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The Web as a global information space is developing from a Web of documents to a Web of data. This
development opens new ways for addressing complex information needs. Search is no longer limited to
matching keywords against documents, but instead complex information needs can be expressed in a
structured way, with precise answers as results. In this paper, we present Hermes, an infrastructure for
data Web search that addresses a number of challenges involved in realizing search on the data Web.
To provide an end-user oriented interface, we support expressive user information needs by translat-
eyword search
tructured search
eb of data

ata integration

ing keywords into structured queries. We integrate heterogeneous Web data sources with automatically
computed mappings. Schema-level mappings are exploited in constructing structured queries against
the integrated schema. These structured queries are decomposed into queries against the local Web
data sources, which are then processed in a distributed way. Finally, heterogeneous result sets are com-
bined using an algorithm called map join, making use of data-level mappings. In evaluation experiments
with real life data sets from the data Web, we show the practicability and scalability of the Hermes

infrastructure.

. Introduction

The Web as a global information space is no longer only a Web
f documents, but a Web of data—the data Web. In recent years, the
mount of structured data available on the Web has been increasing
apidly. Currently, there are billions of triples publicly available in

eb data sources of different domains. These data sources become
ore tightly interrelated as the number of links in the form of map-

ings is also growing. The process of interlinking open data sources
s actively pursued within the Linking Open Data (LOD) project [2].

This development of a data Web opens a new way for addressing
omplex information needs. An example might be: “Find articles
rom Turing Award winners at Stanford University”. No single LOD
ata source can completely satisfy our example information need.
et, with the integration of the data sources DBLP, Freebase and
Bpedia – all of them publicly available in LOD as RDF data – an
nswer in principle can be obtained: DBLP contains bibliographic
etadata such as authors along with their affiliations, and more
nformation about universities and award winners can be found in
reebase and DBpedia, respectively. Still, the effective exploitation
f the data Web brings about a number of challenges:
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Usability: Searching the data Web effectively requires the use of
a structured query language. Yet one cannot assume the user to
know what data sources are relevant for answering a query and
their schemas. The burden of translating an information need into
a structured query should not be imposed on the end users, as it
would hinder the widespread exploitation of the data Web. Simple
search paradigms adequate for the lay user are needed.
Heterogeneity: In order to fully exploit the data Web, available data
sources need to be managed in an integrated way. However, data
sources cover different, possibly overlapping domains. Data con-
tained in different sources might be redundant, complementary
or conflicting. We encounter discrepancies on the schema-level as
well as the data-level, i.e. differences in the way the conceptual-
ization, the identifiers and the data values of real world entities
are represented. While the LOD project alleviates some of the het-
erogeneity problems by promoting the creation of links between
data sources, such a (manual) upfront integration effort is only a
partial solution. In order to deal with the dynamic nature and scale
of the data Web, it needs to be complemented with mechanisms
that can interrelate and reconcile heterogeneous sources (whose
relationships might be not known a priori) in an continuous and
automatic manner.

Scalability: The amount of data on the Web is ever increasing. The
LOD project alone already contains roughly two billion RDF triples
in more than 20 data sources. Clearly, efficient query answering
that can scale to this amount of data is essential for data Web
search.

http://www.sciencedirect.com/science/journal/15708268
http://www.elsevier.com/locate/websem
mailto:dtr@aifb.uni-karlsruhe.de
mailto:whfcarter@apex.sjtu.edu.cn
mailto:peter.haase@fluidops.com
dx.doi.org/10.1016/j.websem.2009.07.001
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documents form a graph where documents are vertices and links
90 T. Tran et al. / Web Semantics: Science, Services a

To address the problems of integration in open data spaces such
s the data Web, the pay-as-you-go paradigm to data integration
as been proposed. According to Madhavan et al. [19], the main
oncepts for an affordable integration of the various data sources
n the Web are approximate schema mappings, keyword queries with
outing and heterogeneous result ranking. Integration is regarded as a
rocess that begins with disparate data sources and continues with

ncremental improvement of semantic mappings amongst them. At
ny point during this ongoing integration, the system should be able
o process queries using the available information and mappings.
hus it is different from traditional data integration systems that
equire large upfront effort to manually create complete mappings
or the available data sources.

In our paper, we follow the paradigm of pay-as-you-go integra-
ion and propose an infrastructure called Hermes that addresses
he challenges discussed above:

Expressive keyword search: In Hermes, users can formulate queries
in terms of keywords. These keywords are translated to the best
(top-k) structured queries representing possible interpretations
of the information need. Unlike approaches in existing systems
(e.g. Sindice,2 Watson3) that simply match keywords against an
index of data elements, the results obtained using Hermes do
not only match the keywords but also satisfy the structured
query computed for the keywords. While existing approaches to
keyword translation focus on single data source [16,13,28], we
propose a novel technique for the computation of queries that
might span over multiple data sources, i.e. distributed queries.
Integration of Web data sources: Hermes integrates publicly avail-
able data sources such that users can ask queries against the data
Web in a transparent way. In order to support this, mappings at
both the schema- and data-level are precomputed and stored in
an index. Existing techniques are used for the actual computation
of the mappings. This computation is embedded in a procedure
that implements an iterative integration of Web data sources. In
particular, it crawls data sources, extracts schemas, and automat-
ically computes mappings as needed, i.e. only those mappings are
precomputed that can be used for query processing. This substan-
tially reduces the size of the data that have to be analyzed during
the computation of mappings.
Efficient query processing: We present techniques for an efficient
translation of keywords to structured queries. Instead of search-
ing the entire data space for possible interpretations [16,13], we
construct a query space primarily composed of schema elements.
Since it is much smaller than the data space, the search for inter-
pretations can be performed more efficiently. For an efficient
processing of the distributed queries computed from the key-
words, we propose a special procedure for combining results from
different data sources. In particular, we propose the map join, a
variant of the similarity join [17,24]. This form of join is necessary
to combine information about the same entities that have differ-
ent representations in different data sources. An important step
part of the join processing is the computation of similarities. The
map join procedure can leverage the data-level mappings and
thereby avoid the expensive online computation of similarities
during online query processing.

The rest of this paper is organized as follows: In Section 2, we

ntroduce the underlying data-, and query model and architecture
f Hermes. We then discuss specific aspects of data and query pro-
essing in more detail: preprocessing and indexing in Section 3,
ranslation of keywords into structured queries in Section 4, and

2 http://sindice.com.
3 http://watson.kmi.open.ac.uk.
ents on the World Wide Web 7 (2009) 189–203

the distributed processing of queries in Section 5. In Section 6
we report on our evaluation experiments performed with Hermes.
Finally, after a discussion of related work in Section 7 we conclude
in Section 8.

2. Hermes infrastructure

In this section we introduce the conceptual architecture of our
Hermes infrastructure. Before discussing the components of the
infrastructure in detail, we will define the data and queries involved
in our data Web search setting.

2.1. Data model

We consider the data Web as a set of interrelated Web data
sources, each of them identified using a data source identifier. We
use a graph-based data model to characterize individual Web data
sources. In that model, we distinguish between a data graph, captur-
ing the actual data, and a schema graph, which captures the structure
and semantics of the data.

Definition 1. A data graph gD is a tuple (V, L, E) where

– V is a finite set of vertices as the union VE � VV with E-vertices VE

(representing entities) and V-vertices VV (data values),
– L is a finite set of edge labels, subdivided by L = LR � LA, where LR

are relation labels and LA are attribute labels.
– E is a finite set of edges of the form e(v1, v2) with v1, v2 ∈ V and

e ∈ L. Moreover, the following types are distinguished:
• e ∈ LA (A-edge) if and only if v1 ∈ VE and v2 ∈ VV ,
• e ∈ LR (R-edge) if and only if v1, v2 ∈ VE ,
• and type, a pre-defined edge label that denotes that denotes the

membership of an entity in a particular class.

In a data graph gD, we do not distinguish between different types
of entities in vE , such as classes and individuals. Classes and other
schematic elements can be explicitly defined through a schema
graph.

Definition 2. A schema graph gS is a tuple (V, L, E) where

– V is a finite set of vertices. Here, V is conceived as the disjoint
union VC � VR � VA � VD with C-vertices VC (classes), R-vertices
VR (relations), A-vertices VA (attributes), and D-vertices VD (data
types).

– L comprises of the pre-defined edge labels subclass of, domain,
range.

– E is a finite set of edges of the form e(v1, v2) with v1, v2 ∈ V and
e ∈ L, where
• e = domain if and only if v1 ∈ VA ∪ VR and v2 ∈ VC ,
• e = range if and only if v1 ∈ VA, v2 ∈ VD ∪ VC or v1 ∈ VR, v2 ∈ VC ,

and
• e = subclass of if and only if v1, v2 ∈ VC .

The presented model is general enough to represent different
types of Web resources. In particular, it captures RDF(S) as a spe-
cial case.4 But also XML data can be represented as graphs. Web
correspond to edges. In many approaches [16,13], even databases
have been treated as graphs where tuples correspond to vertices
and foreign relationships to edges.

4 The intuitive mapping from RDF(S) to our data model is: resources correspond
to entities, classes to classes, properties to either relations or attributes, literals to
data values.

http://sindice.com
http://watson.kmi.open.ac.uk
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To match the nature of Web data sources, we assume that in
any cases, a schema might be incomplete or does not exist for a

iven data graph.
To interrelate the elements of individual data sources, our data

odel is extended with mappings:

efinition 3. A mapping M is set of mapping assertions repre-
enting approximate correspondences between graph elements.
pecifically, mapping assertions in M are of the form m(v1, v2, s)
here v1, v2 ∈ V are graph vertices and s ∈ [0, 1] is a score denoting
confidence value associated with the mapping.

Data sources together with mappings relating them form a data
eb defined as an integrated data graph:

efinition 4. An integrated data graph gID is a tuple (GD, MD),
here GD is a finite set of data graphs and MD is a set of approximate

orrespondences between data graph E-vertices called individual
appings.

Analogously, we define the integrated schema graph:

efinition 5. An integrated schema graph gIS is a tuple (GS, MS),
here GS is a finite set of schema graphs and MS is a set of

pproximate correspondences between schema elements, i.e. class
appings (v1, v2 ∈ VC ), relation mappings (v1, v2 ∈ VR) and attribute
appings (v1, v2 ∈ VA).

While edges of a particular graph are called intra-data-source
dges, edges representing mappings between elements of different
ata graphs will be referred to as inter-data-sources edges.

In contrast to local- and global-centric approaches to data
ntegration, there is no assumption of a mediated schema in our
pproach. Constructing and maintaining a mediated schema that
rovides a shared vocabulary for all resources on the highly
ynamic Web environment is difficult [5]. Also, the complexity and
verheads in mapping local schemas with the mediated schema is
ot affordable. In our approach, mappings might exist between any
air of data sources on the Web. The creation and maintenance of
appings in this mapping between local schemas approach is simpler

nd thus more manageable with respect to the data Web.
Finally, we note that since graph elements range over indi-

iduals, classes, relations and attributes, the notion of mapping
mployed in our approach is more general. It is not restricted to
chema elements only [9] but includes also data-level correspon-
ences.

xample 1. Fig. 1 illustrates data graph fragments for Freebase,
BLP and DBpedia. Together with the individual mappings m1 and
2, these three graphs form an integrated data graph covering

arious domains. This data might be used to address the informa-
ion need motivated by our example. A corresponding integrated
chema graph will be shown in Fig. 3 (augmented with keyword
atching elements that will be discussed in Section 3.1).

.2. Query model

In our setting, we distinguish between the notion of a user query
nd a system query. While the system query is constructed using a
tructured query language, the user query can be expressed using
eywords. Keyword queries are preferable in our setting, as the rel-
vant data sources, their schemas and labels might not be known
o the user a priori.

Specifically, the user query QU is a set of keywords (k1, . . . , ki).

he system queriesQS are c onjunctive queries. Conjunctive queries
ave high practical relevance because they are capable of express-

ng the large class of relational queries. The vast majority of query
anguages for many data models used in practice fall into this frag-

ent, including large parts of SPARQL and SQL.
ents on the World Wide Web 7 (2009) 189–203 191

Definition 6. A conjunctive query is an expression of the form
(x1, . . . , xk).∃xk+1, . . . , xm.A1 ∧ . . . ∧ Ar , where x1, . . . , xk are called
distinguished variables, xk+1, . . . , xm are undistinguished variables
and A1, . . . , Ar are query atoms. These atoms are of the form
P(v1, v2), where P is called predicate, v1, v2 are variables or, oth-
erwise, are called constants.

Since variables can interact in an arbitrary way, a conjunctive
query q can be seen as a graph pattern constructed from a set
of triple patterns P(v1, v2) in which zero or more variables might
appear. A solution to q on a graph g is a mapping � from the vari-
ables in the query to vertices e such that the substitution of variables
in the graph pattern would yield a subgraph of g. The substitutions
of distinguished variables constitute the answers (cf. [28] for formal
definition of these answers).

We can define the semantics of a conjunctive query over an inte-
grated data graph gID = (GD, MD) by simply considering the union
of the individual data graphs in GD, in which all graph elements
whose correspondences are above a certain threshold confidence
(as defined by the mappings MD) are treated as identical.

2.3. Conceptual architecture

Fig. 2 depicts the conceptual architecture underlying Hermes. In
the architecture, we can distinguish between components support-
ing offline and online processes.

2.3.1. Offline processing of data graphs
During offline graph data processing, different information are

extracted from the data graphs and stored in specific data structures
of the Internal Indices. Firstly, the labels of data graph elements are
extracted. A standard lexical analysis including stemming, removal of
stopwords and term expansion using Lexical Resources (e.g. Word-
Net) is performed on the labels, resulting in a set of terms. These
terms are stored in the keyword index. If no schema information is
available, we apply summarization techniques to construct a schema
graph for a given data graph. Schema graphs are stored in a struc-
ture index. For ranking support, scores are computed and associated
with elements of the keyword and the structure indices. Addition-
ally, tools are employed to discover mappings at both the data-
and schema-level. The computed mappings are stored in a sepa-
rate internal index called the mapping index. The internal indices are
used to identify the elements in the data graph matching a keyword,
and to retrieve schema graphs and mappings.

2.3.2. Online keyword query processing
The processing of keyword queries over Web data sources can

be decomposed into three main steps, namely keyword translation,
distributed query processing and local query processing. The input,
the intermediate queries as well as the output for our example are
shown in Fig. 2(a).

Keyword translation focuses on translating keywords to query
graphs—intermediate representations of the user information need
from which conjunctive queries will be derived. Keywords are firstly
submitted to the keyword index to determine whether they can
be answered using the available data. This step referred to as k
eyword mapping results in a set of keyword elements. These key-
word elements are combined with schema graphs retrieved from
the structure index to construct a query space. During top-k query
graphs search this query space is explored to find query graphs, i.e.
substructures that connect all keyword elements. According to a

query ranking scheme, the computed query graphs are sorted and
finally, presented to the user for selection.

The selected queries might cover multiple data sources. Dur-
ing distributed query processing, the query graph selected by the
user is decomposed into parts that can be answered using a
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Fig. 1. Integ

articular data source. The optimal order for processing these parts
s determined during query planning. The query parts resulting from
uery decomposition are sets of triple patterns. According to the
emantics of our query model, processing these patterns amounts
o finding substitutions of variables in this pattern. For this, two

odes of operations are supported: (1) routing the query parts to
xternal engines or (2) processing the query parts internally using
he internal graph data indices. For local query processing, each of
he query parts are mapped to the syntax of conjunctive queries that
s supported by the respective Web data source, e.g. SQL or SPARQL.
inally, the results retrieved for each query part are combined, i.e.
set of join operations are performed on the intermediate results.
n order to deal with the differences in data representation in an
fficient way, we utilize a special procedure called map join. This is
special implementation of similarity join [17,24], which however,

an leverage the individual mappings stored in the index to avoid
he online computation of similarities during join processing.

Fig. 2. (a) Example queries. (b
data graph.

2.3.3. Distribution of data and control
Fig. 2 illustrates a possible physical distribution of the data:

internal indices are maintained in Hermes while Web data sources
are distributed across multiple nodes. The owner of these data
sources provide capabilities for local query processing accessible
via open interfaces, e.g. in the form of SPARQL endpoints. Some of
the data sources are replicated and maintained in Hermes as graph
data indices.

A different physical distribution is possible. Data source own-
ers might want to have complete control. In this case, all the
data as well as the internal indices on that data are maintained
and distributed across multiple nodes. On the other hand, all data

sources might be replicated and maintained under centralized
control. With more control, the owner of the search engine can
ensure reliability, quality and performance. Apparently, this real-
ization of Web search has proven to be practicable for document
retrieval.

) Hermes infrastructure.
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Table 1
Indexing graph elements and mappings.

Terms Graph element type [data structure]

er , synset of er Relation label [er , gDer
]

ea , synset of ea Attribute label [ea , gDea
, (vc1 , . . . , vcn )]

ve label, synset of ve Entity vertex [ve , gDvc
]

vv data value Value vertex [vv , gDvv , ea , (vc1 , . . . , vcn )]

g

v

d
t
a

3

a
n

3

t
k
i

D
u
w
m

a
s
s
s
a
m
i
a
m
a
t
w
s

E
a
l
T
v

e
i
t

E
w
U
o

a

As discussed, there is no global schema in our approach. Instead,
pairwise correspondences between elements of the schema graphs
Sn1
id, gSn2

id Schema mapping [n1, gSn1
, n2, gSn2

, s]

c label Data mapping [n1, gDn1
, n2, gDn2

, s]

In practice, the actual distribution of data and control will
epend on how much the data source owners are willing and able
o expose the data and how much the owner of the engine requires
nd can afford centralized control.

. Data preprocessing

This section describes the offline process where the data graphs
re preprocessed and stored in specific data structures of the inter-
al indices.

.1. Construction of the keyword index

Keywords entered by the user might correspond to elements of
he data graph (entities, data values and edge labels). For mapping
eywords to elements of the data graphs, we employ a keyword

ndex that is commonly employed for keyword search [28,16,13]:

efinition 7. The keyword index is a keyword element map that is
sed for the evaluation of a multi-valued function f : K → 2VE�VV �L ,
hich for each keyword returns the set of corresponding keyword
atching elements.

As summarized in Table 1 (upper part), this index returns for
term, e.g. er = “Stanford University” (or some synonyms of its

ynset) a complex data structure that contains besides the corre-
ponding graph element also information about the origin (data
ource identifier gDer

). In the case the term corresponds to an
ttribute label ea or a value vertex vv, a set of adjacent graph ele-
ents is also returned. The attribute label is stored along with

ts adjacent class vertices vc1 , . . . , vcn . For a value vertex vv, the
djacent attribute edge ea as well as class vertices vc1 , . . . , vcn is
aintained in the element data structure. This information about

djacent elements constitutes the immediate neighborhood of
hese vertices. Intuitively speaking, the neighborhood information
ill be used for the on-the-fly construction of the query search

pace (Section 3.2).

xample 2. With respect to the data in Fig. 1, the next adjacent
ttribute label and class vertex to the value vertex from Freebase
abelled Stanford University, is name and University respectively.
hus the data structure [Stanford University, Freebase, name, (Uni-
ersity)] will be returned for the term “Stanford University”.

The keyword index is implemented using an inverted index, i.e.
very data graph element along with its associated data structure
s stored as a document, and its label will be used as the document
erm.

xample 3. The value vertex with the label Stanford University

ill be stored as a separate document along with the data [Stanford
niversity, Freebase, name, (University)]. This document contains
nly one term, namely “Stanford University”.

In order to support an effective and robust keyword mapping,
lexical analysis (e.g. stemming, stopword removal) as supported
ents on the World Wide Web 7 (2009) 189–203 193

by standard IR engines (cf. Lucene5) is performed on the labels
extracted from the data graphs to obtain a list of terms to be indexed
for a particular graph element. The Levenshtein distance is used
for supporting an imprecise matching of keywords against terms
based on syntactic similarity. Further, terms are expanded with
semantically related entries extracted from WordNet6 (synonyms)
to support matching based on semantic similarity. This means that
besides the element label, the document created for a graph ele-
ment contains also synonyms for that label.

Due to this imprecise matching, elements retrieved from this
keyword index are associated with a score denoting the degree of
matching.

3.2. Construction of the structure index

We use the structure index to perform an efficient exploration of
substructures that connect keyword matching elements. The struc-
ture index is basically an “augmented” schema graph. It has been
shown in [28] that the exploration of query graphs on the structure
index is more efficient than using the data graph (cf. [13,16]. Instead
of defining a structure index for a single source [28], we extend it
to a multi data sources scenario as follows:

Definition 8. The structure index is a map that represents for a
data source identifier the corresponding schema graph f : N→ GS

The structure index can thus be used to retrieve the schema
graphs for the Web data sources from which the keyword matching
elements originate.

In practice, a schema is often not available or incomplete (e.g. for
data graphs in RDF). In these cases, techniques for computing struc-
tural indices [11,28] are employed. In particular, a schema graph is
derived from a given data graph through the following steps:

(i) Delete all V-vertices and A-edges
(ii) Every E-vertex vei

that is associated with a C-vertex vc , i.e. there
is an edge type(vei

, vc), is deleted and vc inherits all R-edges of
vei

. Thereby, all relations specified for vei
are captured by its

class vc .
(iii) Every other E-vertex vej

that has no explicit class membership is
associated with a pre-defined vertex Thing. Also, Thing inherits
all R-edges s.t. all relations exhibited by vej

are captured by this
pre-defined class vertex.

In essence, we attempt to derive relations between classes from
the connections given in the data graph. Using the top-level class
Thing, this works even when there are no explicit class member-
ships given in the data graph. It is straightforward to prove that
via this procedure, all R-edge paths in the data graph are captured
by the resulting schema graph, i.e. for every R-edge path in the
data graph, there is at least one corresponding path in the schema
graph. Thus, we can use this computed schema graph for explor-
ing paths (comprising of R-edges only), instead of relying on the
data graph. Note that the procedure presented here is similar to
database approaches for computing structure indices (cf. the data
guide concept [11]).

3.3. Construction of the mapping index
are computed. Additionally, correspondences at the level of data

5 http://lucene.apache.org.
6 http://www.cogsci.princeton.edu/wn/.

http://lucene.apache.org
http://www.cogsci.princeton.edu/wn/
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raphs are considered such that mappings might involve classes,
elations, attributes or individuals:

efinition 9. A mapping index is used to store and to retrieve two
ypes of mappings: (1) Given an identifier for the schema graph
S = (V, L, E), it returns all mappings associated with that graph, i.e.
ll m(v1, v2, s) where v1 ∈ V or v2 ∈ V . (2) Given a class vertex vc , it
eturns all mappings for individuals of that class, i.e. all m(v1, v2, s)
here type(v1, vc) or type(v2, vc).

A separate inverted index is used for the storage and retrieval
f the mappings. The indexing of these mappings as documents is
epicted in Table 1 (lower part). Given the data source identifier for
schema graph (gSn1 or gSn2 ), the mapping index can be used to

etrieve all schema-level mappings specified for that graph. Like-
ise, given the label of a class vertex vc , all data-level mappings

individual mappings) computed for vc will be returned.
The use of these mappings is not restricted to federated query

rocessing [25]. They are also exploited during query translation
for exploration of interpretations spanning multiple graphs) and
uring result combination (for joins based on individual mappings).

A mapping discovery service is employed to obtain these
appings. In order to obtain high quality mappings, we fol-

ow a standard process established in state-of-the-art mapping
pproaches. This process can be decomposed into (1) engineering
f similarity features, (2) selection of candidates, (3) computation
f similarities (4) aggregation of similarities, and (5) derivation of
orrespondences based on the aggregated similarity values. For the
imilarity measures, we rely on existing, well-known measures that
ave proven effective in state-of-the-art matching systems [10].
or the sake of scalability, we primarily use simple, but effective
easures based on syntactic and structural features.

Mappings are first computed for pairs of schema graphs. For
very resulting class mapping, correspondences between individ-
als of the involved classes are examined. That is, only individuals
f two given classes are processed at a time. Since the number of

ndividuals in the involved data graphs might be very large, this
focussed” discovery of mappings is essential for efficiency and
calability. Also, this integration process is in line with our “pay-as-
ou-go” paradigm as mappings are only computed as needed: we
ill show that only individual mappings that are associated with

lass mappings are actually used for result combination.

.4. Scoring of graph elements

Scores indicating the relevance of elements within the graph are
ssential for ranking (of both translated queries and answers). A
opular technique for deriving scores for graph elements is PageR-
nk [3]. However, the application of PageRank is not straightforward
n the data Web scenario. Unlike links on the Web, the edges
etween data elements have different semantics. As a result, the
ffectiveness of PageRank heavily depends on the weights assigned
o different edge types—a task that is assumed to be performed by a
omain expert. This manual upfront effort might be affordable for
single data source, but certainly not for the data Web setting.

In our previous work, we have proposed a simpler technique for
he computation of popularity that is based on “the frequency” of

vertex. In particular, the score of a schema graph element cor-
elates with the number of entity vertices [28]. This has shown to
e a reliable measure for computing the popularity of an element
.r.t. a data source. For a multi-data-source scenario, we propose to

ombine this notion with the distinctiveness of an element, i.e. how

ell an element discriminates a given data source from others. In
articular, we propose an adoption of the TF-IDF concept for scor-

ng Web data. The main aim is to strike a balance of effectiveness
nd efficiency that is appropriate for data Web search: the scoring
echanism should allow for proper estimates of the popularity of
ents on the World Wide Web 7 (2009) 189–203

a graph element, albeit being affordable such that the amount of
(manual upfront) effort is manageable. In our approach, scores are
used only for ranking queries. Thus, we will focus on the scoring of
elements of the schema graph:

Popularity w.r.t. a data source: The term frequency (TF) has proven
to be an effective measure for popularity in the context of doc-
ument retrieval. Based on this notion, we define the element
frequency (EF) as a measure for the popularity of a graph ver-
tex vi w.r.t. the particular data source gj(V, L, E) containing vi.
This measure is simply the number of occurrences occvi,gj

of vi

in the data source gj normalized with the number of occurrences
of all vertices in gj to avoid the effect of data source size, i.e.
EFvi,gj

= (occvi,gj
)/(

∑
vk ∈ V occvk,gj

).

This metric is applied for scoring the vertices VC and VR in the
schema graphs. For a class vertex vc ∈ VC , the number of occur-
rences occvc,gSj

is the number of individuals vi that are of type vc ,

i.e. type(vi, vc), in the corresponding data graph. Similarly, for a
relation vertex vr ∈ VR, the number of occurrences occvr ,gSj

is the

number of instantiations of the relation.
Distinctiveness w.r.t. the data Web: The inverse data source fre-
quency (IDF) can be seen as a measure for the distinctiveness of
a vertex vi w.r.t. to the data Web. For a vertex vi, it is defined as
IDFvi

= log(|gS |)/(|gSvi
|) where |gS | is the total number of schema

graphs in the structure index and |gSvi
| the number of schema

graphs containing vi.

The total score of a schema graph element is defined as
EF-IDFvi,gSj

= EFvi,gSj
· IDFvi

Compared to the frequency metric used

in [28] (similar to the EF measure defined above), the additional
use of IDF helps to discount the impact of elements that appears
commonly throughout the data Web. An element vi that has a high
EF-IDF is important for a data source and at the same time, is
effective in discriminating that data source from others. Intuitively
speaking, the distinctiveness of an element helps to find and pri-
oritize the right data source during the translation and ranking of
queries (just like in IR, where IDF of a term helps to find the right
document).

Example 4. Fig. 4(a) shows EF-IDF scores for elements of the inte-
grated schema graph constructed for our running example. The
vertex connected with Stanford University for instance, has an EF-
IDF score of 0.027, which is substantially higher than the score of
the vertex connected with Turing Award (its ED-IDF is 0.0089). This
is due to two factors: it denotes University, which contains many
more instances than the other vertex, which stands for Price (thus,
its EF is higher). Also, whereas University occurs only in Freebase,
Price is a common concept that is mentioned in both Freebase and
DBLP (thus, its IDF is higher).

4. Keyword query translation

In this section, we describe the computation of possible interpre-
tations of the user keywords. These interpretations are presented
to the user in the form of query graphs. For computing such query
graphs from keywords, Ref. [28] proposes a procedure consisting
of three main steps: (1) construction of the query search space
and (2) top-k query graph exploration, and (3) query graph rank-
ing. We extend this work on keyword search to the data Web
scenario. Instead of a single data source, the search space in our

approach spans multiple graphs. Also, the ranking mechanism has
been extended to incorporate aspects that are specific for the data
Web. The rank of a computed query graph reflects not only the
popularity of the graph elements it is composed of, but also the
r elevance of the data graphs (data sources) it spans over.
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.1. Construction of the query search space

The query search space shall contain all elements that are nec-
ssary for the computation of possible interpretations. Commonly,
eyword search bases on the assumption that keywords denote
ome elements that can be found in the data [27]. Thus, the search
pace employed for keyword search is typically the data graph
13,16]. Similar to [28], we employ a query-specific search space
called query space), consisting of two parts: (1) the graph elements
hat match the user keywords (to explore the query constants) and
2) the structural elements of the data graph (to derive the query
redicates). Since most of the elements in the data graphs are omit-
ed, the use of such a query space can offer substantial increase in
erformance when compared to search over the entire data graph
13,16].

In order to obtain the first part, the keywords entered by the
ser are submitted against the keyword index. Note that the data
tructure of the resulting keyword elements bears origin informa-
ion (data source identifiers) as well as information about adjacent
lements.

The identifiers of these relevant data sources are submitted
gainst the structure index to obtain the second part, i.e. a set of
chema graphs that are relevant for the query.

The schema graph and the keyword elements are then combined
o obtain the query space. For this, the information about adjacent
lements is used to connect the keyword matching elements with
he corresponding elements of the schema graphs:

If the keyword matching element is a value vertex vk
v ∈ VV with the

adjacent elements being the attribute edge label ea ∈ LA and the
class vertices vc1 , . . . , vcn ∈ VC , then the edges ea(vk

v, vc1 , . . . , vcn )
will be added to connect vk

v with the class vertices vc1 , . . . , vcn of
the relevant schema graph (i.e. the schema of the data source vk

v
originated from).
If the keyword matching element is an attribute edge label
ek

a ∈ LA with the adjacent elements being the class vertices
vc1 , . . . , vcn ∈ VC , then the edges ek

a(value,vc1 , . . . , vcn ) will be
added to the relevant schema graph. Note that the value vertex
is an artificial element employed to include matching attribute
edges in the query space.
Otherwise, the keyword element must be a class vertex vk

c ∈ VC or
a relation edge label el

r ∈ LR. In this case, no further elements shall
be added as the relevant schema graph shall already contain the
keyword element.

Specific to the data Web scenario are mappings. Since possi-
le interpretations of the user keywords might span multiple data
ources, these mappings need to be considered in the construc-
ion of the query space. Thus, the identifiers of the relevant schema
raphs are also submitted against the mapping index to obtain a set
f relevant mappings. Together with the schema graphs augmented
ith keyword elements, the mappings constitute the following

uery space:

efinition 10. The query space is an integrated schema graph gq
I =

GS(V, L, E), EI] that is augmented with keyword matching elements
K computed for a given query q, i.e. gq

I comprises a set of schema
raphs GS augmented with

the edges e(v, vk), ek(v, value) and ek(v, vk), where vk, ek ∈ Nk,
e, ek ∈ L, v, vk ∈ V , and value is an pre-defined vertex,

and the edges m(vi, vj, s) ∈ EI where vi is a vertex of a schema
graph gSi

and vj is a vertex of a schema graph gSj
.

xample 5. Fig. 3 illustrates the query space constructed for our
xample keyword query. The keyword elements are Article, Stan-
ents on the World Wide Web 7 (2009) 189–203 195

ford University and Turing Award. These elements originated from
the three different data graphs Freebase, DBLP and DBpedia. The
corresponding schema graphs are retrieved. Keyword elements not
covered by these schemas are added. In particular, the adjacent
ea (name) is used to connect S tanford University with the adja-
cent vc (University). Likewise, an edge with the label label is created
to connect Turing Award with Prize. For these schemas, the map-
pings m3, m4, m5, and m6 have been found. Corresponding edges
are created to establish links between the schema graphs.

4.2. Exploration of top-k query graphs

Given the query space, the remaining task is to search for the
minimal query graphs in this space. With respect to our data mod-
els, a query graph is formally defined as follows:

Definition 11. Let gq
I = (GS, NK , EI) be the query space, K =

{k1, . . . , kn} be a set of keywords, and let f : K → N′
K be a func-

tion that maps keywords to sets of corresponding graph elements
(where N′

K ⊆ NK ). A query graph is a matching subgraph of gq
I

defined as gq = (Gq
S, Nq

K , Eq
I ) with Gq

S ⊆ GS , Nq
K ⊆ NK , Eq

I ⊆ EI such that

– for every k ∈ K , f (k) ∩ Nq
K /= ∅, i.e. gq contains at least one repre-

sentative keyword matching element for every keyword from K,
and

– gq is connected, i.e. there exists a path from every graph element
to every other graph element.

A matching graph gqi
is minimal if there exists no other gqj

of g
such that Score(gqj

) < Score(gqi
).

We extend the top-k procedure proposed in our previous work
[28] to find such query graphs. This procedure starts from the key-
word elements NK and iteratively explores the query space gq

I for
all distinct paths beginning from these elements. For top-k termi-
nation, we maintain a queue of elements and paths respectively,
which we have explored, along with their scores.

– First, we initialize the queue with the keyword matching ele-
ments NK , from which we shall start the exploration.

– Iteratively, the element with the highest score (the top element
in the queue) is chosen for “expansion”, i.e. it is expanded to the
next neighbor that has been not visited before and can be reached
with lowest cost. Note that every such expansion constitutes an
exploration along a particular path. The score of the path explored
this way is updated based on the cost incurred by the expansion.
The updated path along with it score goes back into the queue.

– At some point, an element might be discovered to be a connecting
element, i.e. there is a path from that element to at least one
keyword element, for every keyword in K.

– These paths are merged to form a query graph.
– The graphs explored this way are added to the candidate list.
– The process continues until the upper bound score for the query

graphs yet to be explored (derived from the paths managed in the
queue) is lower than the score of the k-ranked query graph in the
candidate list.

Compared to our previous work [28], the procedure we employ
operates on several data sources, i.e. it deals with keyword search
on the data Web. During exploration, an existing path might be
expanded to include elements of a different data source. That is,

we traverse also along mappings to find queries spanning mul-
tiple data sources. Since mappings have different semantics than
standard edges connecting elements within a data graph, we dis-
tinguish inter-data-source edges (e ∈ MS) from intra-data-source
edges (e ∈ E). These two types of edges have different prioritization
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Fig. 3. Query space: integrated schema graph a

uring exploration. This is incorporated into the scoring and rank-
ng mechanism, which will be discussed in the next section.

xample 6. Fig. 4(a) shows an example query space containing
lements associated with scores (discussed in the next section). The
eyword matching elements Stanford University, Article and Turing
ward are highlighted (labels of “non-keyword elements” are omit-
ed due to lack of space). These keyword matching elements are
ut into the queue. For the first iteration, either Turing Award or
tanford University is chosen for expansion (as both have the same
core, which is the highest). From Turing Award for instance, we
ould expand the current path to the node EF-IDF = 0.0008, result-

ng in a path with updated score = 0.8 + s(0.0008). Since exploring
his element adds cost to the path, the updated score will be lower
han 0.8 (s(0.0008) is a negative value). Thus, the next best element
hosen from the queue would be Stanford University. The differ-
nt paths starting from the keyword elements that are explored
his way are shown in Fig. 4(a). Note that these paths meet at sev-
ral elements, e.g. they connect EF-IDF = 0.012 with all the three
eyword matching elements. An example query graph that can be
erived from such connections is shown in Fig. 4(b) (the mapping
f elements of query graphs to variables of conjunctive queries is
iscussed in Section 5). Clearly, this example also shows that map-
ings provide “bridges” between data sources. Expansions across
ata sources through these bridges are needed in order to connect
eyword matching elements found in different data sources. If there
ere for instance no mapping connecting EF-IDF = 0.029 in Freebase
ith EF-IDF = 0.012 in DBLP, queries that can be computed through

his algorithm may contain Article and Turing Award or only Stan-
ord University, but would not capture the meanings of all the three
eywords.
.3. Scoring query graphs

The previous top-k computation outputs the query graphs with
ighest scores. The quality of the translation results thus depends

argely on the scoring function used for calculating the scores of

Fig. 4. (a) (Scores of) three paths through the query space
nted with keyword-matching graph elements.

paths that are explored during the process.
In keyword search [13,15,12,28], scoring typically incorporates

three different aspects: (1) the popularity of graph elements, (2)
the matching score of keyword elements (captures imperfection
in the mapping of keywords to graph elements) and (3) the length,
where queries of shorter length are preferred due to the assumption
that closely connected entities more likely match the information
need [27]. In particular, since every query graph gq is constructed
from a set of paths P, the score of gq can be defined as a monotonic
aggregation of its path scores, which in turn, are computed from
the element scores, i.e. Cgq =

∑
pi ∈ P(

∑
n ∈ pi

Cn), where C is in fact

not a score, but denotes the cost [28]. The lower the cost of gq,
the higher should be it rank. In the simplest scheme, the cost of
an element Cn is 1, i.e. only the length is incorporated. In [28], it
has been shown that a more effective scheme can be obtained by
combining the length with the matching score and the popularity
score.

In order to deal with the additional levels of uncertainty
involved in keyword search on the data Web, we extend exist-
ing scoring schemes to define the cost for query graphs as Cgq =∑

pi ∈ P

∑
n ∈ pi

1/(Sn ∗ coverage(gDi
)), where

Sn =
{

Ssim(n) if n ∈ EI

EF-IDF(n) if n element of gSi

Sm(n) if n ∈ NK .

Note that Cn = 1/(Sn ∗ coverage(gSi
)) and Sn ∈ [0, 1], i.e. the various

scores denoted by Sn are turned into costs such that the higher the
score of an element n, the lower is the cost n contributes to the
paths it belongs to.

Factors that are considered in this scoring function include the

matching score Sm which can be obtained for keyword matching
elements NK returned from the keyword index. The importance
score EF-IDF computed offline for elements of all schema graph
gSi

is also employed. The above formula shows that associated
score when an element is a keyword matching element (n ∈ NK )

and (b) query graph mapped to conjunctive query.
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r when it is an element of the schema graph (n element of gSi
).

n the special case where a schema graph element match the key-
ord, we combine the matching score with its importance score,

.e. Sn = EF-IDF(n) ∗ Sm(n). Since the cost of a path monotonically
ncreases with the number of constituent elements, the length is
lso implicitly captured by this cost function.

Besides these factors typically used in keyword search (and in
ur previous work [28]), also the mapping score Ssim is incorpo-
ated. Note that this score is associated with every inter-data-source
dge and measures the quality of the denoted mapping. Another
actor that is specific for keyword search on the data Web is the
overage. This notion is defined as the number of keywords that
an be processed with a data graph gDi

. The coverage of a graph gDi
,

.e. coverage(gDi
), is computed during the processing of keywords

gainst the keyword index by counting the number of keywords
hat match elements of gDi

.
Based on this ranking function, top-k exploration is guided

owards finding those query graphs containing paths of shorter
ength, i.e. containing fewer elements. Further, paths are preferably
xplored when the constituent elements are important and match
he user keywords. Exploration across schema graphs are preferred
long inter-data-source edges denoting high quality mappings.

According to the notion of coverage, schema graphs that can
answer” a large number of keywords are prioritized. This is because
he coverage of a data graph influences the scores of all its ele-

ents (since coverage is applied to every Sn). This results in a gap
etween scores of elements from different schema graphs, i.e. there
re different score levels for schema graphs with different cover-
ge. Hence, exploration likely starts from schema graphs which
over a large number of keywords. Further, the use of coverage
as the effect that exploration across schema graph boundaries

s discouraged as it would incur a substantial increase in cost,
specially when the difference in score level between the two
raphs under consideration is large. Note that the intended out-
ome is in line with the intuition that while a combination of
ata from different data sources might be necessary, only as few
ources as needed shall be considered for answering a keyword
uery.

xample 7. Fig. 4(a) shows example scores of different types.
n particular, the three keyword elements are associated with the

atching scores Sm. Each of these elements comes from a different
ata source. Thus, the coverage of DBLP, DBPedia and Freebase is
imply 1. There is no gap, and thus no bias towards a particular
ata source. This is reasonable because none of them can com-
letely answer the given keyword query, i.e. all three have to be
sed to answer the query. Since the mappings in this example are
f high quality, the mapping scores Ssim associated with the inter-
ata-source edges are simply 1. Also, example EF-IDF scores are
hown for the elements of the query space under consideration.
rticle is the only element that is both a keyword matching element
nd a schema element and thus is associated with an aggregated
core.

. Distributed query processing

Query translation results in a list of top-k query graphs. Dis-
ributed query processing is the subsequent step that starts with
he query graph gq selected by the user. The query graph is d ecom-
osed into parts such that each part can be evaluated against a
articular data graph. Before routing, each part needs to be mapped

o the query format supported by the local query engines. For
ptimizing performance, a planner is employed to determine an
ppropriate order of query execution. Finally, the results obtained
rom the local query processors are combined to arrive at the final
esults.
ents on the World Wide Web 7 (2009) 189–203 197

5.1. Query graph decomposition

As defined previously, a query graph gq contains two types
of edges: intra-data-source edges connecting elements of a sin-
gle summary graph and inter-data-source edges ei ∈ Eq

I connecting
elements of two summary graphs. Based on this structure, query
decomposition can be accomplished by simply omitting all ei from
the query graph. The resulting query graph is a set of strongly con-
nected components gqi

containing only intra-data-source edges.
Each gqi

represents a partial query that can be evaluated against
a single data graph gDi

. Fig. 4(b) illustrates the decomposition of
the example query into three parts: q1 on Freebase, q2 on DBLP,
and q3 on DBpedia.

5.2. Query planning

Query planning concerns with the order of execution of the par-
tial queries. For this task, an “abstract” query graph g′

q is employed.
Its vertices represent the partial queries and the inter-data-source
edges Eq

I constitute links between them. Given g′
q, query answer-

ing breaks down to two operations: (1) processing the vertices of
g′

q to obtain intermediate result sets (referred to as local query
processing), and combining the intermediate results along the
inter-data-source edges. The optimal order of execution of these
operations is estimated according to the optimization techniques
proposed for RDF in [22]. In particular, statistics (e.g. about selectiv-
ity) are collected to arrive at estimates for (1) prioritizing vertices
that more likely lead to smaller intermediate result sets and (2)
selecting a cost-efficient join implementation (nested-loop vs. bind
join), given two intermediate result sets. With respect to the exam-
ple illustrated in Fig. 4(b), vertices of g′

q are simply q1, q2 and q3.

5.3. Query graph mapping

During this step, the partial query graphs gqi
are translated

to queries that can be answered by the local query engines. This
translation is performed during local query processing. Basically,
edges of the query graphs are mapped to predicates whereas ver-
tices are mapped to variables and constants of the conjunctive
query. Fig. 4(a) together with Fig. 4(b) exemplify these correspon-
dences. We now give a more precise mapping of query graphs to
conjunctive queries. Since we are concerned with partial query
graphs, edges must be of the form e(v1, v2), where e ∈ LA � LR and
v1, v2 ∈ VC � VV � {value}, i.e. there are only intra-data-source edges.

– Processing of vertices: Labels of vertices might denote query con-
stants. We use constant(v) to return the label of the vertex v.
Also, vertices might stand for variables. Every vertex is therefore
also associated with a distinct variable such that var(v) returns
the variable representing v. For instance, constant(University)
returns University and var(University) returns z.

– Mapping of A-edges: Edges e(v1, v2) where e ∈ LA and
v2 /= value are mapped to two query predicates of the form
type(var(v1), constant(v1)) and e(var(v1), constant(v2)). Note that
e is an attribute edge label. By definition of the query space,
v1 thus denotes a class and v2 is a data value. Accordingly,
constant(v1) returns a class name and constant(v2) returns
the value. For instance, name(University, StanfordUniversity) is
mapped to type(z, University) and name(z, StanfordUniversity).

In case v2 = value, e(v1, v2) is mapped to the predicates

type(var(v1), constant(v1)) and e(var(v1), var(value)). Note that
this is to deal with situations where the keyword matching ele-
ment is an edge label. The difference to the previous case is that v2
does not denote a concrete value, and thus is mapped to a variable
instead of a constant.
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captures information about the Semantic Web community, and the
AIFB portal contains data about the research group that organizes
the ISWC 2008. Detailed statistics for each dataset can be found in
Table 3. In total, the indexed data adds up to 1.1Bio triples.9 For this
98 T. Tran et al. / Web Semantics: Science, Services a

Mapping of R-edges: Edges e(v1, v2) where e ∈ LR are mapped to
three query predicates of the form type(var(v1), constant(v1)),
type(var(v2), constant(v2)) and e(var(v1), var(v2)). Note that since
e is an R-edge, v1, v2 denote classes. Hence, constant(v1),
constant(v2) return two class names and var(v1), var(v2)
return the variables representing some entities of these two
classes. For instance, employment(University, Person) is mapped
to type(z, University), type(y, Person) and employment(z, y).

The resulting query is simply a conjunction of all the predicates
enerated for a query graph. Since conjunctive queries represent a
ragment of SPARQL (and SQL), it is straightforward to translate gqi

irectly to the query language supported by the local RDF stores
or relational database), cf. the conjunctive query in Fig. 4(b) and
PARQL queries in Fig. 2(a).

If there is no further information available other than keywords,
reasonable choice is to treat all query variables as distinguished

o obtain all variable substitutions of a given query. In our system,
he user can select the query and after that, can choose the type of
ntities she is interested in, i.e. choose the distinguished variable
anually.

.4. Query result combination

The results obtained from the local query engines are combined
o obtain the final answer for the distributed query. Each result set
or a partial query graph gqi

can be seen as a relation Rqi
, where

column ri in Rqi
captures bindings for a particular vertex of gqi

.
able 2 shows three relations obtained for our example queries,
.e. Rq1 , Rq2 and Rq3 for q1, q2 and q3 respectively. The relations
qi

are joined along the inter-data-source edges, i.e. Rqi
�ei(ri,rj)Rqj

,
here ei ∈ EI connects ri (denoting a column in Rqi

) with rj (denot-
ng a column in Rqj

). Two types of joins are distinguished in this
egard:

If ei(ri, rj) is a class mapping (i.e. ri and rj correspond to classes),
similarity join needs to be performed on the entities of ri and

j . In order to perform this join more efficiently, entity mappings
re pre-computed such that given a class mapping, a two columns
mapping relation” Rm is retrieved from the mapping index. Such
relation contains pairs of entities that have been identified to
atch based on their similarity. Examples are shown in Table 2,

.e. Rm5 and Rm6 for the mappings between person m5 and m6.
sing these results, the similarity join amounts to a two-ways join
qi
�ri=ri

RM�rj=rj
Rqj

(we refer to as map join):

the first relation is joined with the mapping relation (on the first
entity column),
and then, the resulting relation is joined with the second relation
(on the second entity column).

With respect to our example, the operations Rq1�ry=rPersonFB

m5�rPersonDBLP=ry′ Rq2�ry′ =rPersonDBLP Rm6�rPersonDBP=ry′′ Rq3 have to be
erformed for the computation of the final results. In other words,
he similarity join as discussed in literature [17,24] is realized in our
pproach through two steps: (1) offline computation of mappings
nd (2) map join that exploits pre-computed mappings. This way,
xpensive online comparison of entities can be avoided.

This map join concept is also used for the processing of relation
nd attribute mappings, i.e. ei(ri, rj) connects to attribute or rela-
ion vertex ri and rj . Technically, a relation mapping ei(ri, rj) can

e regarded as two class mappings: ei1(domain(ri), domain(rj))
nd ei2(range(ri), range(rj)) that express the correspondences
etween classes that are the domain of ri and rj and the
ange of ri and rj respectively. Accordingly, the processing of

relation mapping breaks down to two map join operations,
ents on the World Wide Web 7 (2009) 189–203

Rqi
�ei1(domain(ri),domain(rj))Rqj

and Rqi
�ei2(range(ri),range(rj))Rqj

. The
processing of attribute mappings is similar. However, only one map
join operation is needed because an attribute mapping ei(ri, rj)
expresses only the correspondence between the domain of r1 and
r2.

Note that the processing of two intermediate result sets Ri and Rj

results in all combinations of tuples in Ri and Rj that are similar on
one entity. This captures the intuition that (complementary) infor-
mation from two data sources should add up. With respect to our
example, tuples are joined along entities of the type person. This
results in a combination of different information about person, i.e.
publication, employment and prizes.

6. Evaluation experiments

We will now discuss experiments we have performed with a
system implementing the Hermes infrastructure. The goal of the
experiments is to show the performance and effectiveness of our
system with real life data sets available on the data Web.

6.1. Evaluation setting

6.1.1. The Hermes system
Hermes is realized as a Web application, publicly accessible at

http://hermes.apexlab.org. The application provides a Flash-based
user interface. (Fig. 5 shows the screenshot of the interpretation of a
keyword query as a query graph.) The core of Hermes, composed of
the query disambiguation and of the distributed query processing
backends runs on the server part.

In the implementation, we used Lucene for the management of
the keyword and the mapping index, the BerkelyDB for the struc-
ture index (and cached in memory), and for local query processing
we employ Semplore. Semplore is an RDF store supporting conjunc-
tive queries on graph data. The graph data indices we created are
in fact inverted indices, which is used by Semplore both for stor-
age and retrieval [29]. The use of Semplore follows recent trends
in managing large amount of Web data. Work from Semantic Web
[29] as well as database research [8] has shown that the inverted
index is a viable choice for indexing (RDF) triples.

We have tightly integrated Semplore into our distributed query
engine to minimize the communication overhead for query routing
and result combination.

In the current setup (which is also the basis for the experiments
described in the following), the Web data sources are logically sep-
arate, but all components physically run on a single node: a Linux
Server with 64Bit DualCore 2 × 3 GHz Intel Xeon processor and 8 GB
of memory. All internal indices are stored on a Hitachi SATA 1TB
hard drive.

6.1.2. Data
For the experiments, we used SwetoDBLP, DBpedia, Freebase,

USCensus, GeoNames, semanticWeb.org,7 and the AIFB portal data8

– all of them are publicly available in RDF. While DBpedia and
Freebase are general knowledge bases, other sources are about spe-
cific domains. USCensus contains census statistics for the United
States, GeoNames provides geographic features, semanticWeb.org
7 http://semanticWeb.org/.
8 http://www.aifb.uni-karlsruhe.de/about.html.
9 Please note that the indexed data contains additional triples over the originally

published data sets.

http://hermes.apexlab.org
http://semanticWeb.org/
http://www.aifb.uni-karlsruhe.de/about.html
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Table 2
Intermediate result sets.

q1 on Freebase m5 q2 on DBLP m6 q3 on DBpedia

Name z y fb:Person dblp:Person y′ x dblp:Person dbp:Person y′′ z Label

Stanford uni1 per1 per1 per2 per2 pub1 per2 per3 per3 prize1 Turing Award
Stanford uni2 per8 per8 per9 per9 pub2 per9 per7 per3 prize2 Turing Award

Table 3
Statistical information of the data sets.

Data set #Tripels #Instances #Categories #Relations #Attributes #Literals

SwetoDBLP 14,936,600 1,644,086 10 12 17 12,654,821
DBpedia 110,241,463 19,238,235 175,920 12,240 28,216 14,187,352
Freebase 63,069,952 7,517,743 814 917 1099 34,451,000
U 8
G 1
S 506
A 22

d
w
p
W
a
d

6

(
r
t
w
i

SCensus 445,752,172 82,702,188
eoNames 69,778,255 14,051,039
W.org 67,495 22,682
IFB 19,271 2991

ata, mappings have been computed through the iterative process
e explained before. For the evaluation, ca. 2Mio data-level map-
ings and 1500 schema-level mappings are indexed in the system.
e observe that DBpedia and Freebase are connected most tightly

s more than 90 percent schema-level mappings and half of the
ata-level mappings are found between the two data sources.

.1.3. Queries
We collected keyword queries that have been asked by real users
20 colleagues in our lab) against the system. For the evaluation, we
estricted to queries that in principle should be answerable given
he data described above. In total, we selected 20 keyword queries
here 10 of them (Q11–Q20) can only be answered by combin-

ng multiple data sources. We show the keywords and the relevant

Fig. 5. Hermes query disambiguation interfa
496 1373 12,033
10 6 57,518

515 190 13,845,576
16 21 1,001,976

data sources for these queries in Table 4. For instance, the intended
interpretations of the keywords for Q10 and Q11 are: (Q10) find
films about “Titanic” and (Q11) find research topics of Rudi Studer,
the local chair of ISWC 2008.

6.2. Data preprocessing

Table 5 shows statistics of the size of the data sets, the size of
the pre-computed indices and the time to build the indices. For rea-

son of space, we only show the combined time for building all four
indices (keyword, mapping, structure, and data graph index). The
total time for building all indices for all the 7 data sources amounts
to 59 hours (note that throughout the experiments, we use a sin-
gle machine). The size of the structure index is much smaller than

ce showing a suggested query graph.
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Table 4
Example queries.

# Keywords Data sources

Q1 Project, ISWC, person semanticWeb.org
Q2 Studer, publication semanticWeb.org
Q3 Undergraduate, topic semanticWeb.org
Q4 Rudi, proceedings semanticWeb.org
Q5 Track, 323 Freebase
Q6 Pinocchio, film Freebase
Q7 Company, owner, “shopping center” Freebase
Q8 Restaurant, Berlin Freebase
Q9 “the day after tomorrow”, director Freebase
Q10 Film, Titanic Freebase
Q11 ISWC2008,Studer, topic SwetoDBLP, SW.org,

semanticWeb.org
Q12 Person, Shanghai, town Freebase, USCensus
Q13 Ronny Siebes, InProceedings SwetoDBLP, semanticWeb.org
Q14 Tom, iswc2008, proceedings SwetoDBLP, SW.org,

semanticWeb.org
Q15 Lake, citytown, wood Freebase, USCensus
Q16 Person, town, village Freebase, USCensus
Q17 Restaurant, german Freebase, USCensus
Q
Q
Q

i
t
4

6

6

q
d
q
t

w
s

1

T
S

D

S
D
F
U
G
S
A

18 Album, town, mountain Freebase, USCensus
19 Frank, publications SwetoDBLP, semanticWeb.org
20 Markus, report SwetoDBLP, semanticWeb.org

ndices built for the data graphs. Thus, we cached them in memory
o enable faster query translation. The overall size of all indices is
2.4GB.

.3. Keyword translation

.3.1. Efficiency
Fig. 6 illustrates the average time for translating the 20 keyword

ueries to the top-5 conjunctive queries. The overall time breaks
own to two parts: time for keyword mapping and time for top-k

uery construction (which includes query space construction and
op-k search).

Expectedly, more time is needed for top-k query construction
hen performed on larger schema graphs. For instance, query con-

truction is much slower for Q5 than Q13, as Q5 is asked against

able 5
ize and building time of internal indices.

ata source Number of triples in millions Index size in MB

Ik

wetoDBLP 19 1060
Bpedia 247 2630
reebase 89 1590
SCensus 694 980
eoNames 132 4110
emWeb.org 0.17 7.35
IFB 0.04 3.04

Fig. 6. Average keyword
ents on the World Wide Web 7 (2009) 189–203

Freebase, which has a much larger schema graph than the inte-
grated graph computed from DBLP and AIFB used to process Q13.
From another perspective, this example also indicates that comput-
ing queries that span multiple data sources is not much different. In
fact, the integration of the two schema graphs is insignificant when
compared with the exploration time. It is important to mention that
schema graphs cached in memory are used for the experiments.
This is affordable (even for a larger number of data sources) as they
are relatively small in size.

As further discussed in Section 7, Semantic Web search engines
like Sindice, Watson, Swoogle Falcons essentially provide lookup
functionalities based on an IR engine, such as Lucene. Using this
underlying engine, keywords submitted by the user are matched
against the data stored in the inverted index. Note that this corre-
sponds exactly to the keyword mapping step we perform during
keyword translation. We compare the time for this step with the
total query translation time in order to get some preliminary com-
parative results in terms of performance. Keyword mapping makes
up 25 percent of the overall time on average while it exceeds more
than 50 percent in some cases (e.g. Q11 and Q13). In particular, more
time is required if the keywords are popular such that it maps to
a large number of elements in the keyword index. This is the case
for Q7 and Q11. Both the company owner and shopping center key-
words in Q7 result in a large number of keyword elements while
the keyword topic in Q11 returns a long list of candidates. All 20
queries can be translated within 2 seconds. In all, the results indi-
cate that when compared to keyword lookup, the computation of
full interpretation requires additional time, which is affordable for
most queries.

6.3.2. Effectiveness
In order to assess the effectiveness of query translation, we

adopted a standard IR metric called Reciprocal Rank (RR) defined

as RR = r , where r is the rank of the correct query, i.e. the query
matching the intent of the user. If none of the generated queries is
correct, RR is simply 0. We invited the users to identify the intended
interpretation from the list of top- 5 queries. The average MRR for
the 20 queries are shown in Fig. 7. The results indicate that the

Index time (s)

Im Is Idg

2.22 0.02 655 6922
42.7 75 7522 50,946
48.4 29 2268 19,536

4.1 0.01 18,948 84,795
0 0.006 3431 51.314
1.2 4.2 5 83
0.022 0.08 1.4 13

translation time.
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Fig. 7. Mean reciprocal rank of top-5 queries.
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To the best of our knowledge, there is no system that offers the
capability of Hermes in the context of data Web search. Thus, it is
difficult to carry out a comparative study. The evaluation results
discussed above however indicate that Hermes exhibits affordable
time and space requirements for building indices, can effectively

Table 6
Detailed join information for Q11–Q20.

Queries Local join (ms) Map join (ms) #Local joins #Map joins

Q11 42.47 19.53 2 2
Q12 956.26 502.74 9 4
Q13 47.54 14.46 7 3
Q14 117.92 69.08 83 82
Q15 1140.6 359.4 301,721 301,710
Fig. 8. Average q

ntended interpretation could be computed for all queries and also,
ost of them are ranked correctly, i.e. at first position.

.4. Distributed query processing

In addition to the time for query translation, we also record the
ime to evaluate the query selected by the user. The average query
valuation time (10 times for each query) for those 20 queries is
hown in Fig. 8. The average query processing times for single-data-
ource queries (Q1–Q10) is around 1s. Multi-data-source query
rocessing (Q11–Q20) requires more time on average, with the
aximum time being within a boundary of 1.5 seconds. Expect-

dly, queries containing predicates that result in large sets of results
panning over several data sources are harder to process. Q18 is
uch an example which contains Album and Town. Each of these
redicates results in several thousands of instances. This and other
ueries such as Q12 and Q15–Q17 run slower, when compared to
he single-data-source queries Q1–Q10.

To better understand the performance of our method of
istributed query processing, total times for processing the multi-
ata-source queries is further decomposed into two components:
1) local join processing: we measured the number of joins that
ave to be performed on the data tuples during local query pro-
essing and the total time needed for these operations (2) result
ombination across data sources: we measured the number of map
oins that have to be performed to combine results from different
ata sources and the total time. Note that local query processing

s the process of answering data graph specific query parts. The

esults to these queries have to be combined, typically via similar-
ty joins [17,24]. Since we leverage precomputed mappings instead
f computing similarities online, there is no fair comparison with
hese approaches. We therefore compare our approach for result
ombination using map join with standard join processing.
valuation time.

From Table 6, we observe that with most queries, the total time
for map join is only half the total time for local join, even though the
number of joins involved is almost the same for both. This clearly
supports our claim that using precomputed mappings in the index,
result combination can be performed very efficiently. In this exper-
iment, it is actually even faster than local query processing. We
have investigated this positive result and found out that retrieval of
mappings is relatively fast. However, the difference is mainly due to
the implementation of join processing. We use hash join for result
combination, which is faster the the mass union of posting lists
employed by Semplore for join processing [29]. Overall, the results
suggest that like standard join processing, distributed query pro-
cessing using map joins results in affordable response time. Clearly,
the potential for parallelizing some operations during this process
offers room for future investigation.
Q16 1042.91 489.09 2,064 2,063
Q17 1071.28 429.72 16,371 16,370
Q18 1179.17 419.83 23,394 23,385
Q19 70.6 21.4 8 3
Q20 62.47 27.53 874 873
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ranslate keywords to structured queries and also, offers acceptable
esponse time for processing structured query spanning across data
ources. The overall system can scale to a realistic data Web search
cenario.

. Related work

There exist several dimensions of related work. We structure our
iscussion along the presentation of our contributions: (1) infras-
ructures for data Web search, (2) keyword query translation, and
3) federated query processing.

.1. Infrastructures for data Web search

In our architecture, we follow the paradigm of pay-as-you-go
f data spaces, which previously has been applied successfully to
ersonal information management and enterprise intranets [23].
he application of the pay-as-you-go paradigm to Web scale data

ntegration has been proposed – on a conceptual level – in [19]. To
ur knowledge, Hermes is the first realization of an infrastructure
hat enables integration and search over an open set of real life Web
ata sources.

Other approaches provide a more centralized paradigms to inte-
ration on the data Web. For example, Freebase10 implements a
entralized, albeit open and community-based Web database. Data
rom other Web data sources is copied into Freebase in a controlled

ay. The problem of heterogeneity is alleviated by a centralized,
anual integration and reconciliation effort (gardening).

Recently, a number of Semantic Web search engines (lookup
ndices) have been developed, including Falcons [4], Sindice [20],
woogle [7] and Watson [6]. These engines focus on indexing and
roviding keyword-based lookup services, rather than an integra-
ion and search over multiple Web data sources.

.2. Keyword translation

Existing approaches to data Web search either support expres-
ive queries based on structured query languages or keyword
earch. For example, Freebase supports an expressive query lan-
uage called MQL. Semantic Web search engines such as Swoogle
nd Watson offer keyword-based lookup services. While they are
imple to use, the expressivity of this keyword search is rather
estricted. Through the translation of keywords to structured
ueries, we offer more advanced querying capability.

The problem of keyword queries on structured data has been
tudied from two different directions: (1) computing answers
irectly through exploration of substructures on the data graph
13,16] and (2) computing queries through exploration of a query
pace [28]. It has been shown in our previous work [28] that key-
ord translation operates on a much smaller query space, and is

hus efficient. Besides, the structured queries presented to the user
elp in understanding the data (answer) and allow for more pre-
ise query refinement. We follow the second direction to keyword
earch and extend our previous work to a multi-data-source sce-
ario. We have discussed the main differences to the previous work
hroughout the paper and will summarize as follows: Instead of a
ingle data source, we have extended the keyword and the struc-

ure index to deal with an integrated set of data sources. A dedicate

apping index is proposed to manage links between data sources.
he top-k query search algorithm is adopted for the exploration
f a query space that may span over multiple data sources. For a
ore guided exploration, the previous ranking scheme has been

10 http://www.freebase.com/.
ents on the World Wide Web 7 (2009) 189–203

refined to cope with the many levels of uncertainty that are specific
to keyword search in a multi-data-source scenario.

7.3. Ranking

Ranking has been studied in many contexts. An common mea-
sure for ranking is “popularity”, which is widely adopted by the
IR community. It is captured through the PageRank [3] concept.
Recently, much work has been devoted to adopting this PageRank
concept to relational data [1] and RDF data [26,14]. As discussed,
the edges between (RDF) data elements have different seman-
tics. As a result, the effectiveness of PageRank heavily depends on
the weights assigned to different edge types—a task that requires
(upfront) manual effort that is not suitable for the large-scale data
Web setting. Ranking is also an essential concept in Semantic Web
search engines like Sindice, Watson, Swoogle and Falcons. Essen-
tially, these systems provide lookup functionalities based on an IR
engine, such as Lucene. The IR engine is used to index ontologies,
and the containing semantic data. Keywords submitted by the user
are then matched against the indexed resources, where results are
ranked according to the matching scores returned by the IR engine.
In systems like Sindice, some additional ad-hoc rules are applied on
top, e.g. “prefer data sources whose hostname corresponds to the
resource’s hostname” [21]. More systematic approaches for rank-
ing have been studied for keyword search on data bases [13,15,12].
In Section 4, we have already summarized the main measures
employed by these approaches, i.e. matching score, popularity and
length. In this regard, we have introduced a special notion called
EF/IDF to combine popularity with distinctiveness, and argued that
additional factors such as matching score and coverage are required
for more effective keyword search in the data Web scenario.

7.4. Federated query processing

For dealing with Semantic Web data, Refs. [18,22] have devel-
oped distributed infrastructures for RDF data sources. In [22], the
authors proposed optimization techniques for join ordering, which
we also employ in our query planning. Yet these works do not take
the problem of heterogeneity into account, neither on the schema-
level nor on the data-level. In our work, we propose a procedure for
iterative integration that compute mappings between pair of data
sources as needed.

We make use of data-level mappings to perform similarity joins.
Typically, the processing of similarity joins [17,24] involve an expen-
sive computation of similarities. In our approach, we simply retrieve
the mappings from the index to perform standard joins over the
resulting mapping relation (map join).

8. Conclusions

We have presented Hermes, an infrastructure for search on the
data Web. In the realization of Hermes, we have presented a num-
ber of original contributions: We have proposed a novel technique
for translating user keywords to structured queries against hetero-
geneous Web data sources. Further, we have designed a number of
indices that are needed in order to realize efficient search over the
data Web. Finally, we have elaborated on techniques for distributed
query processing on the data Web, including a map join procedure
that allows efficient combination of results from heterogeneous
sources by exploiting pre-computed mappings.
The evaluation experiments clearly show the feasibility and use-
fulness of the approach. Both the translation of keywords and the
processing of queries can be performed in near real time on a stan-
dard machine. At the same time, the quality of the interpretation of
the user information needs works promisingly effective.

http://www.freebase.com/
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While the two billion RDF triples available through LOD are
lready an amazing playground, this amount of data is still by orders
f magnitude smaller than today’s Web of documents. Still, given
he added value that can be provided once a critical mass exists, we
xpect the amount of data to explode in the coming years. While
oday we are still able to handle the significant part of the Web of
ata on a single machine, Hermes is ready to scale, e.g. by deploying

t on a cloud computing infrastructure.
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