Deep Integration of Scripting Languages
and Semantic Web Technologies

Denny Vrandeci¢

Institute ATFB, University of Karlsruhe, Germany
denny@aifb.uni-karlsruhe.de

Abstract. Python reached out to a wide and diverse audience in the
last few years. During its evolution it combined a number of different
paradigms under its hood: imperative, object-oriented, functional, list-
oriented, even aspect-oriented programming paradigms are allowed, but
still remain true to the Python way of programming, thus retaining sim-
plicity, readability and fun.

OWL is a knowledge representation language for the definition of ontolo-
gies, standardised by the W3C. It reaps upon the power of Description
Logics and allows both the definition of concepts and their interrelations
as well as the description of instances. Being created as part of the noto-
riously known Semantic Web language stack, its dynamics and openness
lends naturally to the ever evolving Python language.

We will sketch the idea of an integration of OWL and Python, but not
by simply suggesting an OWL library, but rather by introducing and
motivating the benefits a really deep integration offers, how it can change
programming, and make it even more fun.

1 Introduction

One of the main motivations behind the design of Python was to make everyone
a programmer [5]. The language tries not to encumber the user with unnecessary
choices and strives to keep simple things simple. Python programs are known
for their readability and ease of maintenance.

The extension of Python suggested in this paper is not one of yet another
library, but rather of how Python — or any other dynamic typed language — can
gain from the possibilities offered by the Web Ontology Language OWL [4].

We will lay special emphasize on describing the basic notions of the suggested
deep integration of Python and OWL, highlighting two exemplary advantages —
the idea of Intensional Sets and how language independence can be gained from
following the suggested approach — but we also take a look at the disadvantages
and problems associated with it. In the outlook we will provide a small glance
at a possible future, where even more people than today are able to customise
and integrate their applications and programs at a much finer grained level.

The basic idea is to let OWL and Python live at the same level. Thus, instead
of providing a library able to deal with OWL, we instead suggest how to extend
Python naturally, remaining true to the pythonesque idioms but nevertheless

gaining all possibilities of Description Logics, actually extending Python by yet
another programming paradigm, the logic programming paradigm. We will con-
trast the standard way of designing an OWL API with the deeply integrated
one we suggest.

2 Logic Programming Paradigm

In the 1970s, research in Artificial Intelligence led to the development of the pro-
gramming language Prolog [2]. Prolog differs fundamentally from then usually
used imperative programming languages, because instead of writing the algo-
rithm of how to solve a problem, the problem and its domain are declaratively
described and then the run time engine is asked to solve it. This is called the
logic programming paradigm. Prolog programs may be considered knowledge
bases described in a subset of First Order Logics.

W3C’s OWL is based on Description Logics [1], another subset of First Order
Logic, widely (but not completely) intersecting logic programs. The point is,
that one may declaratively describe the problem domain and data in OWL,
using powerful ontologies, created by graphical tools like KAON!, Protégé?,
WebODE? or SWOOP* to represent knowledge.

This paper will suggest a deep integration of logics into a standard scripting
language, Python, which already is a multi-paradigm language, enabling the
user, among others, to use imperative, functional, object- and aspect-oriented
techniques. By adding a further paradigm we allow the user to exactly use the
tools which fit best to a given part of the problem.

3 Intensional Sets

Instead of loading an ontology, the notion of importing one leads to a different

association for the programmer. The difference may be regarded as pedantic or

subtle, but it is an important one: the programmer, instead of regarding the

ontology as mere data she has to load and access via an API, the imported

ontology behaves like a library, extending her possibilities like only code does.
Let us take a look at the following OWL fragment:

<owl:Class rdf:ID="Person">
<rdfs:subClass0f rdf:resource="&philo;Mortal" />
</owl:Class>
<philo:Person rdf:ID="Plato" />
<philo:Mortal rdf:ID="Socrates" />

! http://kaon.semanticweb.org

2 http://protege.stanford.edu/

3 http://webode.dia.fi.upm.es/WebODEWeb/index.html
* http://www.mindswap.org/2004/SWOOP

It states, that Person is a subclass of Mortal, that Plato is a Person and
Socrates a Mortal. Importing this OWL fragment into our Python program,
we are able to write:

from example import *
for anyone in Mortal: process(anyone)

Instead of mapping OWL classes to Python classes, we map them to inten-
sional sets. Intensional sets are sets that are not defined by individual assertions
of membership for all elements, but instead are described with OWL DL’s con-
struct and then, according to this description, encompass all fitting instances.

In our example we would not process only Socrates, but also Plato, who,
as a Person, is a Mortal as well. For simple taxonomic relations like this one the
point seems trivial. But with OWL DL one may construct much more complex
classes, like the class of all instances that are human and have a mother who
is a teacher, or all known instances that are not instances of the class of birds.
DL classes may be used as queries over the known data, and the intensional sets
allow for a very pythonesque, and thus easy, use of these.

The example could also be solved in a number of more traditional ways:

1. A classic OWL library would allow the loading and querying of ontologies.

ontology = load(example)

Mortal = ontology.getConcept("philo:Mortal")
mortals = ontology.getInstancesOf (Mortal)
for anyone in mortals: process(anyone)

Mortal is an object that represents the OWL Class philo:Mortal, mortals
is the result set of the query getInstaces0f (Mortal) against the ontology.

2. A standard approach to mapping OWL and Python would be mapping
OWL classes to Python classes. This would lead to different results:

ontology = load(example)
mortals = ontology.getInstances0f (Mortal)
for anyone in mortals: process(anyone)

The loading of the ontology will build Python classes out of the OWL classes
described in the ontology (like Mortal), thus allowing the use of these classes and
easy creation of new instances (aristotle = new Mortal()). The query in the
second line translates to the same query as in alternative 1, but uses reflection
(which is no problem, as classes are objects in Python).

This is not about the amount of code — the difference is much deeper: it is
about the different approaches toward the integration of scripting languages and
description logics. One can either add the OWL functionality as a library and
use it via its interface, or deeply integrate it into the idioms of the scripting
language and use the power of description logics transparently.

Intensional sets are a more natural mapping of OWL classes than Python
classes or API calls could provide, as OWL’s formal semantics is defined on a

set theoretical foundation. Adding instances to a set is as easy as adding further
individuals to the specified set, making it a proper instance of this OWL class
with all the implications that follow.

Naturally one can already achieve all functionality described in this chapter
with a careful combination of filters, reflection and merged sets, but instead of
using this rather complicated constructions we simply allow the user to choose
OWL for the description of his data, enabling the user to take the best tool and
language for a specific task: a scripting language for scripting processes and a
description logic language for descriptions.

4 Language Independence of Data

The separation of declarative and procedural parts of software into two parts ex-
pressed by two different languages, specifically designed to solve their respective
tasks, reaps yet another strong benefit: the data of the program is automatically
available for different programming languages, tools and systems.

Whereas it is out of scope for this paper to describe the ideas of how to
integrate description logics with other languages like Ruby, PHP or Perl, such
integration should be possible in an analogue way. This ultimately leads to one
of the visions of the Semantic Web becoming reality: the data becomes free and
interoperable, and can be used within several frameworks without importers or
converters. The programmer is able to set up the program domain declaratively,
even using graphical ontology editors, and import them into a program without
any further work. Knowledge bases from heterogeneous sources can be integrated
with tools like OntoMap or frameworks like FOAM?®. All this can be done by the
non-expert users, provided the tools are easy enough to use. It certainly takes a
less technical skilled user than it would take for changing a program.

This is one of the main selling points of the Semantic Web, which would
be available to the programmer immediately by using languages enhanced the
way described here. Again all this benefits would be also available by mere
libraries who offer OWL functionality, but the deep integration leads to a much
lower learning effort, as most of the idioms are already used within the language
anyway. Just providing an OWL API would lead to a higher exposure of the
internal and technical details of OWL and the Semantic Web language stack
than necessary.

5 Drawbacks

A number of problems arise from the fundamental choices made for OWL. Those
are necessary in the context of the Semantic Web, but do not seem to fit well
within the context of a programming language.

The lack of the Unique Name Assumption in OWL is not one of them. This
means that individuals are not necessarily different because they have different

5 http://www.aifb.uni-karlsruhe.de/WBS/meh/foam

names. Although this idea seems hard to grasp for some modellers when building
ontologies, programmers actually are used to calling one instance of an object
with more than one variable name anyway. Equality is a relation that is tested
explicitly, so this, maybe surprisingly, is no problem at all.

A real problem on the other hand is the Open World Assumption. This forces
us to assume not to know everything: just because something is not stated does
not mean it does not hold. Taking the above mentioned example, we know that
Socrates is a Mortal, but it is not stated explicitly that he is not a Person as
well.

This may lead to problems:

if Socrates in Person: print ’Socrates is a person.’
else: print ’Socrates is not a person.’

Socrates in Person will evaluate to False, thus OWL semantics do not
agree with the Python semantics here. The result should not be that Socrates
is not a Person, but that it is not known. This does not map easily on the
true/false dichotomy of boolean logics as implemented in programming language
semantics.

Probably the most natural mapping would be to implicitly use an epistemic
operator when using intensional sets. Thus sets include all known instances of a
concept. The example would be correctly implemented in the following way:

if Socrates in Person: print ’Socrates is a person.’
else: if Socrates in NotPerson: print ’Socrates is not a person.’
else: print ’I do not know if Socrates is a person.’

For this we need another intensional set, NotPerson, defined in the OWL file as
the complement of Person.

The most obvious disadvantage of combining two languages so deeply is that
you have to learn them both. Python aims at a wide audience, being easy to learn
for beginners and experts in programming. OWL on the other hand is rather
an experts language. RDF /XML-Serialisation [3] did obviously not have easy
readability and editability with simple text editors in mind. But there already
exist numerous tools for the graphical and easy editing of OWL ontologies, either
build on existing knowledge engineering tools, like KAON or Protégé, or build
from the ground up for editing OWL ontologies, like SWOOP.

Still, those tools are often aiming at the expert knowledge engineer or do
not pass industrial strength quality assurance. Hacking OWL ontologies with a
simple text editor or with dedicated XML or even RDF editors can easily lead
to hard to debug syntactical errors, thus learning a lot of the fundamentals of
the lower levels of the Semantic Web language stack is often still a crucial skill.

We expect that with the effort of the community and the growth of interest
in the industrial area new and easy to use ontology editors will start to appear
more frequently. The integration described in this paper will immediately benefit
from such advancement, allowing programmers to automatically supply editors
for large amounts of the data for their programs, without having to write them
explicitly.

But description logics, as well as logic in general, do need some training,
and if users of different abilities in this field work together on some set of data,
understanding the more complicated constructs of description logics may become
challenging.

6 Outlook

This paper presented a proposal for a different approach to the combination of a
scripting language — Python was chosen exemplary, but the arguments are valid
for others as well — with description logics, represented by the Web Ontology
Language OWL. As both Python and OWL are powerful and complex languages
there are still tons of open questions, that could not be covered here:

— How to construct new intensional sets in Python? Or should we at all?

— Which approach to naming the intensional classes and the instances will be
best? How to deal with namespaces? How to manage different ontologies?

— How will changes to the ontology be propagated? How can I save new on-
tologies with the new entities created programmatically?

— How to represent roles? What about concrete domains?

— What kind of semantics will be taken into account for the equality test of
intensional sets? Python semantics default to extensional tests — but maybe
intensional equivalence is more appropriate?

— How to combine these ideas with query languages? Would they also be rep-
resentable as intensional sets?

The biggest task of all is the actual implementation. With this paper we
describe our vision of the integration of OWL and Python. We want to start a
discussion within the community: do these ideas make sense, how should they be
changed, or maybe even abandoned? How to solve the still open issues? Is there
a base of interested developers and users? Finally, a stable and strong picture of
how the integration will look like will emerge, leading to a new paradigm within
the Python language, enabling more users to contribute to projects, and finally,
making programming even more fun.

References

1. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The description logic handbook: theory, implementation, and applications.
Cambridge University Press, New York, NY, USA, 2003.

2. J. Cohen. A view of the origins and development of prolog. Commun. ACM,
31(1):26-36, 1988.

3. M. Dean and G. Schreiber. OWL Web Ontology Language Reference, 2004. W3C
Recommendation 10 February 2004, available at http://www.w3.org/TR /owl-ref/.

4. M. K. Smith, C. Welty, and D. McGuinness. @~ OWL Web Ontology Lan-
guage Guide, 2004. W3C Recommendation 10 February 2004, available at
http://www.w3.org/ TR /owl-guide/.

5. G. van Rossum. Computer programming for everybody. Technical report, Corpo-
ration for National Research Initiatives, 1999.

