
A Model Driven Approach for Building OWL
DL and OWL Full Ontologies

Saartje Brockmans1, Robert M. Colomb2, Elisa F. Kendall3, Evan K. Wallace4,
Chris Welty5, Guo Tong Xie6

1 AIFB, Universität Karlsruhe (TH), Germany
2 School of Information Technology and Electrical Engineering, The University of

Queensland, Australia
3 Sandpiper Software, Inc., Los Altos, California

4 US National Institute of Standards and Technology, Gaithersburg, Maryland
5 IBM Watson Research Center, New York

6 IBM China Research Lab, China

Abstract. This paper presents an approach for visually modeling OWL
DL and OWL Full ontologies based on the well-established visual mod-
eling language UML. We discuss a metamodel for OWL based on the
Meta-Object Facility, an associated UML profile as visual syntax, and
transformations between both. The work we present supports model-
driven development of OWL ontologies and is currently undergoing the
standardization process of the Object Management Group. After describ-
ing our approach, we present the implementation of our approach and
an example, showing how the metamodel and UML profile can be used
to improve developing Semantic Web applications.

1 Introduction

The standardization of the Web Ontology Language (OWL, [9]) by the World
Wide Web Consortium (W3C) contributed heavily to the wide-spread use of on-
tologies. In 2003, the Object Management Group (OMG), a standardization con-
sortium for various aspects of software engineering including the well-established
Unified Modeling Language (UML, [25]), replied to this by issuing a Request for
Proposal for an Ontology Definition Metamodel (ODM, [19]). The intention was
to provide a Meta-Object Facility (MOF, [24]) metamodel to support the devel-
opment of ontologies using UML modeling tools and the two-way transformation
between ontologies written in a specific ontology representation language and on-
tologies modeled using a dedicated UML syntax. Since, a submission team works
on a submission (see [7] for a concise overview) which has undergone already sev-
eral revisions, based on comments solicited not only from the OMG but from
the W3C, ISO and Semantic Web communities as well.

The ODM submission supports the knowledge representation languages OWL
[9], RDF [1], Common Logic [16] and Topic Maps [15]. The modular structure
from MOF makes it straightforward for third parties to extend and enhance the
standard.

This paper focuses on the OWL part of the ODM. It supports model-driven
development of OWL DL as well as OWL Full ontologies using UML and two-
way transformations between ontologies modeled in OWL and ontologies mod-
eled using the UML profile. We have not explicitly covered OWL Lite, but all
constructs and many relevant constraints are provided in the base OWL and
OWL DL packages. The paper starts with an introduction of the Model Driven
Architecture and its Meta-Object Facility, and UML profiles in Section 2. Then,
the metamodel for OWL, the associated UML profile and the transformations
between the different models are described in Section 3. Section 4 shows the im-
plementation of our approach and an example. Finally, after discussing related
work in Section 5, we conclude by summarizing our work and addressing future
investigations in Section 6.

2 Background

2.1 Model Driven Architecture and the Meta-Object Facility

Before presenting the model-driven approach to ontology engineering in the next
sections, we summarize the Object Management Group’s Model Driven Archi-
tecture (MDA, [5]) and its Meta-Object Facility (MOF, [24]), which is one of
the main pillars of our approach.

In the history of software engineering, there has been a notable increase of
the use of models and the level of abstraction in the models. The basic idea
of MDA is that the system functionality is defined as a platform-independent
model, using an appropriate specification language and then translated to one or
more platform-specific models for the actual implementation. To accomplish this
goal, the MDA defines an architecture that provides a set of guidelines for struc-
turing specifications expressed as models. The translation between platform-
independent model and platform-specific models is normally performed using
automated tools.

MDA comprises of a four-layer metamodel architecture: meta-metamodel
(M3) layer, metamodel (M2) layer, model (M1) layer, and instance (M0) layer.
On the top of the MDA architecture is the meta-metamodel, i.e., MOF. It defines
an abstract language and framework for specifying, constructing and managing
technology neutral metamodels. It is the foundation for defining any model-
ing language such as UML. MOF also defines a framework for implementing
repositories that hold metadata (models) described by metamodels. The main
objective of having the four layers with a common meta-metamodel is to support
multiple metamodels and models and to enable their extensibility, integration
and generic model and metamodel management. Note that the meta-metamodel
layer is hard wired in the sense that it is fixed, while the layer of the metamodels
is flexible and allows to express various metamodels. All metamodels, standard
or custom, defined by MOF are positioned on the M2 layer. One of these is UML,
a graphical modeling language for specifying, visualizing and documenting soft-
ware systems. The models of the real world, represented by concepts defined in

the corresponding metamodel at M2 layer (e.g., UML metamodel) are on M1
layer. Finally, at M0 layer, are objects from the real world.

A MOF-based metamodel has clear advantages being based on a standard
metametamodelling system with a well-developed suite of software tools and with
integrated transformation possibilities with other MOF-based metamodels.[12]

2.2 UML Profiles

UML methodology, tools and technology seem to be a feasible approach for sup-
porting the development and maintenance of ontologies. The UML class diagram
is a rich representation system, widely used, and well-supported with software
tools. However, an ontology cannot be sufficiently represented in UML [13] and
a dedicated visual ontology modeling language is needed. The two representa-
tions share a set of core functionalities but despite this overlap, there are many
features which can only be expressed in OWL, and others which can only be
expressed in UML. Examples for this disjointness are transitive and symmetric
properties in OWL or methods in UML.

The UML profile mechanism is an extension mechanism to tailor UML to
specific application areas. UML profiles provide specilizations, using stereotypes,
of existing UML constructs. They are grounded in MOF, in that they are defined
in terms of the MOF metametamodel. Moreover, they are based on the UML
Kernel package and the Profiles section defined in [22].

3 Approach

In this Section, we present a MOF-based metamodel for OWL DL and OWL Full
ontologies. OWL ontologies instantiate this metamodel. OWL constructs have
a direct correspondence with those of the metamodel. Analogously, we define
a MOF-based UML profile, which is instantiated by concrete UML models, to
enable the use of UML notation and tools for ontology modeling. Within the
MOF framework, the UML models are transformed into OWL definitions and
vice versa. Section 3.3 specifies feasible mappings on which these transformations
are based.

3.1 A Metamodel for OWL DL and OWL Full

Overview and Design Considerations As mentioned in Section 1, although
we focus on OWL in this paper, the ODM submisson at OMG provides metamod-
els for several knowledge representation languages. All these are independent of
each other, except the OWL metamodel which extens the metamodel for RDFS,
as the OWL language itself extends the RDF language. The metamodel for OWL
specifically, contains three packages. First of all, the primary OWLBase package
contains the metamodel constructs common to both OWL DL and OWL Full -
corresponding to the abstract syntax elements of the Web Ontology Language.
Two additional subpackages, the OWLDL package and the OWLFull package,

contain constraints required to distinguish the two dialects OWL DL and OWL
Full from one another. Users can elect to support the primary package and ei-
ther or both of the subordinate packages in order to have complete coverage
of either or both dialects of OWL. All metamodel packages are provided with
constraints in the Object Constraint Language (OCL, [21]). These expressions
specify invariant conditions that must hold for the ontologies being modeled. For
the constraints on the metamodel, we refer the user to [14].

In the metamodel, prefixes are used in naming classes and properties that
directly represent OWL classes and OWL properties, respectively. For example,
OWLClass represents owl:Class and OWLimports represents owl:imports. Individ-
ual, which does not have a prefix, represents something which is not explicitly
defined in the RDF/XML serialization of OWL. Exceptions to this convention in-
clude OWLUniverse, OWLGraph and OWLStatement, included for use in map-
ping RDF graphs and/or statements to OWL, for mapping to other metamodels,
and so forth.

An issue for instance specification arose with the MOF specification, as ex-
plained more detailed in Section 6.1 of [14]. We expect this problem to be ad-
dressed in future revisions of MOF. As a result, the normative metamodels we
represent here presume support in MOF for multiple classification. Appendix F
of [14] includes work-arounds for the issues we have uncovered related to this
problem for now.

We now go through the different parts of the OWLBase metamodel package,
and show some of the diagrams. Subsequently, we introduce the OWLDL and
OWLFull packages.

Fig. 1. The Ontology Diagram

OWLBase Package - OWL Ontology The RDF metamodel represents an
RDFStatement as a triple, containing subject, predicate and object whereas an
RDFGraph is a set of triples (RDFStatements). As shown in Figure 1, the OWLGraph
class specifies the subset of RDF graphs that are valid OWL graphs, consisting
of all OWL expressions. Similarly, the subset of RDF statements that are valid
OWL statements is reflected by the OWLStatement class. These are only the
case for OWL DL and not for OWL Full but we introduced these specializations
since our OWLBase package should cover both OWL dialects DL and Full. The
ontology ID which allows us to make statements about a particular ontology,
is represented in the form of the URI reference it has by virtue of being an
RDFSResource.

OWLBase Package - Class Descriptions The metamodel has a class
OWLClass for simple OWL class definitions defined as a special type of
RDFSClass. Moreover, it has subclasses which represent special types of OWL
class descriptions: ComplementClass, EnumeratedClass, IntersectionClass,
OWLRestriction and UnionClass. An EnumeratedClass is connected to
Individuals through an association role OWLoneOf. Associatons between
the classes define the classes in the class descriptions, e.g. the associa-
tion IntersectionClassForIntersection between IntersectionClass and
OWLClass connects the classes of an intersection. Associations EquivalentClass
and DisjointClass represent the OWL class axioms, e.g. EquivalentClass
connects a class to another class which is defined to be equivalent.

The class OWLRestriction is defined as a subclass of OWLClass. OWL dis-
tinguishes two kinds of property restrictions: value constraints and cardinality
constraints. All OWL property restriction types are defined as subclasses of
the class OWLRestriction. A restriction class should have exactly one property
OWLonProperty linking the restriction to a particular property. The restriction
class must also have a property that represents the value or cardinality constraint
on the property under consideration.

OWLBase Package - Properties As shown in Figure 2, the OWL meta-
model refines the RDFProperty class to support specific OWL properties. Both
object properties and datatype properties can be declared as ”functional”. For
this purpose, we define the class FunctionalProperty as a special subclass
of the class Property. Property is an abstract class that simplifies repre-
sentation of property equivalence and deprecation, simplifies constraints for
OWL DL and OWL Full, and facilitates mappings with other metamodels.
The class InverseFunctionalProperty is a subclass of OWLObjectProperty,
since only object properties can be declared to be inverse functional. A prop-
erty is defined as symmetric or transitive by making it an instance of the
class SymmetricProperty respectively TransitiveProperty, both defined as
subclasses of OWLObjectProperty. The property axioms for property char-
acterization are provided through the associations EquivalentProperty and
InverseProperty.

Fig. 2. The OWL Properties Diagram

OWLBase Package - Individuals Individuals are represented in a sub-
class Individual of the class RDFSResource. OWL does not make the so-
called unique name assumption. For the statements that two individuals are
different or the same, the ODM has two associations DifferentIndividual
and SameIndividual connected to the class Individual. The OWL con-
struct owl:AllDifferent is represented by a subclass of OWLClass, the class
OWLAllDifferent, for which the property DistinctIndividuals is defined to
link an instance of OWLAllDifferent to a list of Individuals.

OWLBase Package - Datatypes OWL makes use of the RDF datatyping
scheme and provides an additional construct, OWLDataRange, for defining a range
of data values, namely an enumerated datatype. It makes use of the owl:oneOf
construct. The subject of OWLoneOf is an anonymous node of class OWLDataRange
and the object is a list of RDFSLiterals.

OWLBase Package - OWL Universe In Figure 3, we provide the part of
the metamodel which facilitates ontology traversal for mapping purposes as well
as utility in defining constraints for distinguishing OWL DL and OWL Full. The
class OWLUniverse is intended to simplify packaging/mapping requirements for
cases where the ability to determine the set of classes, individuals, and properties
that together comprise a particular OWL ontology is required.

There is a significant impedance mismatch between the MOF and
RDFS/OWL. For example, our diagrams do not show that the metaclass
Individual is itself an instance of OWLClass, and further that every instance
of OWLClass participates in the RDFSsubclassOf association with the instance
owl:Thing. In the MOF there is a strict separation of metalevels, so that the
MOF Class model shows only the metaclasses and meta-associations, but no
instances. With RDFS and OWL, these levels are mixed. For the specification

Fig. 3. The OWL Universe Diagram

of some additional characteristics of Individual and RestrictionClass using
RDF triples, we refer the reader to Chapter 11 of [14].

OWLDL and OWLFull Package - Constraints for OWL DL and OWL
Full Conformance The OWLBase package we just described supports the
constructs common to both OWL DL and OWL Full. We provide two additional
subpackages to distinguish between the two dialects. Both consist of constraints
on the OWLBase package. Users can use either or both of the subpackages
together with the OWLBase package, depending on whether they want to
work with OWL DL or OWL Full. For a complete listing of OWLDL and the
OWLFull package (in OCL syntax), we refer the reader to Sections 11.8 and
11.9 of [14]. An extract of them is given here.

Some of the constraints in the OWLDL package are:

– The set of classes, datatypes, datatype properties, object properties, anno-
tation properties, ontology properties, individuals, data values, and other
built-in vocabulary are pairwise disjoint.

– All classes and properties must be explicitly typed as class respectively prop-
erties.

– Axioms about individual equality and difference must be about named indi-
viduals only (a consequence of category separation).

Some of the constraints which specialize the OWLBase package for OWLFull
include:

– Lack of disjointness between classes and individuals – which allows for vari-
ation in the role that a particular concept plays given different perspectives
within the same or a group of ontologies.

– Equivalence between rdfs:class and owl:class in OWL Full (whereas in OWL
DL, OWLClass is a proper subset of RDFSClass – meaning that not all RDF
classes are OWL DL classes).

– Data values are not disjoint from individuals in OWL Full, thus the dis-
tinction between datatype properties and object properties is relaxed: (1)
owl:Thing is equivalent to rdfs:Resource, (2) owl:ObjectProperty is equiv-
alent to rdf:Property, (3) and thus effectively, owl:DatatypeProperty is a
subclass of owl:Object Property.

3.2 A UML Profile for OWL ontologies

Our UML profile is designed to support modelers developing ontologies in OWL,
through reuse of UML notation using tools that support UML2 extension mech-
anisms. The profile reflects the structure of the OWL metamodel (and the OWL
language). We reuse the standard UML2 notation when the constructs have the
same intuitive semantics as OWL, or, when this is not possible, stereotyped
UML constructs that are consistent and as close as possible to OWL semantics.
Stereotypes are leveraged extensively and are represented as the OWL metaclass
names enclosed in ’<<...>>’. In the following, we introduce our UML2 profile
for OWL ontologies. We focus on property representation and refer the reader
to Chapter 14 of [14] for a full account. First, we represent the constructs for
RDF properties, since the OWL profile package imports the RDF profile pack-
age. Then, we show how we refine these RDF property constructs for OWL. We
provide considerable flexibility so that property representation is truly intuitive
for those familiar with UML.

In UML, a property can be defined as part of an association or on the class
that defines the domain of the property, and in this case the type of the property
is the class that defines its range. When a property is part of an association, the
association is binary with unidirectional navigation, from the class that defines
the domain of the property to the class that defines its range. In RDF and
OWL, properties are defined globally, that is, they are available to all classes in
all ontologies. For RDF properties that are defined without specifying a domain
or range, the profile uses a global Thing class (Thing for RDF/S, owl:Thing in
OWL ontologies) as default for the missing end class. Properties that are defined
with such a default domain or range may not have multiplicities (other than
[0..*]) or other constraints that correspond to OWL restrictions. Figure 4 shows
an example of a property without a specified domain. From a UML perspective,
properties are semantically equivalent to binary associations with unidirectional
navigation (one-way associations). Figure 5 shows the alternate representation
for properties. Just like a UML property, there is efficient navigation from an
instance of Thing to an instance of Color through the hasColor end. Moreover,
associations can be classes, as shown in Figure 6. An association class can have
properties, associations, and participate in generalization as any other class.
Notice that the association has a (slightly) different name than the property, by
capitalizing the first letter, to distinguish the association class from the property

itself. A stereotype <<rdfProperty>> is introduced to highlight such binary,
unidirectional association classes, as shown in the Figure.

Fig. 4. Property hasColor without
specified domain

Fig. 5. Property hasColor without
specified domain - alternate represen-
tation

Fig. 6. Property hasColor - association class representation

The representation of RDF/S and OWL property subtyping (i.e.,
rdfs:subPropertyOf) is depending on which of the three notations above
is used. In case of the UML property representation (Figure 4), we
add a second property entry in the class, and use subsetting by adding
{subsets <super-property-name>} at the end of that property entry. For
the unidirectional association (5), we add another association for the sub-
property, and add {subsets <super-property-name>} to the association. In
case of the association classes (6), a UML generalization with the stereotype
<<rdfsSubPropertyOf>> is preferred. For specific OWL properties, we use
stereotypes like <<objectProperty>> instead of <<rdfProperty>>. In these
properties, additional characteristics, e.g. a property being functional or a prop-
erty being symmetric, are represented as UML properties.

If users want to specify a owl:equivalentProperty or owl:inverseOf re-
lation between two properties, the notation is quite straightforward as well. For
instance, Figure 7 shows an owl:inverseOf relation being modeled between two
association classes using an <<inverseOf>> stereotype. An arrowhead is used
opposite from the association class that will have owl:inverseOf in XML syntax.

3.3 Feasible Mappings

This Section introduces mappings to transform models between OWL and UML,
based on the metamodel and the profile described in the sections before. The
ODM Request for Proposals calls for normative mappings (if a mapping is nor-
mative, then any implementation to be compliant must follow these mappings).

Fig. 7. Using owl:inverseOf Between Association Classes

Fig. 8. Feasible Mappings between the UML profile and OWL

However, in developing the mappings for the various ODM languages, we con-
cluded that the mappings we specify cannot in practice be normative (see [8] or
Chapter 16 of [14]). In practice, the mappings we provide can be useful, though.
First, they show feasibility of one set of design choices for the mappings, pro-
viding a baseline from which a particular project can vary. Second, they bring
clearly to the fore the detailed relationships among the metamodels. These re-
lationships can help those who understand one of the target languages to come
to an understanding of the others. So although normative mappings are not
feasible, we argue that the mappings presented have strong informative value.

Figure 8 summarizes some features of UML giving the equivalent OWL fea-
ture, to motivate the development of the ODM as opposed to just a recommenda-
tion that people use UML for ontology representation. UML features are grouped
in clusters which translate to a single OWL feature or a cluster of related OWL
features. Other specific elements of the profile are all specializations of the fea-
tures in Figure 8. For these, we provide appropriate stereotypes. Mappings are

of much broader interest in the OMG than just the ODM, so much so that there
was a parallel RFP in the OMG called QVT (Query/Views/Transformations,
[20]) which promises to provide a standardized MOF-based platform for map-
ping instances of MOF metamodels from one metamodel to another. QVT is now
an adopted OMG specification. For a full account of the informative mappings
and their formal expressions in QVT, we refer to [14].

4 Implementation and Examples

This section demonstrates two implementation which have been developed in
the context of the ODM submission at OMG: the Visual Ontology Modeler and
the Integrated Ontology Development Toolkit.

Fig. 9. A diagram modeled with the VOM tool

Visual Ontology Modeler Visual Ontology Modeler (VOM), developed at
the company Sandpiper, is currently implemented as an add-in to IBMs Ratio-
nal Rose product. The current release is compatible with our ODM metamodels
and profile for RDFS/OWL. A library of ontology components including on-
tologies representing several metadata and ISO standards are available for use
with the tool. VOM supports forward and reverse engineering of RDFS/OWL
ontologies and import/export of ODM/XMI ([23]) (and thus of any MOF meta-
model or UML model that can be transformed to ODM/XMI). VOM users have
demonstrated measurable productivity gains in ontology development and main-
tenance as well as increased consistency in RDFS/OWL generation for new and

existing ontologies. Figure 9 shows a simple ontology fragment for management
application integration ([18]) modeled using VOM (for lack of space we do not
show a full screenshot). Part of the corresponding OWL which is produced by
the tool, is shown in Figure 10. The second-generation VOM, which is currently
in development, will support IBMs Eclipse ([10]) and Eclipse Modeling Frame-
work (EMF, [6]) based modeling environment. An open-source version of the
software that provides basic functionality will be available for EMF users.

...

<owl:Class rdf:ID="ITService">

 <rdfs:comment>

 Documentation not yet supplied.

 </rdfs:comment>

 <rdfs:label>IT Service</rdfs:label>

 <rdfs:subClassOf rdf:resource="#IdentifiedObject"/>

 <owl:disjointWith rdf:resource="#BusinessService"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#dependsOn"/>

 <owl:allValuesFrom rdf:resource="#ITService"/>

 </owl:Restriction>

 </rdfs:subClassOf>

...

</owl:Class>

...

Fig. 10. An extract of the OWL output from the VOM tool

Integrated Ontology Development Toolkit The EMF-based IBM Inte-
grated Ontology Development Toolkit (IODT) is a toolkit for ontology-driven
development, including an EMF Ontology Definition Metamodel ([26]) (EODM1,
based on our ODM), an Eclipse-based ontology-engineering environment, and
an OWL ontology repository, which has been evaluated to be highly scalable
and perform better than several other well-known systems ([17]). The toolkit
supports RDFS/OWL parsing and serialization, TBox and ABox reasoning,
transformation between RDFS/OWL and other data-modeling languages, and
SPARQL2 query. This toolkit has over 1,800 downloads in alphaWorks and
Eclipse.

5 Related Work

In recent years, an increasing range of software systems engage in a variety of
ontology management tasks, including the creation, storage, search, query, reuse,
maintenance, and integration of ontologies. Recently, there have been efforts to
externalize such ontology management burden from individual software systems
and put them together in middleware known as an ontology management system.
1 http://www.eclipse.org/emft/projects/eodm/
2 http://www.w3.org/TR/rdf-sparql-query/

However, as far as we know, other proposals based on the visual UML and MOF
([11], [4], [2], [3]) provide an approach but no full implementation. The latter
two are currently being merged with our solution.

6 Conclusion and Future Investigations

We presented a MOF based metamodel and a respective UML profile for OWL
DL and OWL Full. Furthermore, we provided feasible mappings which support
the transformation between OWL ontologies and UML models and vice versa.
This enables ontology engineers to build OWL ontologies based on UML using
UML tools. More important, we have implemented our approach to validate our
ideas. Considering the amount of people familiar to UML, our solution would be
a good approach for ontology modelers.

Next to finishing the ODM submission in the near future, we plan to extend
the ODM to facilitate the development of rules as well. Which rule formalisms
we will eventually support, is heavily depending on the outcome of the Rule
Interchange Format working group at W3C ([27]). In the meantime, we want to
provide some general approach or support some specific formalisms. Some initial
work on this is presented in [2].

References

1. D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. Technical report, W3C, February 2004. W3C Recommendation.

2. S. Brockmans, P. Haase, P. Hitzler, and R. Studer. A Metamodel and UML Profile
for Rule-extended OWL DL Ontologies. In 3rd Annual European Semantic Web
Conference, Budva, Montenegro, June 2006. Springer.

3. S. Brockmans, P. Haase, and H. Stuckenschmidt. Formalism-Independent Spec-
ification of Ontology Mappings - A Metamodeling Approach. Technical report,
Universität Karlsruhe(TH) and University of Mannheim, April 2006.

4. S. Brockmans, R. Volz, A. Eberhart, and P. Loeffler. Visual modeling of OWL DL
ontologies using UML. In Proceedings of the Third International Semantic Web
Conference, pages 198–213, Hiroshima, Japan, November 2004. Springer.

5. A. Brown. An introduction to Model Driven Architecture - Part I: MDA
and today’s systems, February 2004. http://www-106.ibm.com/developerworks/
rational/library/3100.html.

6. F. Budinsky, R. Ellersick, T. J. Grose, E. Merks, and D. Steinberg. Eclipse Modeling
Framework. The Eclipse Series. Addison Wesley Professional, first edition, August
2003.

7. R. Colomb, K. Raymond, L. Hart, P. Emery, C. Welty, G. T. Xie, and E. Kendall.
The Object Management Group Ontology Definition Metamodel. In F. Ruiz,
C. Calero, and M. Piattini, editors, Ontologies for Software Engineering and Tech-
nology. Springer, February 2006. to appear, submitted.

8. R. M. Colomb, A. Gerber, and M. Lawley. Issues in Mapping Metamodels in the
Ontology Development Metamodel Using QVT. In The 1st International Workshop
on the Model-Driven Semantic Web (MSDW 2004), Monterey, California, USA,
September 2004. http://www.sandsoft.com/edoc2004/LawleyMappingMDSW.pdf.

9. M. Dean and G. Schreiber. OWL Web Ontology Language Reference. Technical
report, World Wide Web Consortium (W3C), February 2004. W3C Recommenda-
tion.

10. J. des Rivieres and W. Beaton. Eclipse Platform Technical Overview. July 2001.
Updated April 2006 for Eclipse 3.1.

11. D. Djuric, D. Gaevic, V. Devedic, and V. Damjanovic. MDA Development of
Ontology Infrastructure. In Proceedings of the IADIS International Conference
Applied Computing, pages II–23–II–26, Lisbon, Portugal, 2004.

12. D. Frankel, P. Hayes, E. Kendall, and D. McGuinness. The Model Driven Se-
mantic Web. In The 1st International Workshop on the Model-Driven Seman-
tic Web (MSDW 2004), Monterey, California, USA, September 2004. http:

//www.sandsoft.com/edoc2004/FHKM-MDSWOverview.pdf.
13. L. Hart, P. Emery, R. Colomb, K. Raymond, S. Taraporewalla, D. Chang, Y. Ye,

E. Kendall, and M. Dutra. OWL Full and UML 2.0 Compared, March 2004.
http://www.itee.uq.edu.au/\simcolomb/Papers/UML-OWLont04.03.01.pdf.

14. IBM and Sandpiper Software. Ontology Definition Metamodel. Fifth Revised Sub-
mission, Object Management Group, April 2006. http://www.omg.org/cgi-bin/

doc?ad/06-01-01.
15. ISO/IEC. Topic Maps Data Model. Technical Report 13250-2, December 2005.
16. ISO/IEC. Information technology – Common Logic (CL) - A framework for a

family of logic-based languages. Technical Report 24707, April 2006. Official ISO
FCD Draft.

17. L. Ma, Y. Yang, Z. Qiu, G. Xie, and Y. Pan. Towards A Complete OWL On-
tology Benchmark. In 3rd Annual European Semantic Web Conference, Budva,
Montenegro, June 2006. Springer.

18. T. Nitzsche, J. Mukerji, D. Reynolds, and E. Kendall. Using Semantic Web
Technologies for Management Application Integration. In proceedings of the
workshop on Semantic Web Enabled Software Engineering (SWESE), Galway,
Ireland, November 2005. http://www.mel.nist.gov/msid/conferences/SWESE/

accepted papers.html.
19. Object Management Group. Ontology Definition Metamodel – Request For Pro-

posal, March 2003. http://www.omg.org/docs/ontology/03-03-01.rtf.
20. Object Management Group. Revised submission for MOF 2.0

Query/Views/Transformations RFP. http://www.qvtp.org/downloads/1.

1/qvtpartners1.1.pdf, August 2003.
21. Object Management Group. OCL 2.0 Specification. Technical Report Version 2.0,

June 2005.
22. Object Management Group. Unified Modeling Language: Superstructure. Techni-

cal Report Version 2.0, August 2005.
23. Object Management Group. XMI Mapping Specification. Technical Report Version

2.1, September 2005.
24. Object Management Group. Meta Object Facility (MOF) Core Specification. Tech-

nical Report Version 2.0, January 2006. OMG Available Specification.
25. Object Management Group. Unified Modeling Language: Infrastructure. Technical

Report Version 2.0, March 2006.
26. Y. Pan, G. Xie, L. Ma, Y. Yang, Z. Qiu, and J. Lee. Model-Driven Ontology

Engineering. In Journal of Data Semantics VII, 2006. Springer.
27. W3C. Rule interchange format working group charter. http://www.w3.org/2005/

rules/wg/charter, 2005.

