
Enhancing Application Servers with Semantics

Marta Sabou
Dep. of Artificial Intelligence
Vrije Universiteit Amsterdam

The Netherlands
marta@cs.vu.nl

Daniel Oberle
Institute AIFB

University of Karlsruhe
Germany

oberle@aifb.uni-karlsruhe.de

Debbie Richards
Computing Department

Macquarie University Sydney
Australia

richards@ics.mq.edu.au

Abstract

We report on using semantic technology to enhance ap-
plication servers. In particular, the conclusion of our anal-
ysis is that OWL-S, an emerging effort for semantic web-
service descriptions, is a good starting point for supporting
many frequent tasks within a concrete application server
which facilitates reusing and combining Semantic Web soft-
ware modules (e.g. ontology stores, reasoners, etc.). The fo-
cus of this paper is on detailing the design of the supporting
ontology: (1) identifying the aspects of application servers
that benefit from semantic technology and (2) analyzing and
extending OWL-S for this purpose. We also report on the in-
tegration of this ontology within the server.

1. Introduction

Context Middleware is a broadly used term nowadays
and comes into play as soon as one divides an application
into several tiers. Generally speaking, it facilitates multi-tier
application development in distributed information systems.

Service oriented architectures (SOAs) are a new kind of
middleware that are essentially a collection of services that
communicate with each other. The communication can in-
volve either simple data passing or it could involve two or
more services coordinating some activity. Some means of
connecting services to each other is needed. At the moment
the technology of web-services is the most likely connec-
tion technology of SOAs.1 It relies on a set of syntactic stan-
dards (XML, SOAP and WSDL [3]).

Current research promises to automate discovery, com-
position and execution of web-services using Semantic Web
techniques. Namely, they propose augmenting web-services
with formal, ontological descriptions which can be pro-
cessed by reasoning engines in order to automate the afore-
mentioned tasks. The OWL-S2 [4] ontology is a major ini-

1 http://www.service-architecture.com

tiative in this direction. This approach differs from tradi-
tional reuse techniques by blending syntactic (WSDL) and
formal (Description Logics based) descriptions.

Another, more established kind of middleware are Appli-
cation Servers — component-based products that provide
functionality for security and state maintenance, along with
data access and persistence for the development of web ap-
plications. Despite the comprehensive functionality of ap-
plication servers, realizing a complex distributed system re-
mains all but an easy task. For instance, managing compo-
nent dependencies, versions, and licenses is a typical prob-
lem. In Microsoft environments, this is often referred to as
“DLL Hell”. Developers are also confronted with an ever-
increasing repository of programming libraries for standard
tasks such as IO, networking, database access, or the han-
dling of XML. It would be desirable to assist the developer
in using these resources. We propose the addition of seman-
tics to assist with these problems.

Research questions and goals To address this issue, and
also, encouraged by the promises of semantic web-services,
we strive to semantically enhance application servers. In
particular, we wish to answer several research questions:

1. Can we embed semantic technology in such a server?
— this core question is sub-divided in the following
more concrete questions.

2. What are the requirements for ontology enhanced ap-
plication servers? — we investigate the aspects of ap-
plication servers that can benefit from semantic tech-
nology and distill some concrete requirements for a
supporting ontology.

3. Can we reuse similar work from the web-services
field? — namely OWL-S.

We investigate these questions in the context of a con-
crete application server: the Application Server for the Se-
mantic Web (ASSW) [13]. Based on the results of our anal-

2 We worked with the OWL version of DAML-S v0.9.



ysis, as a proof of concept, we build an ontology to be em-
bedded in the server.

In what follows, section 2 introduces our application
server (2.1), presents a set of scenarios that would benefit
from semantic descriptions (2.2) and states a set of con-
crete requirements (2.3), as an answer to our second re-
search question. Section 3 briefly introduces OWL-S and
analyzes the degree to which it corresponds to our goals, in
line with the third research question. Section 4 presents the
ontology we built based on previous analyses in sections 2
and 3. We report on the status of embedding the ontology
into the server in section 5. We present related work, con-
clusion and future work in sections 6 and 7.

2. Motivation

2.1. Application Server for the Semantic Web

Integration of existing software modules is an important
issue for the Semantic Web since complex applications re-
quire more than a single software module. Ideally the devel-
oper of such a system wants to easily combine different —
preferably existing — software modules. So far, however,
such integration had to be done ad-hoc, generating a one-
off endeavour, with little possibilities for reuse and future
extensibility of individual modules or the overall system.
The Application Server for the Semantic Web (ASSW) [13]
addresses this issue by facilitating reuse of existing mod-
ules, e.g. ontology stores, editors, and inference engines
and, thus, the development and maintenance of comprehen-
sive Semantic Web applications.

The architecture of the application server relies on the
Microkernel and component approach. The Microkernel of-
fers a minimal functionality of managing, i.e. starting, stop-
ping and initializing components. Existing software mod-
ules have to be made deployable3 in order to be managed
by the Microkernel. This process adds a wrapper around a
software module and transforms it into a Component. At
run-time, the application server may host several compo-
nents of the same API.

Client software hard-codes the use of a certain API. In
order to facilitate the working with a deployed component,
a client software can use so-called surrogates which are
client-side objects that reveal the same API like a particu-
lar component and relay communication to them 4. Thus, the
client is relieved from handling network protocols and mid-
dleware idiosyncrasies. At run-time, the application server
allows the client to chose which component the surrogate
should relay communication to.

3 We use the word deployment as the process of registering, possibly
initializing and starting a component to the Microkernel.

4 Similar to stubs in CORBA.

The Application Server for the Semantic Web is based on
the design and development of existing application servers,
applying and augmenting their underlying concepts for use
in the Semantic Web. Even more, we wish to use seman-
tic technology within the server itself in several scenarios
as discussed in the next subsection.

2.2. Scenarios

In order to tackle the problems of managing and locat-
ing components, we propose to introduce a formal concep-
tualization of these software related issues. Using this for-
malism allows representing common knowledge about the
domain, such as the fact that component dependencies are
transitive. A multitude of software tools can leverage the
knowledge specified by means of a reasoning engine. Se-
mantic descriptions of software modules can improve many
of the frequently occurring scenarios within an application
server. The scenarios listed below apply to any application
server but we detail them in the ASSW setting.

Implementation details Libraries often depend on other
libraries and a certain archive can contain several li-
braries at once. Given this information, a system could
assist the developer in locating all the required li-
braries necessary. Furthermore, the user might be no-
tified when two libraries require different versions of
a certain third component. For instance, the variously
early versions of XML parsers cause a lot of trouble.
The system only runs if the libraries are included in
the path in a certain order in order to make sure that
the class loader picks up the later version. We envision
to reason with this kind of data in order to make an ed-
ucated suggestion in these situations.

Component Discovery At run-time, a client can dy-
namically decide to which component its surrogate
should relay communication. At this moment in-
formation other than functionality is important,
most prominently certain properties of a compo-
nent, e.g. if an RDF store component is capable of
transactions.

API Discovery Given APIs with similar functionality, one
will find different methods and services with essen-
tially the same functionality. We suggest associating
these implementations with a common service taxon-
omy. This will allow the user to discover implemen-
tations of a certain taxonomy entry. For example, a
developer of client software might need an API that
provides ontology storing and retrieving functionality.
We envision that this will be a semantic search, i.e. in
terms of concepts describing certain types of function-
alities.



Classification of APIs A developer might want to deter-
mine the type of a new API based on the type of its
offered functionality (i.e. its methods). For example an
API offering ontology storage and inferencing capa-
bilities will be of both “StoreAPI” and “InferenceAPI”
types.

Publishing web-services Development toolkits usu-
ally provide functionality for creating stubs and
skeletons or for automatically generating interface de-
scriptions à la java2wsdl. With representation lan-
guages like OWL-S, tool support for these new
languages is needed. Whereas WSDL tools can ob-
tain almost all of the required input directly from the
source code, more powerful languages require ad-
ditional measures. However, having a semantic de-
scription of the API, it will be easier to generate the
corresponding OWL-S description.

2.3. Requirements

The scenarios discussed above lead us to a set of require-
ments which served as design principles for the ontology
presented in section 4.

R1 Module Implementation and Functionality Syntax
The ontology should contain means to describe the im-
plementation and syntax details of software modules
which will be used by the application server for im-
plementation tasks.

R2 Module Characteristics and Functionality Semantics
The ontology should contain means to give high level
descriptions of software modules, e.g. their types such
as ontology stores and reasoners, as well as their char-
acteristics, providers etc. This description supports
component discovery at run-time. R1 and R2 en-
sure that software modules’ APIs are to be described
syntactically and semantically to ensure an easy cou-
pling between both and thus to support reuse of de-
scriptions (see R3).

R3 Reusability and Sharing Semantic descriptions of
software modules should be reusable. Easy cou-
pling of syntactic and semantic description is related
to that. As an ontology is a shared conceptualiza-
tion, it should incorporate existing efforts (such as
standards and technologies) that are already used by
communities.

R4 Domain Independence The ontology should be
reusable over a wider range of domains (not just in
our Semantic Web domain), therefore we should sepa-
rate generic and domain specific concepts.

3. Extracting design principles from OWL-S

In line with our desire to support reuse and sharing, and
also motivated by requirement R3 of incorporating existing
efforts, we have taken OWL-S as a starting point for our on-
tology.

OWL-S [4] is an OWL ontology conceptually divided
into three sub-ontologies for specifying what a service does
(Profile), how the service works (Process) and how the ser-
vice is implemented (Grounding)5. The existing grounding
allows aligning the semantic specification with implemen-
tation details described using WSDL [3], the industry stan-
dard for web-service description. There are several interest-
ing design principles underlying OWL-S which inspired us
in our work:

1. Semantic vs. Syntactic descriptions OWL-S differenti-
ates between the semantic and syntactic aspects of the de-
scribed entity. In OWL-S the Profile and Process ontologies
allow for a semantic description of the web-service while
the WSDL description simply encodes the syntactic aspects
of the service (such as the names of the operations and their
parameters). The Grounding ontology provides a mapping
between the semantic and the syntactic parts of a descrip-
tion facilitating flexible associations between them. For ex-
ample a certain semantic description can be mapped to sev-
eral syntactic descriptions if the same semantic functional-
ity is accessible in different ways. The other way around, a
certain syntactic description can be mapped to different con-
ceptual interpretations offering different views of the same
service. This modelling satisfies our requirements R1 and
R2 enforcing separation while, maintaining easy coupling
between semantic and syntactic descriptions.

2. Generic vs. Domain knowledge The second principle
which underlies the design of OWL-S is the separation be-
tween generic and domain knowledge. OWL-S offers a core
set of primitives to specify any type of web-service. These
descriptions can be enriched with domain knowledge spec-
ified in a separate domain ontology. This modelling choice
allows using the core set of primitives across several do-
mains just by varying the domain knowledge, as envisaged
by our requirement R4.

3. Modularity Another feature of OWL-S is the partitioning
of the description over several concepts. The best demon-
stration for this is the way the different aspects of a descrip-
tion are partitioned in three concepts. As a result a Service
instance will relate to three instances each of them contain-
ing a particular aspect of the service. These are, ServicePro-
file, ServiceModel and ServiceGrounding.

5 The OWL-S Service ontology contains four concepts. Service, Servi-
ceProfile, ServiceModel and ServiceGrounding. The last three are spe-
cialized in three sub-ontologies called Profile, Process and Grounding
and augmented by additional concepts and properties (cf. also Figure
1).



There are several advantages of this modular modelling.
First, since the description is split up over several instances
it is easy to reuse certain parts. For example one can reuse
the Profile description of a certain service. Second, service
specification becomes very flexible as it is possible to spec-
ify only the part that is relevant for the service (e.g. if it
has no implementation one does not need ServiceModel and
ServiceGrounding). Finally, any OWL-S description is easy
to extend. If a concept is not appropriate for a certain ap-
plication domain one can subclass it to a more specialized
concept.

Besides all these attractive characteristics of OWL-S, in
previous work [16, 17], where we used OWL-S for its orig-
inal purpose, i.e. the description of web-services, we found
a number of shortcomings including the inability to han-
dle overloading, ambiguity between the definition of inputs,
outputs, preconditions and effects in the Process and Pro-
file ontologies and limited ability to express complex inter-
nal structures. Both our positive and negative conclusions
guided us in designing the ontology we present next.

4. Ontology Design

This section presents our ontology (graphically sketched
in the appendix) and shows how our requirements are met.
The conclusion of the previous section is that OWL-S can
be a good starting point for our own ontology. The main dif-
ficulty was in the type of software entities to be described.
While OWL-S describes software entities accessible via a
web interface, known as web-services, our goal is to de-
scribe components and their APIs. As a result some of the
parts of OWL-S were not reusable, however many of its un-
derlying ideas proved to be useful in our modelling effort.
We provide a comparative overview of our ontology and
OWL-S in 4.1. Subsection 4.2 presents each sub-ontology
in detail and shows how it implements the specified require-
ments. Readers interested in a concrete example of a mod-
ule description showing how all these ontologies are used at
instantiation level are referred to [11].

4.1. Overview

The design principles of OWL-S identified in the previ-
ous section underpin our work, as comparatively depicted
in Figure 1. These principles influenced the kinds of sub-
ontologies and their relationships. The following discussion
gives the rationale of our design decisions.

1. Semantic vs. Syntactic descriptions We have adopted the
separation between semantic and syntactic descriptions in
order to achieve a flexible mapping, therefore complying
with requirements R1 and R2. A number of our ontologies
allow semantic description and others are used for syntac-
tic descriptions. A mapping exists between the description

of both aspects. However, given the different type of enti-
ties we want to describe, we modified some of the OWL-S
ontologies as follows:

• we have kept the OWL-S Profile ontology for specify-
ing semantic information about the described compo-
nents. Also we have extended it with a few concepts for
describing the functionality of APIs (and their meth-
ods) at the conceptual level. This was necessary be-
cause the Profile ontology’s constructs for specifying
functional descriptions were too shallow (see also sec-
tion 4.2.2). These extensions are grouped in a small
ontology called API Description which is described in
section 4.2.3.

• we did not use the Process ontology because our pre-
vious analysis [16] yielded that Semantic Web tools
usually offer a set of simpler functionalities, but there
is no predefined way of invoking them that could be
captured in a certain dataflow. Should the type of de-
scribed components change, our modularly-designed
ontology can easily be extended with the Process on-
tology.

• we defined our own language for describing APIs syn-
tactically since WSDL is designed for specifying net-
work endpoints. For this purpose, we formalized a sub-
set of IDL (Interface Description Language [9]) terms
in the IDL ontology.

• as a consequence of the changes above, we could not
reuse the existing OWL-S Grounding, rather we wrote
our own grounding ontology (IDLGrounding — see
4.2.6) which allows mappings between the conceptual
description of the APIs (in the Profile) and their syn-
tactic specification (IDL).

2. Generic vs. Domain knowledge Currently our core on-
tology allows specifying semantic and syntactic knowledge
about APIs in a generic way facilitating its combination
with domain knowledge in line with our desiderata ex-
pressed by R4. For our specific goals we have built two
domain ontologies in the area of the Semantic Web. The
first one specifies the type of existent Semantic Web soft-
ware modules at a very coarse level. The second one de-
scribes the functionality of semantic web specific APIs at a
more fine grained level (i.e. in terms of methods and their
parameters). Naturally, these ontologies can be easily re-
placed depending on the application domain, for example
bio-informatics.

Our approach can be described in terms of the ONIONS
[7] ontology development methodology which advises
grouping knowledge with different generality in three sep-
arate ontologies. Generic theories contain general truths
and their concepts are used in defining Intermediate knowl-
edge which can be specialized in corresponding Domain



OWL-S Service

Profile

WSDL

Software Module

IDL GroundingOWL-S Profile’

IDL

Web-services Software Modules

API Description

Implementation

Semantic Web
API Description

Semantic Web
Profiles

Generality

Type of

Software Entiity

D
o

m
a

in
In

te
rm

ed
ia

te

S
em

a
n

tic
S

yn
ta

ctic
D

escrip
tio

n
D

escrip
tio

n

(sub)ontology

Domain Ontology

uses ontology

Process Grounding

Figure 1. Overview of ontologies

ontologies. From this point of view the OWL-S ontol-
ogy (and WSDL) is considered to be at the Intermedi-
ate knowledge level. The same is true for our extensions
of OWL-S, as shown in Figure 1. The intermediate knowl-
edge can be specialized in Domain ontologies as illustrated
by OWL-S and our approach. We are currently align-
ing our intermediate level to the DOLCE [14] generic
ontology.

3. Modularity Modularity enables easy reuse of specifica-
tions and extensibility of the ontology. An important issue is
the size of the reusable parts. For example, because a Profile
instance contains a lot of information, which is often very
specific such as the contact information of the providers, it
is less likely that this instance will be reused by any other
description (except if it is provided by the same company).
Therefore a coarser granularity (less information per con-
cept) increases the chance of reusability.

We have reused this principle by identifying related con-
tent, relating it to a central concept and grouping everything
in small ontologies which can be re-used as sub-ontologies.
We will describe the process of isolating reusable know-
ledge in the following section, where we present a short
overview of each ontology.

4.2. The sub-ontologies

A second source of inspiration for our design were the
requirements put forward in section 2.3. In this section we
briefly describe each of our sub-ontologies indicating the
scenarios (2.2) that they support as well as the requirements
(2.3) that they fulfill. Table 1 shows the relationship be-
tween our requirements and sub-ontologies, confirming the
major influence that these requirements had on our design.

Requirement \ Sub-ontology So
ft

w
ar

e
M

od
ul

e

O
W

L
-S

Pr
ofi

le
’

A
PI

D
es

cr
ip

tio
n

Im
pl

em
en

ta
tio

n

ID
L

ID
L

G
ro

un
di

ng

D
om

ai
n

O
nt

ol
og

ie
s

R1 Implementation/Syntax × ×
R2 Conceptual/Semantics × × ×
R3 Reuse and Sharing × × × ×
R4 Domain Independence ×

Table 1. Dependencies between require-
ments and sub-ontologies.

A more detailed description of the ontologies is available
in [11]. Finally, we advise the reader to check the graphical
sketch in the appendix for further clarification.

4.2.1. Software Module ontology This ontology is simi-
lar to the OWL-S Service ontology and thus responds to our
requirement R3 of sharing and reuse of existing standards. It
contains the main concept and the top concept for each type
of description, ensuring a coarse-grained modularity for the
whole description. We performed some changes:

• we have renamed the Service concept to SoftwareMod-
ule, as such entities are the focus of our descriptions.
Accordingly we have renamed the ServiceProfile and
ServiceGrounding concepts.

• we have excluded the ServiceModel concept, since, as
stated in 4.1, we are not interested in the internal work-
ing of the modules.



• we have added a SoftwareModuleImplementation con-
cept that groups together implementation details de-
scribed in the Implementation ontology.

The three concepts that describe a SoftwareMod-
ule can be specified using the corresponding ontologies as
described next.

4.2.2. OWL-S Profile (extension) We use the OWL-S
Profile ontology to specify the particular characteristics of
a SoftwareModule such as the contact information of the
providers and certain parameters. For example an ontology
store would have a service parameter specifying the rep-
resentation language used. Therefore, our Profile describes
the component as a whole. Information of this type might
be used during component discovery at run-time and cor-
responds to our requirement R2 of providing generic, high
level characteristics of the described modules. Some exam-
ples of such parameters are provided in 4.2.7.

We found that the current functional description speci-
fication of OWL-S is focused on expressing a single func-
tionality, while we want to describe several functionalities
offered by a software module, which correspond to (a set
of) methods in the API. Because of that, we have added a
new property to Profile, namely hasAPIDescription, which
ranges over the APIDescription concept that groups the in-
formation used to describe an API and is separated in a
small ontology (API Description). We separated this con-
tent in a small ontology because we expect that many mod-
ules will be able to reuse such functionality descriptions
(much more than the contact information of the providers).
The Profile was kept also to support sharing and reuse of ex-
isting standards (requirement R3).

4.2.3. API Description The API Description ontology of-
fers a framework for semantically describing the function-
ality offered by methods of APIs (AddData, RemoveData)
and accordingly several types of APIs (StoreAPI, Infer-
enceAPI). As such, it complements the OWL-S Profile for
our purposes.

The ontology’s central concept, called APIDescription,
can have multiple hasMethod properties for instances of
type Method. Furthermore, each instance of Method has a
set of parameters such as inputs, outputs, preconditions and
effects. Each parameter features a hasType property which
points to a concept in a domain ontology. Types of Methods
and APIDescriptions are specialized in terms of domain on-
tology concepts as exemplified in 4.2.7.

This kind of information is used to perform the task of
discovering available APIs according to their offered func-
tionality (methods), to classify new APIs (and methods) and
to derive OWL-S descriptions for the corresponding web-
services. Requirement R2 motivates such semantic func-
tionality descriptions.

4.2.4. Implementation This ontology contains imple-
mentation level details of a module and thus responds to
requirement R1. There are two aspects of the implementa-
tion:

• CodeDetails describe characteristics of the code, such
as the class that implements the code, the required
archives or the version of the code. All these aspects
are modelled as properties of the CodeDetails concept.
Note that these characteristics are specific for a cer-
tain implementation and therefore not reusable. They
are used during automatic deployment of the compo-
nents.

• the signature of the interface. The name of the meth-
ods and their parameters are modelled using the ontol-
ogy presented next (IDL).

The main concept, Component (which is a sub-
class of SoftwareModuleImplementation) bundles an in-
stance of CodeDetails and an instance of Interface (the
class which describes the signature of the API).

4.2.5. IDL We have formalized a small subset of the IDL
(Interface Description Language [9]) specification into an
ontology that allows describing signatures of interfaces. The
Interface concept corresponds to a described interface. It
features a property hasOperation which points to an Oper-
ation instance. Each Operation can have a set of (input) pa-
rameters of a certain type. Also each Operation returns an
OperationType (which can also be void). Interfaces, Oper-
ations and Parameters have identifiers (which correspond
to the names by which they are used in the code). This al-
lows us to specify all the syntactic details needed for auto-
matic invocation of the methods (see requirement R1) us-
ing a widely used industry standard (therefore complying to
R3). It also addresses requirement R1 of describing imple-
mentation details.

4.2.6. IDL Grounding The IDL Grounding ontol-
ogy provides a mapping between the APIDescription
and the Interface description. The mapping is straight-
forward: concepts InterfaceGrounding, MethodGrounding,
InputGrounding and OutputGrounding map between re-
spective concepts from the API Description and Implemen-
tation sub-ontologies.

We acknowledge the possibility of redundancy in our ap-
proach (given that both the IDL and the API Description on-
tologies look similar) but easy reuse and flexible coupling
(see R2 and R3) were a higher design goal in this work.
Namely, a certain concept level description can be grounded
to many different interfaces that may look technically dif-
ferent, i.e. there might be other signatures.

4.2.7. Domain Ontologies We have built two domain on-
tologies that specialize parts of the generic ontology pre-
sented above. By isolating domain knowledge in separate



sub-ontologies, we conform to the OWL-S design principles
and implicitly requirement R4 (Domain Independence).

The first one (Semantic Web Profiles) generically de-
scribes Semantic Web software modules. We have based our
ontology on the outcome of an extensive survey in this do-
main carried out within the OntoWeb project. The survey
[15] distinguishes several categories of software modules
(ontology building modules, ontology evaluation modules
etc.) and for each category proposes a set of characteristics.
These characteristics are used as a framework for compar-
ing the actual modules which are presented.

We transformed this information in a domain ontology
as follows. We built a taxonomy of categories according
to the document. Each category became a subclass of Pro-
file. The characteristics of each category were modelled as
sub-properties of the OWL-S serviceParameter. For exam-
ple we have created the OntologyStore category and added
properties such as queryLanguage, representationLanguage
as suggested by the survey. The additional properties (e.g.
QueryLanguage) are all specializations of serviceParame-
ter. We concluded that it was easy to extend OWL-S Profile
(the serviceParameter property) for modelling the informa-
tion in the survey. Also, this will allow easy addition of ex-
tra knowledge in the future, since the survey only offers a
non-exhaustive, reduced set of characteristics.

The second ontology (Semantic Web API Description)
describes Semantic Web specific functionalities. It contains
a set of API and functionality types (methods) which are
generally offered. For example we have declared a Store-
API concept, which denotes APIs for storing engines, and
defined it as providing an AddData method (for adding data
into the store) and a Retrieve method (for retrieving the data
from the store). Note that by combining simple APIs one
can create complex ones. For example a StoreAndQueryAPI
will be obtained by inheriting methods both from a Store-
API and a QueryAPI. Further, within a type of API, special-
izations can be created by declaring extra methods special-
izing the existing ones. The schema of this ontology is pro-
vided by the API Description ontology, where APIs are of
type APIDescription and their functionalities (such as Ad-
dData) are of type Method. We trust that such an ontol-
ogy will allow performing a flexible search over the exist-
ing APIs.

5. Ontology Deployment

We have incorporated this ontology in our application
server6. Semantic descriptions of the registered components
are stored in a central repository, called registry. For more

6 Our implementation is called “KAON SERVER” and can be down-
loaded from http://kaon.semanticweb.org

implementation details as well as actual examples of com-
ponent descriptions we refer to a technical report [12].

Currently, semantic descriptions support two main sce-
narios as introduced in section 2.2. First, “implementation
details” such as loading components are carried out auto-
matically by using (1) the implementation details in each
description (according to the Implementation ontology) and
(2) the reasoning capabilities of the server. For example, the
transitive closure of all required libraries by a certain com-
ponent can be deduced.

Second, “component discovery” is supported at run-
time. Therefore, the client can (1) query the registry for
available components, (2) chose a component from the re-
turned list (based on its properties) and (3) use that compo-
nent. For example, OilEd [1], an ontology editor acting as
a client, can query for existing ontology stores or reason-
ers, and then select and interact with any of the available
components. This functionality is supported by Profile de-
scriptions.

6. Related Work

Classical Software Reuse Systems are comparable to
our work in that they also need to describe software mod-
ules appropriately for efficient and precise retrieval. Tech-
niques like the faceted classification [5] are limited to
the representation of the provider’s features. Analogi-
cal software reuse [10] shares a representation of modules
that is based on functionalities achieved by the soft-
ware, roles and conditions. Zaremsky and Wing [19]
describe a specification language and matching mecha-
nism for software modules. They allow for multiple de-
grees of matching but consider only syntactic information.
UPML, the Unified Problem-solving Method Develop-
ment Language [6], has been developed to describe and
implement intelligent broker architectures and compo-
nents to facilitate semi-automatic reuse and adaptation. It is
a framework for developing knowledge-intensive reason-
ing systems based on libraries of generic problem-solving
components that are represented by inputs, outputs, precon-
ditions and effects of tasks. Note that these efforts either
describe very different kinds of components or concen-
trate solely on syntactic or semantic descriptions without
blending them together.

Another body of related work are adaptations of OWL-
S to particular domains. For example, [18] uses an ex-
tension to OWL-S for describing web-services in the bio-
informatics domain. OWL-S is enriched with speech-acts
when describing agent based web-services in [8]. However,
none of them actually considers software description at the
API level.

IDL is augmented with concepts specified in Descrip-
tion Logics by [2]. More specifically they consider adding



the following kinds of information to an IDL interface:
a) data invariants (particularly useful for database-like in-
tegrity constraints, b) procedure pre- and post-conditions,
c) object behavior models of dynamics. However, this ap-
proach just augments the syntactic part of an API’s descrip-
tion. It does not deal with semantic information about a
method’s functionality like our approach.

7. Conclusions and Future Work

The work presented in this paper is motivated by the idea
of applying semantic web-services technology to improve
application servers in general, and, an application server
which supports development of complex Semantic Web ap-
plications in particular. So far, we successfully deployed
the presented ontology for the “implementation tasks” and
“component discovery” scenarios. Current and future work
concentrates in supporting the other scenarios as well. Sev-
eral conclusions emerged during our work.

First, we were able to identify many possible usage
scenarios for Semantic Web technology within application
servers (in response to our second research question). We
also observed that, even if derived in the context of a partic-
ular application server, the scenarios lead to requirements
which are generally applicable.

Further, we showed that existing work on describing
web-services (OWL-S) serves as a good basis for the ex-
tension towards an ontology for describing API based soft-
ware modules (in response to the third research question).

The resulting ontology provides general concepts to de-
scribe any API based software. Its similarity with OWL-S is
motivated by the observation that web-services often sim-
ply reflect all the functionalities offered by an underlying
API. Therefore, we believe that the descriptions of a soft-
ware module offering multiple interfaces should have a sin-
gle conceptual part and different groundings, one for each
interface type. In order to express these considerations for-
mally, to increase the clarity of semantics and offer a richer
axiomatization for our ontology we plan to align it to the
DOLCE [14] foundational ontology.

References

[1] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd:
a reason-able ontology editor for the Semantic Web. In
Proc. of the Joint German Austrian Conference on AI, vol-
ume 2174 of LNAI, pages 396–408. Springer, 2001.

[2] A. Borgida and P. Devanbu. Adding more DL to IDL: to-
wards more knowledgeable component inter-operability. In
Proceedings of the 21st international conference on Software
engineering. IEEE Computer Society Press, 1999.

[3] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web Services Description Language (WSDL).
Working Draft, March 2003. http://www.w3.org/TR/wsdl.

[4] D. S. Coalition. DAML-S: Semantic Markup for Web Ser-
vices. DAML-S v. 0.9 White Paper, May 2003.

[5] R. P. Diaz. Implementing Faceted Classification for Soft-
ware Reuse. Communications of the ACM, 34(5):88–97,
May 1991.

[6] D. Fensel, R. Benjamins, E. Motta, and B. J. Wielinga.
UPML: A framework for knowledge system reuse. In Proc.
of the 16th IJCAI 99, pages 16–23, 1999.

[7] A. Gangemi, D. M. Pisanelli, and G. Steve. An overview
of the ONIONS project: Applying ontologies to the integra-
tion of medical terminologies. Data and Knowledge Engi-
neering, 31(2):183–220, Sep 1999.

[8] N. Gibbins, S. Harris, and N. Shadbolt. Agent-based Seman-
tic Web services. In Proc. of the 12th Int. WWWW Confer-
ence, pages 710–171. ACM, 2003.

[9] O. M. Group. IDL / Language Mapping Specification - Java
to IDL, August 2002. version 1.2.

[10] P. Massonet and A. van Lamsweerde. Analogical reuse of
requirements frameworks. In 3rd IEEE International Sym-
posium on Requirements Engineering, pages 26–39. IEEE
Computer Society, 1997.

[11] D. Oberle, M. Sabou, and D. Richards. An ontology
for semantic middleware: extending DAML-S beyond web-
services. Technical Report 426, Institute AIFB, University
of Karlsruhe, 76128 Karlsruhe, Germany, Sep 2003.

[12] D. Oberle, S. Staab, R. Studer, and R. Volz. KAON SERVER
Demonstrator. WonderWeb Project Deliverable, D7, 2003.

[13] D. Oberle, S. Staab, R. Studer, and R. Volz. Supporting ap-
plication development in the semantic web. ACM Transac-
tions on Internet Technology (TOIT), 4(4), Nov 2004.

[14] A. Oltramari, A. Gangemi, N. Guarino, and C. Masolo.
Sweetening ontologies with DOLCE. In 13th International
Conference, EKAW 2002, volume 2473 of LNCS. Springer.

[15] A. G. Perez. A survey on ontology tools. OntoWeb Deliver-
able 1.3, May 2002. www.ontoweb.org.

[16] D. Richards and M. Sabou. Semantic Markup for Seman-
tic Web Tools: A DAML-S Description of an RDF-Store. In
2nd Int. Semantic Web Conference (ISWC), volume 2870 of
LNCS, pages 274–289. Springer, Sep 2003.

[17] M. Sabou, D. Richards, and S. van Splunter. An experience
report on using DAML-S. In Proc. of the 12th Int. World
Wide Web Conference, 2003.

[18] C. Wroe, R. Stevens, C. Goble, A. Roberts, and M. Green-
wood. A Suite of DAML+OIL ontologies to describe Bioin-
formatics Web Services and Data. International Journal of
Cooperative Information Systems, 12(2):197–224, 2003.

[19] A. M. Zaremski and J. M. Wing. Specification matching of
software components. ACM Transactions on Software Engi-
neering and Methodology, 6(4):333–369, Oct 1997.



A
P

P
E

N
D

I
X

Software Module
Implementation

SoftwareModule-
Grounding

SoftwareModule-
Profile

Software Module

Generic Ontology

DAML-S Profile´

Profile
hasAPIDescription APIDescription

API Description

hasMethod

Method

Parameter

...

ServiceParameter

service-
Parameter

IDL Grounding

IDLGrounding

InterfaceGrounding

MethodGrounding

InputGrounding

OutputGrounding

Component

Functional-
Component

System-
Component

Proxy-
Component

Interface

Operation

Parameter

hasOperation

returns

IDL

Code-
Details

Library

requires

. . .

Implementation

Generic

Intermediate

Domain

SoftwareModule-
Implementation

(sub)ontology

property

concept

uses ontology

subconcept

Actor

contactInfo

name
...

hasParameter

Thing
hasType

Input Output Precondition Effect

hasInterfaceGrounding

mapsInterface

hasOutputGrounding

hasMethodGrounding

OperationType

String

Type + void Type

typeSpecification hasType

parameterIdentifier

operationIdentifier

interfaceIdentifier

mapsOperation

mapsParameter
hasInputGrounding

mapsReturnType

mapsMethod

mapsInput
mapsOutput

mapsAPI

hasInterface

Interceptor

requiresLibrary

deployedWith

. . .

. . .

hasCodeDetails

presents

supports
presentedBy implementedBy

implements

supportedBy

SoftwareModule

OntologyStore

Semantic Web Profiles

QueryEngine

Datatypes

Reification
...

.

.

.

StoreAPI

Semantic Web API Description

QueryAPI

queryLanguage

...
representationLanguage

AddData

Retrieve
.

.

.

.

.

.

.

.

.

.

.

.

StoreAndQueryAPI

hasMethod

hasMethod

AddStatement AddOntology


