ∧ r̂(w, y,�,�) ∧ ŝ(x,�,�,w) ∧ ŝ(f , x, y, y) (4)

Now the main correctness result for this transformation is:

Theorem 1. Given a set of rules Σ and a variable x as in Definition 5, Σ is satisfiable
if and only if Σ x is satisfiable. Moreover, a BCQ Q over the signature of Σ is entailed
by Σ if and only if Qx is entailed by Σ x.

Proof. The claim for BCQs is reduced to the claim of equisatisfiability by noting that
Σ ∪ {∀y.Q→} is satisfiable iff Σ entails Q. It remains to show equisatisfiability.

For the one direction, assume that I is a model of Σ with domain ∆I, and construct
a model J of Σ x as follows. We use the notation as in Definition 5. The domain ∆J

of J is defined as ∆I ∪ {�, f } where � and f are assumed to be distinct from any
element in ∆I. For a predicate r, any tuple of ar(r̂) elements from ∆J can be written as
〈e1, . . . , ear(r)〉 with vectors e1 of length 1 or k + 1.

Assume that the rule that contains x is of the form ∀y.ϕ → ∃z.ψ. We define a
mapping ι from such vectors to ∆I:

– If ei = 〈ε〉, ε ∈ ∆I then ι(ei) B ε.
– If ei = 〈 f , ε1, . . . , εk〉 with εi ∈ ∆

I, then let Z be a variable assignment for I that
maps yi (the universally quantified variables in ∀y.ϕ→ ∃z.ψ) to εi.
• If I,Z 6|= ϕ, let ι(ei) ∈ ∆I be arbitrary.
• If I,Z |= ϕ then there is a variable assignmentZ′ for I that agrees withZ on

all variables yi, and such that I,Z′ |= ψ. Define ι(ei) B Z′(x).
– If ei = 〈ε,�, . . . ,�〉 (length k + 1) then ι(ei) B ε.
– In all other cases, let ι(ei) ∈ ∆I be arbitrary.

Moreover, we define the J extension of a predicate r̂ by setting 〈e1, . . . , ear(r)〉 ∈ r̂J iff
〈ι(e1), . . . , ι(ear(r))〉 ∈ rI. Finally, define �J B ι(〈�〉) and fJ B ι(〈 f 〉) (those values
have been fixed arbitrarily when defining ι).

Then J is a model of Σ x. This is easily checked for an arbitrary rule in Σ x: if J
satisfies the body under some variable assignment Z, then ι can be used to construct a
variable assignment under which I satisfies the original rule body in Σ. One concludes
that the rule head in Σ is also satisfied and can use ι to find suitable tuples to establish
this in Σ x. This is immediate in most cases. Head atoms that involve x are special since
the corresponding head in Σ x contains the constant f in this case. The construction of ι
above ensures that ι is based on an assignment Z′ for I that satisfies the rule, and this
very assignment can also be used for finding values for any other existentially quantified
variables that occur in this rule head of Σ x.

For the other direction, assume thatJ is a model of Σ x. We construct a model I of Σ
as follows. The elements of ∆I are all tuples of elements from ∆J that contain either 1 or
k + 1 elements. For a predicate r of Σ we set 〈e1, . . . , ear(r)〉 ∈ rI iff 〈e1, . . . , ear(r)〉 ∈ r̂J .
It is easy to see that I |= Σ. ut

We can thus apply Definition 5 iteratively, where Theorem 1 ensures that correctness
is preserved. To this end, it is important that the iterative reduction also preserves joint
acyclicity:

Theorem 2. Consider a rule set Σ, and a variable x as in Definition 5. The variables
y , x without incoming edges in the existential dependency graph of Σ do not have
incoming edges in the existential dependency graph of Σ x either. Moreover, Σ is jointly
acyclic if and only if Σ x is jointly acyclic.

Proof. The set of existentially quantified variables decreases monotonically during the
reduction: newly introduced variables are not existentially quantified. Both claims are
established by showing that the reduction does not lead to new edges in the existential
dependency graph. Given an existentially quantified variable y , x, letΩy andΩ′y denote
the respective sets of Definition 4 before and after the reduction, respectively. None of
the universal variables in the rule that contains x occurs in any of the setsΩy since x does
not have any incoming edges in the existential dependency graph. The reduction step
introduces new predicates that may have (k + 1) positions where the original predicates
had a single position. However, existentially quantified variables y , x only ever occur
at the first of these positions, so this position is the starting point for computing Ω′y.
Considering the replacements of terms by term vectors in Definition 5, it is clear that
Ω′y can be obtained from Ωy by simply mapping original positions to the first of the
new positions. Thus each edge in the existential dependency graph after the reduction
step corresponds to such an edge before the reduction. In particular, no new cycles are
introduced. ut

The previous theorem ensures that the set of variables that can be eliminated by
applying Definition 5 iteratively is not affected by the order in which variables are re-
duced in case there is more than one variable without incoming edges. Yet, iterative
reductions may yield syntactically different results depending on the order of appli-
cation. This non-determinism is inessential for our considerations, so we use ja(Σ) to
denote an arbitrary but fixed rule set obtained by iteratively applying Definition 5 until
it is no longer applicable.

Theorem 3. If Σ is a jointly acyclic, renamed apart set of rules Σ then ja(Σ) is a Dat-
alog program.

Proof. The claim can be shown inductively. If a rule set is jointly acyclic then its exis-
tential dependency graph must clearly contain a variable x without incoming edges, so
Definition 5 is initially applicable. The induction step is established by Theorem 2. ut

Before stating the main complexity result of this section, we provide a more precise
estimate of the increase in size that is caused by the transformation. Importantly, the
exponential blow-up is caused by chains of dependencies in the existential dependency
graph, not by the size of the rule set in general.

Theorem 4. Given a renamed apart rule set Σ, the set ja(Σ) contains the same number
of rules as Σ, and the same number of head and body atoms in each rule. The number of
variables per rule in ja(Σ) is bounded by a function that is exponential in the maximum
directed path length in the existential dependency graph of Σ, and polynomial in the
size of Σ.

Proof. It is immediate that the reduction of Definition 5 changes neither the number of
rules nor the number of atoms per rule body or head. The only new variables introduced
in the reduction step are the (k + 1) fresh variables used to replace variables y that
occurred in positions in Ωx only (where x is the existentially quantified variable that is
reduced). We note the following properties:

(1) At most one of these fresh variables can be on a position that is in Ωz of another
existential variable after the translation.

(2) If the (k+1) fresh variables are introduced in the body of a rule with an existentially
quantified variable z (that could possibly be reduced later on), then the existential
dependency graph contains an edge from x to z.

From (1) we conclude that a rule can obtain at most n × k additional universally quan-
tified variables in the translation step, where n is the maximal number of such variables
per rule in Σ. Importantly, n is constant throughout the reduction due to (1), whereas k
depends on the current step. So the number of variables per rule after a series of reduc-
tion steps with k values k1, . . . , km is bounded by n+k1n+ . . .+kmn = n(1+k1 + . . .+km).
The number m of reductions is bounded by the overall number of existentially quantified
variables in Σ.

From (2) we conclude that the maximal number of universally quantified variables
in a rule that contains an existential quantifier can only increase if there is a correspond-
ing edge in the existential dependency graph. In this case it increases by at most n × k
(leading to a new maximum of (n + 1)k), where k is initially bounded by n. Hence,
values k j are bounded by (n + 1)d where d is the maximum directed path length in the
existential dependency graph of Σ. This is the maximal number of universally quanti-
fied variables in any rule with an existential quantifier at any stage of the reduction. For
general rules, our earlier bound can be simplified by noting that k j ≤ (n + 1)d to obtain
n(1 + m(n + 1)d) ≤ (1 + m)(n + 1)(d+1). Since m and n are bounded by the size of Σ, this
establishes the claim. ut

Theorem 5. Deciding whether BCQ Q is entailed by a jointly acyclic set of rules Σ is
2ExpTime-complete for combined complexity, ExpTime-complete if the maximal length
of a path in the existential dependency graph is bounded, and P-complete in data com-
plexity.

Proof. The set Σ can be transformed into a renamed apart set of rules in linear time.
Inclusion then follows by Theorem 3 and 4, together with the well-known complexities
of BCQ answering for Datalog. Hardness for 2ExpTime follows from the respective
hardness result for weakly acyclic rules [Calì et al., 2010b]. Hardness for ExpTime and
P follows again from the respective hardness of Datalog. ut

5 Jointly Frontier-Guarded Rules

A large class of existential rules for which query answering is decidable are based on
the idea of guardedness [Andréka et al., 1998], the requirement that all or some of
the universally quantified variables of a rule appear together in a single “guard” atom.
Requiring guards only for variables that also appear in the head (the “frontier”) yields
frontier-guarded rules [Baget et al., 2010]. Both notions can be generalised by not
requiring guards for variables that cannot possibly represent existentially introduced
elements. This idea has been used to arrive at weakly guarded rules [Calì et al., 2008]
and weakly frontier-guarded rules [Baget et al., 2010]. In this section, we generalise
the latter to fit more naturally to our definitions in Section 3, and we establish basic
complexity results.

Definition 6. Consider a set of rules Σ. A position 〈r, i〉 is affected if (1) Σ contains
an existentially quantified variable on position 〈r, i〉, or (2) Σ contains a universally
quantified variable x on position 〈r, i〉 in the head of a rule where x occurs on an affected
position in its body. A position 〈r, i〉 is jointly affected if 〈r, i〉 ∈ Ωx for some variable x
in Σ (see Definition 4).

A variable x in a rule ρ = ∀x.ϕ → ∃y.ψ ∈ Σ is universal if it occurs in x, affected
if it occurs on some affected position in ϕ, jointly affected if it occurs only on jointly
affected positions in ϕ, frontier if it occurs ϕ and in ψ. The sets of all such variables are
denoted Xu

ρ , Xa
ρ , Xja

ρ , Xf
ρ.

The rule ρ is X-guarded for a set X of variables, if all x ∈ X occur together in one
atom in ϕ. Relevant notions are: guarded (X = Xu

ρ), frontier-guarded (X = Xf
ρ), weakly

guarded (X = Xa
ρ), weakly frontier-guarded (X = Xa

ρ ∩ Xf
ρ), jointly guarded (X = Xja

ρ),
jointly frontier-guarded (X = Xja

ρ ∩ Xf
ρ). The set Σ is X-guarded if all rules ρ ∈ Σ are.

The relation of these notions follows from the observation that Xu
ρ ⊇ Xf

ρ and Xu
ρ ⊇

Xa
ρ ⊇ Xja

ρ , e.g. every weakly guarded rule is also jointly frontier-guarded. The combined
complexity of BCQ answering for guarded and weakly guarded rules is known to be
2ExpTime-complete [Calì et al., 2008]. Hardness carries over to the frontier-guarded
cases, but upper complexity bounds for these languages have been open until very re-
cently. We cite the following result from Baget et al. [2011] and, for the sake of self-
containedness, reproduce the respective proof here without claiming this as our own
contribution.

Proposition 1. Deciding whether a BCQ Q is entailed by a frontier-guarded set of
rules Σ is 2ExpTime-complete for combined complexity.

Proof. Hardness follows from the known hardness result for guarded rules [Calì et al.,
2008].

To show inclusion, we make use of the result of Bárány et al. [2010] that decid-
ing entailment of unions of BCQs in the guarded fragment (GF) of first-order logic is
2ExpTime-complete. This result can be used to prove 2ExpTime inclusion for frontier-
guarded BCQ entailment.

Every frontier-guarded rule ρ with a non-empty body body(ρ) can be translated
into two rules, where one is guarded and one is Datalog: given an (arbitrary but fixed)
frontier guard p(t) ∈ body(ρ), we introduce a new n-ary predicate pρ and let sep(ρ)
be the set of the two rules ρ̌ B body(ρ) → pρ(t) and ρ̂ B pρ(t) → head(ρ). For
rules ρ with empty body, i.e. facts, we set sep(ρ) B {ρ}. It is immediate that for any
frontier-guarded rule set Σ, we have Σ |= Q exactly if

⋃
ρ∈Σ sep(ρ) |= Q.

Obviously, ρ̂ is guarded (and hence also lies in GF) while ρ̌ is Datalog and frontier-
guarded (but not necessarily guarded). However, we can transform ρ̌ as follows, where
we use x and y to denote the variables in body(ρ) and in t, respectively, and introduce a

fresh predicate p′ρ:

∀x.(body(ρ)→ pρ(t))
iff ¬∃x.(body(ρ) ∧ ¬pρ(t))
iff

(
¬∃x.(body(ρ) ∧ p′ρ(t))

)
∧

(
∀y.(p(t) ∧ ¬pρ(t)→ p′ρ(t))

)
iff

(
¬∃x.(body(ρ) ∧ p′ρ(t))

)︸ ︷︷ ︸
=: ρ̌1

∧
(
∀y.(p(t)→ p′ρ(t) ∨ pρ(t))

)︸ ︷︷ ︸
=: ρ̌2

Hence Σ |= Q iff
{ρ̂, ρ̌2 | ρ ∈ Σ} ∪ {ρ̌1 | ρ ∈ Σ} |= Q (†)

where the first set is in GF and the second consists of negated existentially quantified
conjunctions of atoms. Hence we can conceive every ρ̌1 as a negated conjunctive query
¬Qρ. Consequently we have

{ρ̌1 | ρ ∈ Σ} ≡ {¬Qρ | ρ ∈ Σ} ≡
∧
ρ∈Σ

¬Qρ ≡ ¬
∨
ρ∈Σ

Qρ

which allows to rephrase (†) as

{ρ̂, ρ̌2 | ρ ∈ Σ} |= Q ∨
∨
ρ∈Σ

Qρ

leaving us with a GF theory on the left-hand side and a union of boolean conjunctive
queries on the right-hand side. As the translation is clearly linear, we have thus shown
2ExpTime-inclusion for BCQ entailment for frontier-guarded rules. ut

Baget et al. [2011] also provide a proof showing BCQ answering for weakly frontier-
guarded rules to be in 2ExpTime. We extend this result to our new notion of jointly
guarded and jointly frontier-guarded rules. Our respective proofs are new and original,
though based on similar ideas. Namely, we observe that variables that are not jointly
affected may never represent elements that are introduced existentially. Thus, their as-
signments correspond to constant symbols that could be substituted instead. A naïve
use of this idea yields exponentially many partially grounded rules with constants used
in all possible combinations.

A polynomial reduction is possible by extending the arguments of all predicates
to contain parameters for all variables that are not jointly affected. These parameters
then guard all such variables in rules. Bindings for the added parameters can only be
inferred by auxiliary rules that allow arbitrary constants to be substituted for variables.
These ideas are combined to the following definition.

Definition 7. For a renamed apart rule set Σ, let z = 〈z1, . . . , zn〉 be a list of all vari-
ables in Σ that are not jointly affected, and let r̃ be a fresh predicate of arity ar(r) + n
for each predicate r of Σ. The rule set guard(Σ) consists of:

(1) for each rule ρ ∈ Σ with non-empty body, a rule ρ′ ∈ guard(Σ) obtained by replac-
ing every atom r(t1, . . . , tar(r)) (with terms ti) by the atom r̃(t1, . . . , tar(r), z1, . . . , zn),
where all variables zi are universally quantified,

(2) for each rule ρ ∈ Σ with an empty body (i.e. generalised fact), a rule ρ′ ∈ guard(Σ)
that is obtained by replacing every atom r(t1, . . . , tar(r)) (with terms ti) by the atom
r̃(t1, . . . , tar(r), c, . . . , c) where c is an arbitrary constant,

(3) for each predicate r of Σ, each i ∈ {1, . . . , n}, and each constant symbol c, a rule

r̃(x1, . . . , xar(r), z1, . . . , zi, . . . , zn)→ r̃(x1, . . . , xar(r), z1, . . . , c, . . . , zn),

(4) for each predicate r of Σ, a rule

r̃(x1, . . . , xar(r), z1, . . . , zn)→ r(x1, . . . , xar(r)),

where all variable names xi are fresh.

Theorem 6. A BCQ Q is entailed by a renamed apart rule set Σ iff Q is entailed by
guard(Σ).

Proof. A model I is strictly larger than a model J if (a) both have the same domain
∆J = ∆I, (b) cJ = cI for all constants c, (c) rJ ⊆ rI for all predicates r, and (d) sJ (sI

for at least one predicate. It is well known that entailment is the same when restricting
to models that are minimal w.r.t. this order, i.e. to models I that are not strictly larger
than any other model.

Now the claim follows from the following correspondence of models: (1) every
minimal model of guard(Σ) is a model of Σ (when restricted to the predicates in Σ),
and (2) every model of Σ can be extended to a model of guard(Σ) by defining a suitable
interpretation for the new predicates.

For (1), let I be a minimal model of guard(Σ) and consider a rule ∀x.ψ→ ∃y.ϕ ∈ Σ.
First consider the case that ψ is non-empty, and let Z be a variable assignment for I
such that I,Z |= ψ. Let r(x) be an atom in ψ. We want to show that there is a variable
assignmentZ′ that agrees withZ on all variables of x, and such that I,Z′ |= ψ′ where
∀xz.ψ′ → ∃y.ϕ′ is the rule in guard(Σ) that was generated by (1) of Definition 7. To
this end, first note that by minimality and rules (4) of Definition 7, I,Z |= r(x) implies
that there is some 〈e1, . . . , ear(r), f1, . . . , fn〉 ∈ r̃I with 〈e1, . . . , ear(r)〉 = Z(x).

Now we need to show that this can be used to find an assignment Z′ such that
I,Z′ |= r̃(x, z). It helps to note that the existence of 〈e1, . . . , ear(r), f1, . . . , fn〉 ∈ r̃I to-
gether with rules (3) lets us find according tuples with fi replaced by arbitrary elements
of the form cI for a constant c (we call such elements cI named). Unfortunately, no
elements of other forms can be assumed in place of fi (one could show this using mini-
mality and an easy induction, but we don’t require this for the proof). Hence, to find the
required assignment I,Z′ |= r̃(x, z), we must ensure that, for all variables xi that occur
in z,Z(xi) is a named element. Such variables xi are exactly those that occur on a posi-
tion in r that is not jointly affected. We show that only named elements occur on such
positions inductively over the derivation steps of a bottom-up application of the rules,
where we exploit that by minimality of I, predicate extensions only contain element
tuples for which there is such a bottom-up proof. The base case is given by generalised
facts: they have constant symbols on all positions that are not jointly affected. For the
induction step, consider any rule with non-empty body. Positions in the head that are
not jointly affected must contain a constant (then the claim is immediate) or a variable
that occurs on some body position that is not jointly affected (then the claim follows by
induction).

The previous induction shows that we can find a variable assignmentZ′ that agrees
with Z on x and such that I,Z′ |= r̃(x, z). As the values of Z′ on variables not in x
can be arbitrary named elements, the same assignment Z′ works for all atoms of ψ so
we find I,Z′ |= ψ′ as desired. This implies I,Z′′ |= ϕ′ for some assignment Z′′ that
agrees with Z′ on all variables other than possibly y. From the construction of ϕ and
rules (4), we conclude I,Z′′ |= ϕ as claimed, where we note that the variables xi and
z j in the rules (4) are distinct. The same conclusion follows directly for the remaining
case that ψ is empty. Thus, I is a model of Σ.

For (2), let I be a model of Σ. We extend I to predicates of the form r̃ by setting
〈e1, . . . , ear(r), f1, . . . , fn〉 ∈ r̃I iff 〈e1, . . . , ear(r)〉 ∈ r̃I and, for each i ∈ {1, . . . , n}, fi is of
the form cI for some constant c. Rules of types (3) and (4) are clearly satisfied by this
interpretation. Now consider a rule ∀xz.ψ′ → ∃y.ϕ′ of type (1) that was created from a
rule ∀x.ψ → ∃y.ϕ ∈ Σ. Any variable assignmentZ with I,Z |= ψ′ satisfies I,Z |= ψ.
So there is some assignment Z′ that agrees with Z on all variables other than y such
that I,Z′ |= ϕ. SinceZ andZ′ agree on z as well, this implies I,Z′ |= ϕ′ as required.
A similar conclusion settles the case for type (3) rules, so I is a model of guard(Σ). ut

Theorem 7. Deciding whether BCQ Q is entailed by a jointly guarded or jointly frontier-
guarded set of rules Σ is 2ExpTime-complete for combined complexity.

Proof. Hardness follows from Proposition 1 for both guarded and frontier-guarded
rules. For inclusion, we only need to consider jointly frontier-guarded rules. Observe
that guard(Σ) is polynomial in the size of Σ, and that guard(Σ) is (frontier-)guarded
whenever Σ is jointly (frontier-)guarded. By Theorem 6, query entailment can then be
decided based on the polynomially large frontier-guarded guard(Σ), which in turn is
possible in 2ExpTime using Proposition 1. ut

6 Joining Acyclicity and Guardedness

The iterative reduction in Section 4 hints at a much wider applicability of the idea of
joint acyclicity, since it allows for the elimination of some existential quantifiers even
in rule sets that are not jointly acyclic. This is useful if the reduced rule set belongs to a
rule language for which decidability of reasoning has been established on other grounds.
Here, we illustrate this idea by combining acyclicity with joint (frontier-)guardedness,
and establish tight complexity bounds for related reasoning tasks.

Using the terminology of Section 5, we can say that Definition 5 eliminates jointly
affected variables. To be more precise, we say that a variable in a renamed apart rule set
Σ is a glut variable if it occurs in a setΩx as in Definition 5 for a variable x that is part of
a cycle in the existential dependency graph. Intuitively, glut variables are those that may
represent an overabundance of values, as opposed to the remaining, non-glut variables
that can only represent finitely many values. It is easy to see that the iterative application
of Definition 5 then turns non-glut variables into variables that are not jointly affected.
This leads to a further generalisation of guardedness:

Definition 8. A renamed apart rule set Σ is glut-guarded (glut-frontier-guarded) if each
rule of Σ has a body atom containing all glut variables (that also occur in the head).

The previous definition is illustrated in the following example of a glut-frontier-
guarded rule set, where c, intuitively speaking, marks persons that are “specifically
important” for us:

c(x) ∧ ancestor(x, ẏ) ∧ ancestor(ẏ, ż)→ ancestor(x, ż) (5)

parent(ẋ, ẏ)→ ancestor(ẋ, ẏ) (6)

c(x)→ person(x) (7)

person(ẋ)→ ∃ẇ.parent(ẋ, ẇ) ∧ person(ẇ) (8)

sibling(x, y)→ ∃v.parent(x,v) ∧ parent(y,v) ∧ c(v) (9)

parent(ẋ, y) ∧ sibling(y, z)→ uncle(ẋ, z) (10)

Information about c, parent, and sibling would be given in facts, while the remaining
predicates are derived only. The existential dependency graph has two edges v→ w and
w→ w, where the latter cycle follows from (8). Glut variables thus are those occurring
only on positions ofΩw; they are marked by a dot in the example. It is easy to verify that
the example is glut-frontier-guarded. Note how c is used to make x in rule (5) non-glut,
thus allowing a form of transitivity – a typical counter-example for all common types
of guardedness. Furthermore, transitivity is not first-order rewritable, thus excluding
the example from all types of finite unification sets reviewed in Section 2. Rule (10) is
another illustration of the increased expressive power, since it is neither jointly frontier-
guarded nor glut-guarded. Indeed, since all positions other than those of sibling are in
Ωv, almost all variables in the example are jointly affected.

Theorem 8. Deciding whether BCQ Q is entailed by a glut-guarded or glut-frontier-
guarded set of rules Σ is 3ExpTime-complete for combined complexity.

Proof. 3ExpTime hardness for glut-guarded rules is shown in Proposition 2 below, and
hardness of glut-frontier-guarded rules follows from that. For inclusion, it suffices to
consider glut-frontier-guarded rules. By Theorem 4, ja(Σ) is exponential in the size of Σ
(since the maximal directed path length in the existential dependency graph is linear in
the size of Σ). Clearly, the only jointly affected variables in ja(Σ) are glut variables, and
the guardedness condition for these variables is preserved during the iterative reduction
of non-glut variables. Hence ja(Σ) is jointly frontier-guarded, and the result follows
from Theorem 7. ut

It remains to show the claimed hardness result. This is achieved by a reduction of
the word problem for a 2ExpSpace alternating Turing machine.

Definition 9. An alternating Turing machine (ATM)M is a tuple 〈Q,A , ∆, q0〉 where
Q = U ∪̇ E is the disjoint union of a finite set of universal states U and a finite
set of existential states E, A is a finite alphabet that includes a blank symbol �,
∆ ⊆ (Q ×A) × (Q ×A × {l, r}) is a transition relation, and q0 ∈ Q is the initial state.

A (universal / existential) configuration of M is a word θ ∈ A ∗QA ∗ (A ∗UA ∗ /

A ∗EA ∗). A configuration θ′ is a successor of a configuration θ if one of the following
holds:

1. θ = wlqααrwr, θ′ = wlα
′q′αrwr, and 〈q, α, q′, α′, r〉 ∈ ∆,

2. θ = wlqα, θ′ = wlα
′q′�, and 〈q, α, q′, α′, r〉 ∈ ∆,

3. θ = wlαlqαwr, θ′ = wlq′αlα
′wr, and 〈q, α, q′, α′, l〉 ∈ ∆,

where q ∈ Q and α, α′, αl, αr ∈ A as well as wl,wr ∈ A ∗. Given some natural number
s, the possible transitions in space s are defined by additionally requiring that |θ′| ≤ s+1.

The set of accepting configurations is the least set which satisfies the following
conditions. A configuration θ is accepting iff (i) θ is a universal configuration and all its
successor configurations are accepting, or (ii) θ is an existential configuration and at
least one of its successor configurations is accepting. Note that universal configurations
without any successors are trivially accepting.
M accepts a given word w ∈ A ∗ (in space s) iff the configuration q0w is accepting

(when restricting to transitions in space s).

ATMs can solve 3ExpTime problems in doubly exponential space [Chandra et al.,
1981a]. We thus can show 3ExpTime-hardness of BCQ entailment for glut-guarded rules
by polynomially reducing the halting problem of ATMs with a doubly exponentially
bounded storage space.

Proposition 2. Boolean conjunctive query entailment for glut-guarded rules is 3ExpTime-
hard even for bounded predicate arity.

Proof. For any ATM M = 〈Q,A , ∆, q0〉 and word w ∈ A ∗, we construct a rule set
ΣM,w and show that acceptance of w by the ATMM within doubly exponential space
can be decided via checking fact entailment on ΣM,w.

For the construction of ΣM,w we first make use of a construction introduced in [Calì
et al., 2010b] to provide for doubly exponentially many tape cell addresses. More pre-
cisely, for some arbitrary number k ≥ 0, we construct a tape of length 22k

using a set
of rules Σ tape

M,w with size proportional to k. An initial chain of 2 elements is constructed
using constant symbols c0 and c1, and the following facts: r0(c0), r0(c1), succ0(c0, c1),
min0(c0), and max0(c1). Now the following rules are organised in layers i ∈ {0, . . . , k−1},
where each layer combines already constructed elements to construct larger chains:

ri(x) ∧ ri(y)→ ∃z.si(x, y, z)
si(x, y, z)→ ri+1(z)

si(x, y, z) ∧ si(x, y′, z′) ∧ succi(y, y′)→ succi+1(z, z′)
si(x, y, z) ∧ si(x′, y′, z′) ∧

maxi(y) ∧ mini(y′) ∧ succi(x, x′)→ succi+1(z, z′)
mini(x) ∧ si(x, x, y)→ mini+1(y)
maxi(x) ∧ si(x, x, y)→ maxi+1(y)

succk(x, y)→ succt(x, y)
succt(x, y) ∧ succt(y, z)→ succt(x, z)

The definition of Σ tape
M,w is completed by the following rules:

succk(x, y)→ succt(x, y)
succt(x, y) ∧ succt(y, z)→ succt(x, z)

We find that this rule set projectively characterises a doubly-exponential chain: Every
model I of Σ tape

M,w contains 2(2k) (not necessarily distinct) elements {d1, . . . d2(2k) } ∈ rIk

(1) Initialisation (with w = α0 . . . αn):
mink(x0) ∧

∧
0≤i≤n

succk(xi, xi+1)→ stateq0 (init) ∧
∧

0≤i≤n

symbolαi
(init, xi) ∧ symbol�(init, xn+1)

symbol�(init, x) ∧ succk(x, y)→ symbol�(init, y)

(2) Left and right transition rules (for δr = 〈q, α, q′, α′, r〉 and δl = 〈q, α, q′, α′, l〉):
stateq(v) ∧ head(v, x) ∧ symbolα(v, x) ∧ succk(x, y)
→ ∃v′. nextδr (v, v

′) ∧ stateq′ (v′) ∧ head(v′, y) ∧ symbolα′ (v
′, x)

stateq(v) ∧ head(v, x) ∧ symbolα(v, x) ∧ succk(y, x)
→ ∃v′. nextδl (v, v

′) ∧ stateq′ (v′) ∧ head(v′, y) ∧ symbolα′ (v
′, x)

(3) Inertia:
nextδ(v, v′) ∧ head(v, x) ∧ succt(x, y) ∧ symbolα(v, y)→ symbolα(v′, y)
nextδ(v, v′) ∧ head(v, x) ∧ succt(y, x) ∧ symbolα(v, y)→ symbolα(v′, y)

(4) Existential Acceptance (for q ∈ E):
stateq(v) ∧ nextδ(v, v′) ∧ accept(v′)→ accept(v)

(5) Universal Acceptance (for q ∈ U, ∆̃ = {〈q, α, q′, α′, d〉 ∈ ∆ | d ∈ {l, r}}):
stateq(v) ∧ head(v, x) ∧ symbolα(v, x) ∧

∧
δ∈∆̃

(nextδ
(
v, vδ) ∧ accept(vδ)

)
→ accept(v)

Rules are instantiated for all q, q′ ∈Q, α, α′ ∈A , and δ ∈ ∆.

Fig. 1. Rule set Σexec
M,w simulating initialisation and execution on an ATM

such that 〈d j, d j+1〉 ∈ succk
I, and 〈d j, d j′〉 ∈ succtI for all 1 ≤ j < j′ ≤ 2(2k), as well as

d1 ∈ minIk and d2(2k) ∈ maxIk . Conversely, every set with interpretations for succk, succt,
mink, and maxk with these properties can be turned into a model of Σ tape

M,w by choosing
appropriate interpretations for the remaining predicates. This allows to use Σ tape

M,w as a
specification of the doubly exponentially many tape cells needed for encoding the ATM.

Beyond tape cells, additional elements of an interpretation domain of ΣM,w repre-
sent configurations ofM that are described using further signature symbols:

– init: constant for the initial configuration of the ATM,
– stateq(v) for q ∈ Q: in the configuration v, the ATM is in state q,
– head(v, x) : in the configuration v, the ATM is located at the tape cell x,
– symbolα(v, x) with α ∈ A : in configuration v, tape cell x contains symbol α,
– accept(v): the ATM accepts configuration v.

Furthermore, for every δ ∈ ∆ we use nextδ(x, y) to indicate that configuration x is
changed to configuration y by the transition δ.

Consider the rule base ΣM,w = Σ
tape
M,w ∪ Σ

exec
M,w with Σexec

M,w as given in Fig. 1. It can
be easily checked that it is glut-guarded, where the only glut variables are v, v′, and vδ
which represent ATM configurations. In particular, the predicates in Σ tape

M,w do not occur
in rule heads of Σexec

M,w, and there are no cycles in the existential dependency graph of
Σ

tape
M,w. Indeed, tape positions are encoded using the exponential effects (Theorem 4) of

expanding non-glut variables, while ATM configurations are encoded using glut vari-
ables that are guarded.

Moreover, Σexec
M,w realises the behaviour of the described ATM. As a peculiarity, note

that acceptance is propagated backwards from the final accepting configurations. Inertia
rules are used to copy the content of unchanged tape positions from one configuration
to the next. We will show that checking whether the initial configuration is accepting is
equivalent to checking whether the fact accept(init) is a consequence of ΣM,w.

We need to investigate the relationship between elements of an interpretation that
satisfies ΣM,w and configurations of M. Given an interpretation I of ΣM,w, we say
that an element e of the domain of I represents a configuration α1 . . . αi−1qαi . . . αm if
e ∈ stateIq , 〈e, di〉 ∈ headI, and, for every j ∈ {1, . . . , 2(2k)}, 〈e, d j〉 ∈ symbolIα whenever
(i) j ≤ m and α = αm, or (ii) j > m and α = �.

Given some model I of ΣM,w, we will now show that if some element e of I rep-
resents a configuration θ and some transition δ is applicable to θ, then there exists a
domain element e′ with 〈e, e′〉 ∈ nextIδ that represents the result of applying δ to θ. To
see this consider an element e, configuration θ, and transition δ as in the claim. Then
one of the axioms (2) applies, and e must also have an according successor e′. This
successor represents the correct state, head position, and symbol at head position i of e,
again by the axioms (2). By axioms (3), symbols at all other positions are also correctly
transferred from e to e′.

We can now show that a word w is accepted byM iff accept(init) is a consequence
of ΣM,w.

We first show that for an arbitrary model I of ΣM,w, any element e of I that repre-
sents an accepting configuration θ satisfies e ∈ acceptI.

We use an inductive argument along the recursive definition of acceptance. If θ is
a universal configuration then all successors of θ are accepting, too. By our previous
argument, for any δ-successor θ′ of θ there is a corresponding e′ with with 〈e, e′〉 ∈
nextIδ . By the induction hypothesis for θ′, e′ is in acceptI. Since this holds for all δ-
successors of θ, axiom (5) implies e ∈ acceptI. Especially, this argument covers the
base case where θ has no successors.

If θ is an existential configuration, then there is some accepting δ-successor θ′ of θ.
Again by the previous argument, we have 〈e, e′〉 ∈ nextIδ for an e′ that represents θ′, and
e′ ∈ acceptI by the induction hypothesis. Hence axiom (4) applies and also concludes
e ∈ acceptI.

Since initI represents the initial configuration of the ATM due to rules (1), this
shows that initI ∈ acceptI whenever the initial configuration is accepting.

It remains to show the converse: if the initial configuration is not accepting, there
is some interpretation I such that aI < acceptI. To this end, we define a canoni-
cal interpretation K of ΣM,w as follows. The domain of K is the union of one set
Dcells = {d1, . . . , d2(2k) } encoding the 2(2k) tape cells of M and another set Dconf con-
taining configurations of M that have size 2(2k) + 1 (i.e. that encode a tape of length
2(2k), possibly with trailing blanks). The predicates from Σ

tape
M,w are interpreted such that

〈d j, d j+1〉 ∈ succk
I and 〈d j, d j′〉 ∈ succtI for all j, j′ ∈ {1, . . . , 2(2k)} with j < j′ as well

as minIk = {d1} and maxIk = {d2(2k) }; the other predicates are chosen such that all rules
from Σ

tape
M,w are satisfied as discussed above. The interpretations for the predicates stateq,

head, and symbolα are defined as expected so that every configuration represents itself

but no other configuration. Especially, initK is the initial configuration. Given two con-
figurations θ and θ′, and a transition δ, we define 〈θ, θ′〉 ∈ nextKδ iff there is a transition
δ from θ to θ′. Finally, acceptK is defined to be the set of accepting configurations.

By checking the individual axioms of Fig. 1, it is easy to see that K also satisfies
Σexec
M,w. Now if the initial configuration is not accepting, initK < acceptK by construction.

Thus K is a counterexample for accept(init) which thus is not a logical consequence.
ut

7 Conclusion

We have extended the notions of weak acyclicity and weak (frontier-)guardedness, in-
troduced a versatile new method for eliminating existential quantifiers, and applied
these insights to define glut-frontier-guarded rules as one of the most expressive known
existential rule languages for which query answering is decidable. Yet, a wide range of
open issues still needs to be tackled for developing both the foundations of the field and
applications to use these novel approaches.

Some immediate questions raised by this work concern the query complexity for
fixed non-ground rules (data complexity) or for fixed signatures (bounded arity). A
concurrent anonymous submission to this conference addresses these issues for previ-
ously defined rule languages, and it will be interesting to lift the respective methods to
our cases.

More generally, further efforts are needed to continue the consolidation of rule lan-
guages that was started herein. To this end, modular reduction techniques for simplify-
ing rule sets can be of great utility for advancing towards a unified theory of decidable
existential rules.

References

[Andréka et al., 1998] Hajnal Andréka, István Németi, and Johan van Benthem. Modal lan-
guages and bounded fragments of predicate logic. J. of Philosophical Logic, 27(3):217–274,
1998.

[Baget et al., 2009] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Sal-
vat. Extending decidable cases for rules with existential variables. In Craig Boutilier, editor,
Proc. 21st Int. Conf. on Artificial Intelligence (IJCAI’09), pages 677–682. IJCAI, 2009.

[Baget et al., 2010] Jean-François Baget, Michel Leclère, and Marie-Laure Mugnier. Walking
the decidability line for rules with existential variables. In Fangzhen Lin, Ulrike Sattler, and
Miroslaw Truszczynski, editors, Proc. 12th Int. Conf. on Principles of Knowledge Representa-
tion and Reasoning (KR’10), pages 466–476. AAAI Press, 2010.

[Baget et al., 2011] Jean-François Baget, Marie-Laure Mugnier, Sebastian Rudolph, and
Michaël Thomazo. Walking the complexity lines for generalized guarded existential rules.
In Toby Walsh, editor, Proc. 22nd Int. Conf. on Artificial Intelligence (IJCAI’11). IJCAI, 2011.

[Bárány et al., 2010] Vince Bárány, Georg Gottlob, and Martin Otto. Querying the guarded frag-
ment. In Proc. 25th Annual IEEE Symposium on Logic in Computer Science (LICS’10), pages
1–10. IEEE Computer Society, 2010.

[Beeri and Vardi, 1981] Catriel Beeri and Moshe Y. Vardi. The implication problem for data
dependencies. In Shimon Even and Oded Kariv, editors, Proc. 8th Colloquium on Automata,
Languages and Programming (ICALP’81), volume 115 of LNCS, pages 73–85. Springer, 1981.

[Calì et al., 2008] Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the infinite chase:
Query answering under expressive relational constraints. In Gerhard Brewka and Jérôme
Lang, editors, Proc. 11th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’08), pages 70–80. AAAI Press, 2008.

[Calì et al., 2009] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. A general datalog-
based framework for tractable query answering over ontologies. In Jan Paredaens and Jianwen
Su, editors, Proc. 28th Symposium on Principles of Database Systems (PODS’09), pages 77–
86. ACM, 2009.

[Calì et al., 2010a] Andrea Calì, Georg Gottlob, and Andreas Pieris. Advanced processing for
ontological queries. Proceedings of VLDB 2010, 3(1):554–565, 2010.

[Calì et al., 2010b] Andrea Calì, Georg Gottlob, and Andreas Pieris. Query answering under
non-guarded rules in Datalog+/-. In Pascal Hitzler and Thomas Lukasiewicz, editors, Proc. 4th
Int. Conf. on Web Reasoning and Rule Systems (RR 2010), volume 6333 of LNCS, pages 1–17.
Springer, 2010.

[Calvanese et al., 2007] Diego Calvanese, Guiseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Tractable reasoning and efficient query answering in descrip-
tion logics: The DL-Lite family. J. of Automated Reasoning, 39(3):385–429, 2007.

[Chandra et al., 1981a] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alterna-
tion. J. of the ACM, 28(1):114–133, 1981.

[Chandra et al., 1981b] Ashok K. Chandra, Harry R. Lewis, and Johann A. Makowsky. Em-
bedded implicational dependencies and their inference problem. In Proc. 13th Annual ACM
Symposium on Theory of Computation (STOC’81), pages 342–354. ACM, 1981.

[Courcelle, 1990] Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable
sets of finite graphs. Information and Computation, 85(1):12–75, 1990.

[Deutsch and Tannen, 2003] Alin Deutsch and Val Tannen. Reformulation of XML queries and
constraints. In Diego Calvanese, Maurizio Lenzerini, and Rajeev Motwani, editors, Proc. 9th
Int. Conf. on Database Theory (ICDT’03), volume 2572 of LNCS, pages 225–241. Springer,
2003.

[Fagin et al., 2005] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data
exchange: semantics and query answering. Theoretical Computer Science, 336(1):89–124,
2005.

[Johnson and Klug, 1982] David S. Johnson and Anthony Klug. Testing containment of con-
junctive queries under functional and inclusion dependencies. In Proc. 1st Symposium on Prin-
ciples of Database Systems (PODS’82), pages 164–169. ACM, 1982.

[Maier et al., 1979] David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. Testing implica-
tions of data dependencies. ACM Transactions on Database Systems, 4:455–469, 1979.

[Patel-Schneider and Horrocks, 2007] Peter F. Patel-Schneider and Ian Horrocks. A comparison
of two modelling paradigms in the Semantic Web. J. of Web Semantics, 5:240–250, 2007.

