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Executive Summary

In D3.8.1, we reported on the evaluation of our approach to learning disjointness axioms for the purpose
of mapping debugging, i.e. the improvement of automatically generated alignments by means of ontology
reasoning. Moreover, first experiments on FAO data demonstrated the basic feasibility of our method for
learning complex class descriptions from natural-language definitions. This deliverable continues our series
of evaluation experiments and describes new methods for learning networked ontologies. We start by a short
overview of NeOn, focusing on WP3 and the definition of context, and then report on the implementation and
evaluation of two FCA-based approaches to ontology refinement. More specifically, we describe a novel
method for the semi-automatic acquisition of complex property restrictions and its evaluation on the well-
known SWRC ontology as well as a new plugin that serves as a graphical frontend for RELExO. In the
second part of the deliverable, we present the results of several experiments that aim to demonstrate possible
synergies between ontology learning and pattern-based ontology engineering with the help of OntoCase.



D3.8.2 Evaluation of Methods for Contextualized Learning of Networked Ontologies Page 5 of 44

Contents

1 Introduction 7
1.1 The Big Picture: NeOn and WP3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Related Deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Exploration-based Ontology Refinement 10
2.1 Context Sensitivity for Networked Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Semi-automatic Acquisition of Property Restrictions . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Ontology Refinement Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Acquisition of Role Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.5 Example Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.6 Related Work and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 A NeOn Toolkit Plugin for Ontology Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 User Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Modeling Patterns for Ontology Engineering 28
3.1 Context Sensitivity for Networked Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Overview of OntoCase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Experiment motivation and goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Example illustrating goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Experiment results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 Providing structure to learnt ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.2 Enrichment as support for pattern matching . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Conclusion and Outlook 41

Bibliography 42

2006–2009 c© Copyright lies with the respective authors and their institutions.



Page 6 of 44 NeOn Integrated Project EU-IST-027595

List of Figures

1.1 Relationships between different workpackages in NeOn . . . . . . . . . . . . . . . . . . . . . 8

2.1 Ontology Refinement Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 RoLExO Implementation. “The Thinker” indicates user involvement. . . . . . . . . . . . . . . . 17

2.3 Entering a counterexample, i.e. a pair of individuals related by the author role. . . . . . . . . . 18

2.4 How a hypothetic GDRR is displayed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 RELExO: preference page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 RELExO: selection of attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 RELExO: hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 RELExO: counterexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 RELExO: save ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 The OntoCase framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 The Agent-role pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 The Information realization pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Two unconnected concepts as input ontology. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 The ontology after applying the Object-role pattern. . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 The enriched input ontology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 The output ontology after applying the Agent-role pattern. . . . . . . . . . . . . . . . . . . . . 34



D3.8.2 Evaluation of Methods for Contextualized Learning of Networked Ontologies Page 7 of 44

Chapter 1

Introduction

While the realization of the semantic web as envisioned by Tim Berners-Lee is still hampered by the lack
of ontological resources, more and more people tend to see the future of semantic technologies in applica-
tion scenarios such as e-business or life sciences, which require large scale reasoning over very complex
domains. But these knowledge-intensive applications even more than the semantic web depend on the avail-
ability of expressive, high-quality ontologies. Approaches towards the automatic or semi-automatic construc-
tion of ontologies could help to overcome this knowledge acquisition bottleneck – and indeed, a huge number
of ontology learning tools and frameworks have been developed in recent years. They all aim to enable the
automatic or semi-automatic generation of ontologies from various kinds of resources. Nevertheless, both
quality and expressivity of the ontologies which can be acquired by the current state-of-the-art in ontology
learning have failed to meet the expectations of people who argue in favor of powerful, knowledge-intensive
applications based on ontological reasoning.

Our work aims at providing methods and tools to facilitate the generation of expressive ontologies suitable
for reasoning-based applications. The methods we propose are suitable for enriching (or refining) any OWL-
based ontology such that previously implicit assumptions are explicated in a formal way. Both formalness
and explicitness of knowledge are indispensable requirements for automated logical inference and indeed,
reasoning-based applications immediately benefit from the enrichment of an ontology, as the enhanced ax-
iomatization increases the number of possible conclusions. However, in particular, such knowledge-intensive
applications are very sensitive to modeling errors and incorrect formalizations as well as logical inconsisten-
cies can have a serious impact on the overall usefulness of the underlying ontologies. Our methods and
experiments therefore not only concentrate on the acquisition or enrichment of ontologies, but also aim to
ensure the quality of the learned ontologies by automated means. Ontology design patterns are an effective
and efficient means to incorporate best-practices of ontology construction into manually or automatically ac-
quired axiomatizations. At the same time, automated approaches to applying ontology design patterns can
benefit from ontology learning techniques. In this deliverable and the experiments described in the follow-
ing, we therefore aim to outline possible synergies between ontology learning and pattern-based ontology
engineering.

In D3.8.1 [VB08], we reported on the evaluation of our approach to learning disjointness axioms for the
purpose of mapping debugging, i.e. the improvement of automatically generated alignments by means of on-
tology reasoning. Moreover, first experiments on FAO data demonstrated the basic feasibility of our method
for learning complex class descriptions from natural-language definitions. This deliverable continues our se-
ries of evaluation experiments and describes new methods for learning networked ontologies. We start with
a short overview of NeOn, focusing on WP3 and the definition of context (cf. Section 1.1, which we will occa-
sionally refer to in the remainder of this deliverable). Chapter 2 describes the implementation and evaluation
of two FCA-based approaches to ontology refinement. More specifically, in Section 2.2.4, we present a novel
method for the semi-automatic acquisition of complex property restrictions and its evaluation on the well-
known SWRC ontology. Section 2.3 introduces a new plugin that serves as a graphical frontend for RELExO
(see NeOn D3.8.1, Chapter 4). In Chapter 3 two sets of experiments involving the OntoCase method are

2006–2009 c© Copyright lies with the respective authors and their institutions.
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presented and analysed. OntoCase was discussed in D3.8.1 [VB08] and now this discussion is followed
by evaluations of the OntoCase approach. We mainly show that OntoCase improves on learnt ontologies
generated by the ontology learning tool Text2Onto and that on the other hand such ontology learning tools
can facilitate pattern matching through enriching the input ontologies used by OntoCase. Finally, Chapter 4
concludes with a summary and an outlook to future work.

1.1 The Big Picture: NeOn and WP3

The research reported in this deliverable is part of NeOn WP3 – “Context sensitivity for Networked Ontolo-
gies”. As illustrated by Figure 1.1, WP3 constitutes a central component of the overall NeOn architecture.
Among the most important goals of this workpackage is the development of formalisms and methods for
dealing with context-sensitivity of ontologies, including specific solutions for applications such as ontology
alignment or reasoning.

 

Figure 1.1: Relationships between different workpackages in NeOn

Context sensitivity for networked ontologies. For this deliverable, we adopt the notion of context as a
semantic modifier, which is considered something that changes our interpretation of a knowledge base. This
definition was first introduced in NeOn D3.1.1 and refined later by further definitions, e.g., in NeOn D3.1.3.
The latter deliverable instantiates the original abstract notion of context in three different ways: provenance,
argumentation and mapping.
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• Provenance refers to the origin of an ontology element and constitutes the most important type of
context in this deliverable. By associating an entity or axiom with provenance information we can
represent, for example, knowledge about its creator (typically, a human or automatic agent), the time it
was added to the ontology or lexical resources providing a justification for its existence.

• Mappings are directed semantic relationships (also called “correspondences”) between elements in
different ontologies. As suggested in D3.1.3, undirected correspondences can be represented by bi-
directional mappings. In the following, we will use the term ontology alignment to refer to a set of
correspondences including, e.g., subsumption or equivalence relationships.

• Argumentation is the exchange of arguments in favor of or against particular ontology design decisions.

1.2 Related Deliverables

Deliverable D3.8.1 [VB08] presents the OntoCase method that is used in the experiments of Chapter 3. On-
tology content design patterns were presented in D5.1.1 [SFBG+07] and more recently in D2.5.1 [PGD+08].
Evaluations of content design patterns as such are presented in D5.6.2 [DSFGP+09].

1.3 Acknowledgements

The work on exploration-based ontology engineering reported in Chapter 2 of this deliverable is partly based
on a collaboration with Sebastian Rudolph from Karlsruhe University. Data for the OntoCase experiments
was collected and pre-processed by Claudio Baldassarre at the FAO.
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Chapter 2

Exploration-based Ontology Refinement

In this chapter, we describe two complementary approaches that aim to support the user in the difficult and
time-consuming process of ontology refinement. One of these approaches, which is instantiated by a tool
named RELExO (Relational Exploration for Learning Expressive Ontologies), has already been introduced
in D3.8.1, but so far lacked a proper integration with the NeOn Toolkit. In Section 2.3, we therefore present
a new plugin that serves as a graphical frontend for RELExO and extends the Toolkit’s core functionality
by automatic support for ontology evaluation and refinement. The second approach is similar to the afore-
mentioned one in that it is based on relational exploration and formal concept analysis. However, the axioms
acquired by this approach and its implementation in the RoLExO tool1 (Role Exploration for Learning Expres-
sive Ontologies, cf. Section 2.2.4) belong to a different logical fragment which is not covered by RELExO. In
fact, RoLExO has been specifically developed to assist the ontology engineer in specifying complex domain-
range restrictions of object properties, i.e. non-taxonomic relationships.

2.1 Context Sensitivity for Networked Ontologies

The semi-automatic refinement of ontologies by means of RoLExO (cf. Section 2.2.4) and RELExO (cf.
Section 2.3) relates to our understanding of context as a semantic modifier as follows.

Ontology alignment. Both relational and role exploration can be used to support the process of ontology
alignment and integration, because the construction of a formal context from classes in two different ontolo-
gies enables us to interactively acquire subsumption axioms corresponding to ontology mappings. This kind
of semi-automatic ontology alignment is particularly useful when it comes to the integration of domain and
top-level ontologies as the latter feature a very high level of abstraction that it is very difficult to handle for au-
tomatic alignment approaches, e.g., based on label similarity. However, note that the application of methods
for exploration-based ontology refinement is left for future work (cf. Chapter 4).

2.2 Semi-automatic Acquisition of Property Restrictions

The more complex an ontology or the bigger a knowledge base is, the more difficult is its extension, evaluation
and refinement. In practical scenarios with medium to large size ontologies, it is almost impossible even for
an experienced ontology engineer to anticipate all the logical consequences of a modeling activity such
as the addition of a class or axiom. At the same time, domain experts who are presented with possible
formalizations of their knowledge, e.g., automatically generated by an ontology learning method (cf. D3.8.1,
Chapter 4), often cannot tell if a given set of axioms sufficiently approximates their conceptualization.

1So far, RoLExO is only available as a stand-alone version. The development of a NeOn Toolkit plugin is left for future work.
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In D3.8.1 [VB08], we therefore proposed a systematic, reasoner-aided approach to ontology acquisition and
refinement. The instantiation of this approach, the RELExO framework (see D3.8.1, Section 4.4), combines
a method for learning complex class descriptions from textual definitions with the FCA-based technique of
relational exploration. By asking decisive questions to the user, hence forcing important modeling deci-
sions, the exploration of class extension relationships guarantees logical completeness and at the same time
reveals unintended logical consequences. This way, RELExO not only supports the user in a stepwise re-
finement of the ontology, but also helps to ensure the compatibility of a logical axiomatization with the user’s
conceptualization.

Finally, the exploration leads to an ontology that is expressive enough to provide unique answers to all the
possible queries (such as subsumption or class membership) with regard to the set of atomic classes in the
exploration scope. This type of completeness increases the overall quality of the ontology and its usefulness
for any sort of reasoning-based application, since it enables new conclusions and the derivation of previ-
ously unknown facts. When it comes to modeling object properties and complex domain-range restrictions,
however, concentrating on classes and class subsumption relationships is not a suitable way any more to
acquire the knowledge we need. For this reason, we implemented a complementary approach, which uses
role exploration to support the acquisition of complex domain-range restrictions [VR08a]. In this section, we
describe in depth the conceptual design and implementation of this approach and motivate its feasibility by
means of a practical ontology engineering scenario.

2.2.1 Introduction

Ontologies constitute the backbone of Semantic Web technologies and hence provide an essential ingredi-
ent for Web Intelligence. The increasing uptake of these technologies by industry intensifies the need for
medium- to large-size, yet expressive and high-quality ontologies. However, the modeling and maintenance
tasks required to satisfy those needs easily surpass the capabilities of human knowledge engineers if not
thoroughly assisted by automatic or semi-automatic methods. The incompleteness of information or even
modeling errors often remain undetected until their accidental discovery due to unexpected query results.

Let us illustrate this claim by a small example: Querying our institute’s Web portal ontology, SWRC (Semantic
Web for Research Communities), for all class members of PhDStudent, we find among the results several
post-doctoral researchers like Philipp Cimiano. Since Philipp’s PhD thesis is recorded properly in SWRC,
the ontology intuitively provides enough evidence for him not being a PhD student any more. However, the
necessary background knowledge needed to logically infer this piece of information is obviously missing, and
a class Postdoc does not exist in SWRC.

In general, it is not always obvious which kind of knowledge is required, nor to formalize it in a way that is
consistent with the existing knowledge base. In our case, a person’s position within the academic staff – e.g.,
postdoctoral researcher, PhD student or undergraduate – is strongly correlated with his or her authorship
properties. Hence, it seems sensible to add more background knowledge specifying which publications and
authors can take part in an authorship relation. We will refer to these kinds of binary relations as roles.

In the following, we propose a systematic methodology based on a reasoner-aided approach to ontology
acquisition and refinement, which combines techniques from natural language processing (NLP) with formal
concept analysis (FCA). We start by elaborating on our conceptual framework that integrates the core com-
ponents of our implementation (Section 2.2.2). Preliminaries – our ontology model and basics of FCA – are
introduced in Section 2.2.3, where we also describe the refinement of complex class descriptions and the
acquisition of missing subsumption relationships. Section 2.2.4 introduces our approach to a semi-automatic
specification of complex domain-range restrictions as well as its implementation in the RoLExO application.
A detailed example in Section 2.2.5 illustrates the integrated use of our method within the overall process of
ontology refinement. Section 2.2.6 concludes with some related and future work.

As we will see, our methodic approach to ontology enrichment can help to increase the expressive power
of any ontology on the Web. By enabling ontology-based applications to draw additional conclusions about
previously hidden class memberships while at the same time revealing undesired logical implications, it

2006–2009 c© Copyright lies with the respective authors and their institutions.
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fosters Web and Intranet Intelligence.

2.2.2 Ontology Refinement Process

The overall process of semi-automatic ontology refinement, that we envision for future ontology engineering
environments, consists of four steps.

Figure 2.1: Ontology Refinement Process

Step 1: Selection of a role to be refined. In the first step the user, possibly assisted by automatically
computed heuristics, selects a role whose domain and range characteristics are to be refined.

Step 2: Specification of relevant class descriptions. Users are asked to name a set of classes that they
consider relevant for the domain (or range, respectively) of the role. These classes (like PhDStudent or
Person) constitute the focus for the subsequent exploration process (see Step 3 and Step 4). If any of these
classes is not yet specified in the ontology, the users are prompted to enter a natural language definition
for it (e.g. “A postdoc is a graduate who has written a doctoral thesis.”). An ontology learning component
automatically transforms this informal definition into a complex class description, whose parts are mapped to
already existing, atomic classes or roles.

Step 3: Refinement of domain and range. Once the focus of the exploration (i.e. the classes most relevant
for domain or range, respectively) has been defined, the user is recommended to complete the ontology with
respect to these classes.2 For this purpose, he or she is guided through an interrogation process in the
course of which the system asks smart3 questions with respect to the domain (e.g. “Can an article be a PhD
thesis?”). By answering them and occasionally giving counterexamples the user efficiently acquires missing
subsumption and disjointness relationships.

Step 4: Acquisition of role restrictions. In the final step of the ontology refinement process, users are
supported in specifying complex domain-range restrictions for a given role (e.g. AUTHOR). Again, they are
guided by a methodical interrogation, whose implementation (cf. Section 2.2.4) relies on a reasoner for
minimizing the user involvement. The result of this phase is a set of axioms that constrain the allowed usage
of the initially selected role.

2This step is optional, but it significantly facilitates and shortens the acquisition of domain-range restrictions that follows (Step 4).
3These questions are smart in a sense that they are non-redundant and will be posed to the user only if they cannot be answered

automatically by a reasoner or ontology learning component.
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The advantages of our approach are manifold:

Integration of lexical and logical approaches to knowledge acquisition. The NLP-based ontology learn-
ing component assists the user in formalizing her knowledge and increasing the expressivity of the ontology
by adding complex class descriptions (Step 2). The subsequent exploration of domain and range (Step 3),
helps to clarify previously underspecified logical dependencies, thereby integrating the newly acquired ax-
ioms into the ontology. Implementations of additional, automatic experts allow for a seamless integration of
supplementary lexical or logical ontology acquisition methods into the engineering process.

Efficient acquisition of logically complete knowledge. Relational exploration of classes and role restric-
tions guarantees completeness,4 while at the same time minimizing the human modeling effort. Guiding
the user through the ontology refinement process by asking smart questions, the system enforces modeling
decisions that might have otherwise been ignored though being important for an appropriate representation
of the user’s domain knowledge. Since it is most often easier for humans to give concrete examples than
to come up with abstract axioms, our approach facilitates the acquisition of even complex subsumption rela-
tionships (Step 3) and generalized domain-range restrictions (Step 4). The reasoner support underlying our
implementation reduces the amount of user interaction required in the exploration process even further and
ensures logical consistency of the ontology.

Interactive evaluation of learned or manually engineered ontologies. The systematic exploration of class
and role extension relationships helps to detect underspecified logical dependencies. At the same time, mod-
eling errors and wrong facts are relentlessly revealed by unforeseen questions and automatically retrieved,
erroneous counterexamples. By interactively refining the ontology, the user can effectively determine whether
a given formalization of domain knowledge matches her conceptualization.

Open-source Implementation. Our implementation is open-source and publicly available under the LGPL
license. Sources, binaries and examples can be downloaded from a dedicated Web page.5

2.2.3 Preliminaries

In what follows, we will introduce the preliminaries of knowledge specification in the description logic
SHOIN as well as the basic notions of formal concept analysis (FCA), a mathematical discipline also
dealing with conceptual knowledge specification.

Knowledge Specification in SHOIN . The description logic SHOIN serves as the theoretical basis for
the Web Ontology Language OWL DL as defined in [MvH04]. For a thorough treatise on the rich field of
description logics, see [BCM+03].

A SHOIN knowledge base (KB, also: ontology) is based on sets NR (role names) C (atomic classes)
and I (individuals).6 In the following, we leave this vocabulary implicit and assume that A, B are atomic
classes, a, b, i are individuals, and R, S are roles. Those can be used to define class descriptions employing
the constructors from the upper part of Table 2.1. We use C, D to denote class descriptions. Moreover, a
SHOIN KB consists of two finite sets of axioms that are referred to as TBox and ABox. The possible axiom
types for each are displayed in the lower part of Table 2.1.7 We use the common model-theoretic semantics
for SHOIN : an interpretation I consists of a set ∆ called domain together with a function ·I mapping
individual names to elements of ∆, class names to subsets of ∆, and role names to subsets of ∆×∆. This
function is then extended to complex expressions and axioms (cf. Table 2.1).

The following tiny examples illustrate how knowledge specification in SHOIN works: The fact that Sydney
is an Australian city could be expressed by City u Australian(Sydney), whereas Nicole being an inhabitant

4Full completeness is not mandatory as users may quit the exploration at any point of time, e.g., if they are tired of answering
questions or already satisfied with the results. In this case, they can either stay with the partially refined ontology or resume the
exploration later on.

5http://relexo.ontoware.org
6In DL settings one usually speaks of concepts and roles, the synonym terms used in OWL are classes and properties. For

clarity, we will consequently use classes but roles.
7As usual, we require to restrict number restrictions to simple roles, being (roughly speaking and omitting further technical details)

roles without transitive subroles.

2006–2009 c© Copyright lies with the respective authors and their institutions.
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Name Syntax Semantics

inverse role R− {(x, y) | (y, x) ∈ RI}
top > ∆
bottom ⊥ ∅
nominal {i} {iI}
negation ¬C ∆ \ CI
conjunction C uD CI ∩DI
disjunction C tD CI ∪DI
universal restriction ∀R.C {x | (x, y) ∈ RI implies y ∈ CI}
existential restriction ∃R.C {x | for some y ∈ ∆, (x, y) ∈ RI , y ∈ CI}
(unqualified) number ≤ nR {x | #{y ∈ ∆ | (x, y) ∈ RI} ≤ n}
restriction ≥ nR {x | #{y ∈ ∆ | (x, y) ∈ RI} ≥ n}
role inclusion S v R SI ⊆ RI TBox
transitivity Trans(S) SI is transitive TBox
general class inclusion C v D CI ⊆ DI TBox
class membership C(a) aI ∈ CI ABox
role membership R(a, b) (aI , bI) ∈ RI ABox

Table 2.1: Concept constructors and axioms in SHOIN

of Sydney can be represented as INHABITANTOF(Nicole,Sydney). We can further model the proposition
that all Australian state capitals are located at the coast (Australian u State_capital v ∃LOCATEDAT.Coast)
and make the claim that all Australian cities have only polite and beautiful citizens: Australian u City v
∀INHABITANTOF−.(Polite u Beautiful). Note the knowledge increase obtainable by this role restriction!
Given the above facts about Sydney and Nicole, one can derive the class memberships Polite(Nicole) and
Beautiful(Nicole).

east_coast south_cost population_3.000.000+ founded_1.800+

Sydney × ×
Melbourne × × ×
Brisbane × ×
Perth ×
Adelaide × ×

Table 2.2: Example context.

Formal Concept Analysis (FCA). The primal notion of formal concept analysis (see [GW97]) is that of a
FORMAL CONTEXT K := (G,M, I), which formally consists of two sets G (objects) and M (attributes) as
well as an incidence relation I ⊆ G×M . Intuitively, it can be conceived as a cross table indicating whether
an object has an attribute as depicted by Figure 2.2.

An important means of expressing information in FCA is via ATTRIBUTE IMPLICATIONS, written as A → B
where A and B are sets of attributes: A → B is valid in a given formal context, if every object that has
all attributes from A also has all attributes from B. In our example, {founded_1800+, pop3000000+} →
{south_cost} would be a valid implication, expressing that all Australian cities established after 1800 with
more than 3 million inhabitants are situated at the south cost.

The method of attribute exploration [Gan84] tackles the problem of determining all implications valid in a
formal context which might be still partially unknown to the computer (but is completely known by a human
expert). Essentially, the algorithm enumerates non-redundant, hypothetic implications and asks the human
expert for their validity in a domain of interest. The expert then has to decide: if the implication in question is
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valid, it will be added to an implication set called the STEM BASE. If not, the expert has to provide an object
(the so-called COUNTEREXAMPLE) that refutes the hypothesis. In the end, after this algorithm has terminated,
the acquired knowledge (consisting of implications and counterexamples) is complete in the following sense:
every implication is either a logical consequence of the stem base or there is a recorded counterexample for
it.

Explorative Refinement of Class Interdependencies. Comparing the knowledge representation ap-
proaches of DLs and FCA, one finds considerable similarities: FCA objects can be conceived as individ-
uals of a KB, while FCA attributes resemble DL classes with the formal context displaying class mem-
berships. In particular, for a given set of DL class descriptions C and a DL interpretation I = (∆, ·I),
one can construct the formal context KI,C := (∆, C, |=) (where δ |= C denotes δ ∈ CI ). In this
context, an arbitrary implication C1, . . .Cn → D1, . . .Dm is valid exactly if the class subsumption axiom
C1 u . . . u Cn v D1 u . . . u Dm is valid in I (cf. [Rud06], Theorem 4.2). Hence, attribute exploration
techniques can be used for the interactive refinement of an ontology’s class interdependencies. Existing
approaches [Baa95, Rud04, Rud06, BGSS07, VR08b] mainly differ in the supported logical fragment to be
explored and the opportunity of providing only partially specified counterexamples.

This refinement of class hierarchies, more specifically, the acquisition of missing subsumption relationships
(Step 2 and 3 in Section 2.2.2), is supported by our previous implementation of reasoner-aided relational
exploration with partial contexts [VR08b]. In the following, we will therefore concentrate on the more ambitious
goal of acquiring fine-grained role restrictions (Step 4) as motivated in the introduction.

2.2.4 Acquisition of Role Restrictions

As mentioned earlier, most exploration methods focus on the interdependencies of class descriptions,
whereas roles merely occur as building blocks for complex class descriptions. However, as argued in our
introductory example, it is worth focusing on specific roles and to model logical interrelationships between its
domain and range individuals, since those can entail valuable conclusions about class memberships.

Indeed, the use of the attribute exploration technique from formal concept analysis is not limited to the
exploration of the conceptual hierarchy of class descriptions (and their conjunctions). Rather, by using other
mappings from interpretations to formal contexts, it is possible to explore different logical fragments. Recently,
the fragment of generalized domain-range restrictions (GDRRs) has been proposed as a both interesting and
intuitive fragment eligible for exploration [Rud08].

Given a set C of named classes and a role R, a GENERALIZED DOMAIN-RANGE RESTRICTION (short: GDRR)
is a rule

R(X,Y ) ∧
∧

A∈A
A(X) ∧

∧
B∈B

B(Y )→
∧

C∈C
C(X) ∧

∧
D∈D

D(Y ) (∗)

where A,B,C,D ⊆ C and R is a role name. Note that for C ∪D = ∅, the rule will have an empty head
(also denoted by �) and hence, will be interpreted as integrity constraint. So, the GDRR presented in the
above definition would mean the following: “For any two elements X and Y of the domain of interest that
are connected by a role R and where X fulfills (all of) A as well as Y fulfills (all of) B, we know that X
additionally fulfills C and Y additionally fulfills D.”

It has been proven that every GDRR can be equivalently expressed by a DL axiom. The rule scheme (*)
corresponds to the axiom:

l

A∈A
A u ∃R.

( l

B∈B
B
)
v

l

C∈C
C u ∀R.

(( ⊔
B∈B
¬B
)
t
( l

D∈D
D
))

.

GDRRs allow for the specification of semantic ramifications caused by the presence of a specific role between
two individuals (some of whose class memberships are also known). Exploring the fragment of GDRRs
therefore enables a novel role-focused way of ontology refinement.

2006–2009 c© Copyright lies with the respective authors and their institutions.
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Technically this is done – as opposed to all other current exploration methods for ontologies – by exploring
a formal context whose objects are not single individuals from the knowledge base (like Sydney, see Fig-
ure 2.2), but pairs of individuals which instantiate the role R. Consequently, also the counterexamples are
individual pairs.

For a given interpretation I together with two sets Cdomain and Crange of named classes and a role R, the
ROLE CONTEXT KR is defined as formal context (G,M, I) with

• G := RI = {(δ1, δ2) | δ1, δ2 ∈ ∆, (δ1, δ2) ∈ RI}
• M := {C1 | C ∈ Cdomain} ∪ {C2 | C ∈ Crange} ∪ {⊥}
• I ⊆ G×M with (δ1, δ2) \I⊥ and (δ1, δ2)IC1 ⇐⇒ δ1 ∈ CI as well as (δ1, δ2)IC2 ⇐⇒ δ2 ∈ CI

The following theorem shows how the validity of a GDRR in an interpretation can be read from a correspond-
ing role context.

Theorem 1 An interpretation I satisfies a GDRR of the shape (*) if and only if the corresponding role context
KR satisfies the implication

{Ad | A ∈ A} ∪ {Br | B ∈ B}_
{
⊥ if C ∪D = ∅, otherwise:
{Cd | C ∈ C} ∪ {Dr | D ∈ D}.

This theorem enables us to “translate” any implication in a role context into an equivalent GDRR and via the
abovementioned correspondence further into a DL axiom.

Now, the basic idea for the knowledge acquisition method we are going to propose is to carry out attribute ex-
ploration on the context KR. Thereby, our basic assumption is that there exists a distinguished interpretation
I ′ entirely (but implicitly) known by the human expert that we want to specify in terms of GDRRs.

After role exploration, the updated knowledge base is complete in the following sense: any GDRR (referring
to R, Cdomain and Crange) can either be deduced from the updated knowledge base or there is a pair of
individuals in the ontology witnessing that this GDRR does not hold.

We instantiated our approach described in Section 2.2.4 by implementing RoLExO8 (Role Exploration for
Learning Expressive Ontologies), an interactive application supporting the acquisition of complex role re-
strictions (cf. Step 4 in Section 2.2.2). The architecture of RoLExO relies upon KAON29 as an ontology
management back-end and features a simple graphical user interface. The ontology refinement process,
depicted by Figure 2.2, is handled by a role exploration component which manages a partial context and an
implication set. Both are updated based on answers obtained from the “expert team” constituted by a KAON2
reasoner and the human knowledge engineer.

As we will see in Section 2.2.5, RELExO and RoLExO can be synergetically combined in a process of
interactive ontology refinement.

2.2.5 Example Scenario

We now illustrate the practical relevance of our approach to ontology refinement by means of a real-world
example.

Ontology. The SWRC (Semantic Web for Research Communities)10 [SBH+05] ontology is a well-known
ontology modeling the domain of Semantic Web research. Version 0.3 containing 55 classes as well as 41
roles serves as a basis for the AIFB Web portal11 which manages information about 2,982 persons, projects,
and publications. For our experiment, we exported all the instance data stored in the AIFB portal into one
single OWL file (more than 5 MB in RDF syntax), and merged it with the corresponding TBox, i.e. the
imported version of SWRC. This way, we obtained an ontology with 33,426 axioms.

8http://relexo.ontoware.org
9http://kaon2.semanticweb.org

10http://ontoware.org/projects/swrc/
11http://www.aifb.uni-karlsruhe.de

http://relexo.ontoware.org
http://kaon2.semanticweb.org
http://ontoware.org/projects/swrc/
http://www.aifb.uni-karlsruhe.de
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Figure 2.2: RoLExO Implementation. “The Thinker” indicates user involvement.

Refinement Process. As motivated in Section 2.2.1, we first decide to refine the AUTHOR role of the SWRC
ontology (Step 1, Section 2.2.2). Subsequently, we select several classes that we assumed to be relevant for
the domain and range of this role (Step 2), thereby noticing that an equivalent to “postdoctoral researcher” is
missing in the ontology. After some discussion about our understanding of this class, we enter the following
definition into LExO [VHC07] (see also D3.8.1 [VB08], Chapter 4), a tool for transforming natural language
definitions into DL class descriptions.

“A postdoc is a graduate who has written a doctoral thesis.”

The result is a set of axioms representing a formal description of the class a_postdoc.12

a_postdoc ≡ a_graduate_who_has_written_a_doctoral_thesis
a_graduate_who_has_written_a_doctoral_thesis ≡ a_graduate u has_written_a_doctoral_thesis

has_written_a_doctoral_thesis ≡ ∃HAS_WRITTEN.a_doctoral_thesis
a_doctoral_thesis ≡ a_thesis u doctoral

Since some of the atomic classes obviously map to existing classes in SWRC, we further add the fol-
lowing mapping axioms: swrc:Thesis ≡ lexo:thesis, swrc:Graduate ≡ lexo:a_graduate, swrc:PhDThesis ≡
lexo:a_thesis u lexo:doctoral and lexo:has_written v swrc:author−. The resulting, extended version of SWRC
is input to the exploration process described in the sequel.

Refinement of Domain and Range. We only briefly display the results of the two relational exploration
processes dedicated to the domain and range of the considered AUTHOR role (cf. Section 2.2.2, Step 3).
For a more detailed description, we refer the reader to [VR08b]. Altogether, the following 7 new axioms were
acquired during the process:

12a_postdoc ≡ a_graduate u ∃HAS_WRITTEN.(a_thesis u doctoral)

2006–2009 c© Copyright lies with the respective authors and their institutions.
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Figure 2.3: Entering a counterexample, i.e. a pair of individuals related by the author role.

PhDThesis v Book
Article u Thesis v ⊥
Book u Thesis v PhDThesis

Book u MasterThesis v ⊥
FullProfessor v a_postdoc
PhDStudent v Graduate

has_written_a_doctoral_thesis v Graduate

Acquisition of Role Restrictions. Subsequent to these preprocessing steps, we are now ready to carry
out the role exploration focusing on the AUTHOR role as well as the classes Article, Book, MasterThesis,
PhDThesis, Publication, Thesis on the domain side and the classes a_postdoc, FullProfessor, Graduate,
has_written_a_doctoral_thesis, Person, PhDStudent, Undergraduate on the range side (see Step 4 in Sec-
tion 2.2.2).

After a few trivial hypotheses, which can be refuted by automatically retrieved counterexamples, the
first question requiring human interaction is posed. It asks for the validity of the rule author(X,Y ) →
Publication(X) ∧ Graduate(Y ) ∧ Person(Y ), investigating whether, if some X is authored by some Y , X
must be a publication and Y must be both a graduate and a person. As there are no records in SWRC of
any authors not being graduates, no counterexample can be brought up automatically. Instead, after denying
this hypothesis, the human expert is asked to add a publication-author pair disproving it. We do so by adding
information about a workshop paper [HVK06] and its student author, Felix Kugel (cf. Figure 2.3).

The next hypothesis brought up by the system, author(X,Y )→ Publication(X) ∧ Person(Y ), can be clearly
confirmed by the human expert as it gives straightforward domain and range restrictions for the author role:
every author is a person and everything authored is a publication.

In the subsequent execution, the algorithm poses the GDRR author(X,Y ) ∧ Book(X) → Graduate(Y )
expressing that everybody publishing a book must be a graduate. Though quite arguable in general, in the
scientific area considered by us, we judge that this axiom constitutes a sensible restriction and therefore
confirm it.

As opposed to the previous, the next presented potential axiom, author(X,Y ) ∧ Thesis(X)→ Graduate(Y )
can be accepted without much argument. Clearly everybody having written a thesis qualifies as a graduate
– be it a master or a PhD thesis.

The last axiom in question, displayed in Figure 2.4, encodes that any thesis that has been written by some-
body being now a PhD student must be a master thesis. We confirm this (as we assume any thesis to be
either a PhD or a master thesis and furthermore, somebody having written a PhD thesis cannot be a PhD
student any more).

In the end, we have acquired the following four new axioms that characterize how class memberships of
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Figure 2.4: How a hypothetic GDRR is displayed.

domain and range individuals “influence” each other:

∃AUTHOR.> v Publication u ∀AUTHOR.Person
Book u ∃AUTHOR.> v ∀AUTHOR.Graduate

Thesis u ∃AUTHOR.> v ∀AUTHOR.Graduate
Thesis u ∃AUTHOR.PhDStudent v MasterThesis.

The fact that this constitutes a rather small set of axioms is thanks to the preprocessing via domain and
range exploration. Otherwise, numerous additional questions actually relating to domain- or range-inherent
dependencies would have been brought up. By proceeding as we propose, the knowledge acquired in
this exploration step only incorporates logical ramifications where both domain and range are involved. A
statistical summary of the entire exploration process is given in Table 2.3.

domain range RoLExO
∑

Reasoner-answered questions 9 8 19 36
Questions decided by human 6 5 13 24
New TBox axioms 5 3 4 12
New individuals 1 2 14 17
New class memberships C(a) 18 27 36 81
New role memberships R(a, b) 0 0 7 7

Table 2.3: Summary of the exploration process. The columns correspond to the different phases of the
refinement as described above, i.e. the exploration of domain and range or the acquisition of role restrictions
(RoLExO), respectively.

Revisiting our initially described problems, we find them solved. It is now possible to correctly classify
our colleague, Philipp Cimiano, (and others) based on ontological knowledge: The fact that Philipp is
author of an individual classified as a PhD thesis was originally stated in SWRC. Now, from the knowl-
edge acquired via LExO from natural language resources defining the notion of a postdoc (together with

2006–2009 c© Copyright lies with the respective authors and their institutions.
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the introduced mappings), we can infer that Philipp is indeed a postdoc. Likewise, thanks to the GDRR
Thesis u ∃AUTHOR.> v ∀AUTHOR.Graduate, every person specified as being the author of a master thesis
will from now on be inferred to be a graduate. Hence, by employing a combination of ontology learning
and logical exploration techniques we have considerably increased the knowledge inferable from the SWRC
ontology (cf. Table 2.4).

2.2.6 Related Work and Conclusion

The incremental refinement of ontologies has become an important issue that is addressed by several ontol-
ogy learning tools and methodologies such as Text2Onto [CV05] or the work by Navigli and Velardi [NV06]
(for an overview, see also [BC08]). However, only a few of them support the acquisition of logically com-
plex axioms, and most lexically inspired techniques lack a proper integration with reasoning-based methods
for ontology evaluation or debugging. This also holds for approaches to learning domain-range restrictions
of binary relations [CHR06, CGR+05]. Parallel to these more or less NLP-based ontology learning meth-
ods, approaches relying on Inductive Logic Programming (ILP) [LE05, FIPS04, CH94] and Formal Concept
Analysis (FCA) [Rud06] have been developed in the logics community. But although there are a few ap-
proaches, similar to ours, aiming to reconcile the two worlds of lexical and logical ontology acquisition by
either FCA [SM01, CHS05] or ILP [Ned99], none of them has been designed specifically for refining OWL DL
ontologies.

SWRC RELExO RELExO RoLExO
range domain

Article 189 189 189 190
Book 36 36 94 95
MasterThesis 0 0 1 4
PhDThesis 58 58 58 59
Publication 1499 1499 1500 1507
Thesis 58 58 59 63
a_postdoc 0 63 63 67
FullProfessor 6 6 6 9
Graduate 52 111 111 139
has_written_a_doctoral_thesis 0 63 63 67
Person 1213 1215 1215 1222
PhDStudent12 50 46 46 47
Undergraduate 6 7 7 9∑

3167 3351 3418 3478

Table 2.4: Inferred class memberships.

In this section, we have therefore sketched a way to combine two complementary approaches to the acquisi-
tion and refinement of OWL DL ontologies: the more intentional approach of distilling conceptual information
from lexical resources and the extensional method of extracting hypothetical axioms from manually specified
or automatically retrieved domain entities. We have instantiated our approach by designing and implementing
a framework that integrates Relational Exploration and Role Exploration – two techniques for the systematic
refinement of OWL ontologies based on FCA. To the best of our knowledge, RoLExO is the first publicly
available implementation of an exploration-based approach to ontology refinement. In an example using the

12Exploring the range of AUTHOR for the first time, we noticed a modeling error in SWRC. It was the second question, automatically
answered by the reasoner, which brought up the counterexample Peter Haase. A simple query to SWRC revealed that he was
explicitly stated to be a PhDStudent and inferred to be a_postdoc. Since we assumed both classes to be disjoint, we changed the
explicit classification of Peter and two other postdocs to Person and restarted the exploration with the corrected ontology.
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well-known SWRC ontology we have demonstrated the feasibility of semi-automatic ontology refinement, and
its applicability to real-world ontology engineering tasks.

After all, we identify several issues for future research. Firstly, we will further extend RoLExO by an additional
automatic expert which uses ontology learning techniques or Web resources, including other ontologies, for
confirming hypotheses and suggesting counterexamples. Moreover, FCA-based exploration can be applied
to a set of classes from multiple distributed knowledge bases, in order to clarify logical dependencies across
ontologies. Hence our approach can be extended to support Web ontology alignment and integration. Finally,
we will integrate RoLExO into an ontology engineering environment such as the NeOn Toolkit13 and improve
its usability by adding a natural language generation component for translating hypotheses, i.e. logical im-
plications, into natural language questions. In the end, we are confident that our planned user studies will
demonstrate the advantages of interactive ontology refinement and we hope that our approach will initiate
the development of new tools for enhancing Web Intelligence.

2.3 A NeOn Toolkit Plugin for Ontology Refinement

In this section, we present a tightly-coupled GUI plugin that serves as a graphical frontend for RELExO (see
NeOn D3.8.1 [VB08], Chapter 4).

2.3.1 User Guide

Preferences. The preference page is accessible from the main menu of Eclipse (Window → Preferences...
→ RELExO Preferences). As shown by Figure 2.5, it allows for setting a variety of parameters:

• Find complete ontology examples: Completely specified counterexamples (i.e. individuals whose
attributes are all known) can significantly speed up the exploration process in terms of questions asked.
Hence, the ontology expert can be configured to search for complete examples in case it is asked to
provide a counterexample for a given hypothesis. However, depending on the size of the underlying
knowledge base and its computational complexity, this search can be very time consuming. Default:
false

• Print debug information: If this parameter is set, additional debug information will be printed to the
console window or log file. Default: true

• Minimize reasoning: Depending on the complexity of the underlying ontology, this parameter can
significantly speed up the overall exploration process. Especially in the case of very lightweight ontolo-
gies, it is possible to avoid many of the costly reasoner calls by checking for explicit subsumption or
class instantiation relationships first. Default: false

• Show incomplete ontology examples: If this flag is set, all of the automatically generated counterex-
amples, i.e. retrieved by the reasoning-based expert, will be shown to the user. This way, users get
the opportunity to specify additional attributes and thus shorten the exploration process in terms of
questions asked by the system. Default: true

• Complete user examples: This parameter triggers the automatic completion of manually specified
counterexamples. For each attribute which is left determined by the user, the reasoner tries to infer or
disprove the corresponding class membership from the ontology. Default: true

• Open browser: With this option switched on, the plugin will try to open an individual’s URI in a Web
browser when this individual is brought up as an automatically generated counterexample. This feature
can be very useful in case the plugin is unable to access the label information associated with the
entities in a particular ontology. Default: true

13http://www.neon-toolkit.org

2006–2009 c© Copyright lies with the respective authors and their institutions.
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Figure 2.5: RELExO: preference page

• Ontology expert: By means of this parameter, users can configure the expert team that takes part in
the exploration process. If it is set to true, the human expert will be supported by an ontology reasoner,
i.e. KAON2. Default: true

• Check consistency: If this flag is set, the plugin will check for logical contradictions each time the
user enters a new counterexample. Default: true

• Attribute reduction: In case one of the attributes, i.e. atomic classes in the ontology, is known to
be equivalent to the intersection of any other two or more classes, it can be removed from the list of
attributes without causing any loss of information. That sort of pruning can be turned on and off by
means of this parameter. Default: false

• Preselect attributes: Whenever the plugin is used to integrate learned class descriptions into an
existing ontology (see NeOn D3.8.1 [VB08], Chapter 4), it is advisable to focus on those attributes (i.e.
atomic classes) which have been introduced by the respective ontology learning method. By setting
this parameter, the plugin can be configured to preselect these attributes from the list of all the atomic
classes in the extended ontology (cf. Figure 2.6). Default: false

• Reuse all individuals: When the human expert is asked to provide a counterexample, he or she can
either enter a new individual, choose one from the list of previously specified counterexamples, or – if
this parameter is set to true – select any individual from the ontology’s ABox. Note that a huge ABox
will significantly slow down the exploration in case this option is switched on, because the plugin will
have to determine the attributes of each individual shown in the list of reusable examples. Default:
false
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Figure 2.6: RELExO: selection of attributes

2006–2009 c© Copyright lies with the respective authors and their institutions.
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Figure 2.7: RELExO: hypothesis
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Figure 2.8: RELExO: counterexample

2006–2009 c© Copyright lies with the respective authors and their institutions.
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Figure 2.9: RELExO: save ontology

Attribute View. The first step of every ontology refinement process based on formal concept analysis is
the manual (or automatic) selection of relevant attributes (cf. Figure 2.6). In the case of standard relational
exploration as implemented by the RELExO plugin, any atomic class of the underlying ontology can serve
as an attribute. However, since the computational complexity of relational exploration is exponential in the
number of selected attributes, it is advisable to choose around ten classes.

Implication View. In the course of the ontology refinement process, the human expert is presented with
hypotheses about underspecified subsumption relationships. For example, Figure 2.7 shows the hypothetical
axiom Conference_or_workshop v Conference (“Every conference or workshop is a conference.”), which of
course should be rejected by the user.

Example View. A counterexample to the hypothesis depicted by Figure 2.7 could be the OntoLex workshop
that was held in conjunction with ISWC 2007. Figure 2.8 shows the example view, which opens automatically
in case the human expert rejects a hypothesis.

Saving the ontology. When the exploration is finished, i.e. each of the possible hypotheses has either
been accepted or disproved by means of a counterexample, the user is prompted to save the refined ontology
(see Figure 2.9).
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2.3.2 Installation

The installation of the RELExO plugin does not require any third-party software or specific configuration steps
that might demand for in depth explanations. Hence, as soon as the official version has been released, the
users will be able to install this plugin by using the standard update mechanism of the NeOn Toolkit.

2006–2009 c© Copyright lies with the respective authors and their institutions.
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Chapter 3

Modeling Patterns for Ontology Engineering

In D3.8.1 [VB08], a method for automatically matching, retrieving and reusing ontology content design pat-
terns, called OntoCase, was presented. In this chapter a first evaluation of this approach on FAO data is
presented. The evaluation aims to show the feasibility of the approach, the characteristics of the output
ontologies and that they improve the learnt ontologies that were the input to the method. Through a small
evaluation at the end of this chapter we also show that ontology learning systems can improve the per-
formance of OntoCase by first enriching the input ontology. First, we briefly comment on the connection
between OntoCase and context sensitivity of ontologies, next we give an overview of OntoCase, then the
experiments are presented and their results analysed.

3.1 Context Sensitivity for Networked Ontologies

The notion of ontology patterns, specifically content design patterns, and the usage of such patterns for
ontology design is related to context-sensitivity in several ways. Most patterns are extracted from general
top-level ontologies, and the reuse of content patterns may thereby be viewed as an alignment of ontologies
to top-level ontologies. Below some brief introduction to context sensitivity and content patterns is given.

Ontology engineering patterns. When ontology engineering patterns, specifically ontology content de-
sign patterns, are used on top of other OL techniques, as is the aim of the OntoCase approach described
already in D3.8.1 [VB08], the patterns represent a set of best practices of the community. Thereby, relating a
learnt ontology to a pattern means to relate the learnt ontology to the modelling best practices. Content pat-
terns usually encode domain independent common-sense knowledge that can be included in the constructed
ontology by applying the pattern. Such common-sense knowledge adds missing background knowledge and
puts the existing ontology elements into their appropriate context.

Alignment to top-level ontologies. Ontology content design patterns are in most cases "pieces" extracted
from a larger construct, such as a top-level ontology. In this case, relating the learnt ontology to the pattern
additionally means relating to the top-level ontology from which the pattern was extracted. A top-level on-
tology provides the basic definitions and the axiomatisation that can put the learnt ontology into a broader
context. Different top-level ontologies might result in different interpretations of the learnt ontology.

3.2 Overview of OntoCase

In D3.8.1 [VB08], OntoCase was presented as a method that complements other ontology learning (OL)
methods and tools, both by improving the results of the other OL methods and by putting the produced on-
tologies in a context, with respect to patterns and the top-level ontologies that the patterns are extracted from.
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OntoCase is a general framework for iterative and experience-based semi-automatic ontology construction,
based on the notion of ontology patterns. OntoCase proposes a cycle of learning from experience and using
the learnt information to solve new problems. Intuitively patterns are in fact encoded experiences, that are
used to solve new problems. In Figure 3.1 an overview of the OntoCase approach is presented, including the
tasks that are performed in each of the phases. In D3.8.1 [VB08] and in the implementation used for these
experiments only the first two phases of OntoCase were included, i.e. retrieval and reuse of patterns.

Input

Pattern base

Retrieved 
patterns

Initial 
ontology

Revised 
ontology

Pattern 
candidates

Retrieve

Reuse

Refine

Retain

OntoCase

Element 
extraction
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Pattern 
selection

Pattern 
adaptation

Pattern 
composition

Ontology 
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Ontology 
revision

Feedback 
generation

Pattern 
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Figure 3.1: The OntoCase framework.

The first phase of OntoCase, called ’retrieve’, involves extracting ontological elements from a text corpus, or
alternatively inputting a seed ontology, then matching these elements to the available patterns, and subse-
quently selecting a set of suitable patterns. The element extraction is actually an OL process, where almost
any existing OL tool producing OWL ontologies could be used. In the experiments presented in this deliver-
able the Tex2Onto1 tool was used. Pattern matching and selection in OntoCase is done based on a pattern
ranking scheme presented in [Blo08], using techniques from ontology search, ranking, and matching, to find
suitable patterns for inclusion. Some background knowledge is used in this process, currently WordNet is
exploited, but in future experiments also domain specific knowledge can be used. Throughout the matching
process confidence values are used to represent the uncertainty of the matching, taking into account the
polysemy of the terms when WordNet is used for matching for instance. The confidence values are stored
together with the matches and used also in the next phase.

The second phase of OntoCase, called ’reuse’, involves using the matching information to reuse the selected
patterns together with the extracted elements. The result is an initial ontology, suitable for further refinement
by an ontology engineer. There are two basic options for how to conduct the ontology construction, either the

1http://ontoware.org/projects/text2onto/
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patterns are used as a starting-point and the input, i.e. extracted elements, is pruned of all parts not matching
any pattern element, or the input ontology is used as a starting point and the patterns are merely added to
the input, including the correspondences found in the matching step. In both cases heuristics are used to
improve pattern composition and ontology building. For the experiments presented in this deliverable the
pruning alternative was used. The confidence values resulting from the matching step above are transferred
to the resulting ontology, whereby some parts can be seen as more ’certain’ than others, also in the output
ontology. In the experiments presented here these confidence values have not been taken into account, all
added elements were included in the output OWL-file. More detailed future evaluations could also include
the confidence of the evaluated elements.

OntoCase was initially implemented as a command-line tool in Java, based on the Jena API for OWL ontology
management. The method has not yet been incorporated into the NeOn toolkit, but a plug-in version is
planned for the long term. The first improvement step is however to develop a suitable user interface for the
method. The input to the method is currently an OWL ontology, either generated directly by Text2Onto, or any
other ontology the user chooses to provide. Links to the patterns are collected in the so called ’pattern base’,
which is a database containing links to all available patterns and some metadata about the patterns. The
patterns themselves are small self-contained OWL ontologies. OntoCase uses only content design patterns
at the moment. One example of such a pattern is the Agent-role pattern, present in the ODP portal,2 that
can be seen in Figure 3.2. The pattern is small, it includes only three concepts. Agents, which are types of
objects that in turn can be classified by certain roles. An example instantiation would be to specialise the
’agent’ concept and add ’person’ as a subconcept, then add ’parenting role’ as a subconcept of ’role’. Such an
instantiation can then be used to store information about the parenting roles, i.e. instances of the ’parenting
role’ concept such as ’father’ and ’mother’, of people, i.e. concrete instances of the ’person’ concept. The
arrow with no label in the figure signifies a disjointness axiom between agents and roles.

Figure 3.2: The Agent-role pattern.

Another example of such a pattern is the Information realisation pattern, as seen in Figure 3.3. The pattern
represents the semiotic notion of information, i.e. the abstract information as such and its concrete realisation
in the world.

2http://ontologydesignpatterns.org



D3.8.2 Evaluation of Methods for Contextualized Learning of Networked Ontologies Page 31 of 44

Figure 3.3: The Information realization pattern.

3.3 Experiment motivation and goals

In this deliverable the focus is on showing experimental results supporting the claim that there is actually a
benefit from the interaction between OntoCase and the other OL methods proposed. Two hypotheses were
stated in order to be tested during these experiments. The hypotheses were the following:

1. Patterns can improve the structure of learnt ontologies by connecting unconnected parts, and adding
relations, without increasing the error rate.

2. Ontology enrichment using other OL methods can facilitate and improve pattern matching in OntoCase.

The first hypothesis states that applying OntoCase on top of results from other OL methods, such as
Text2Onto, will assist in connecting unconnected parts, such as unconnected concepts, and give the on-
tology a more general top structure. Of course this needs to be done without increasing the error rate of
the ontology, i.e. the fraction of erroneous concepts and relations in the ontology. Hence, it is important to
assess the correctness of the ontologies both before and after applying OntoCase in addition to showing
that relations are added and a general top structure is achieved. The second hypothesis on the other hand
states that applying other OL methods, such as Text2Onto, as a pre-processing step in order to enrich the
input ontology before applying OntoCase might actually improve the pattern matching, so that more relevant
patterns can be identified. This shows the beneficial interplay between OntoCase and other OL methods.

3.3.1 Example illustrating goals

To clarify these hypotheses we introduce an example using the two patterns Agent-role, as seen in Figure 3.2
above, and Object-role. Object-role is a more general pattern that is imported and specialised in Agent-role.
In Figure 3.2 we can see that the only concept native to Agent-role is the Agent concept, the rest is imported
from Object-role, using the namespace prefix ’objectrole’, and by that pattern concepts are in turn imported
from the classification pattern. To illustrate how OntoCase works and to explain the above hypotheses we
start by assuming that the two concepts ’grader’ and ’puddler’ have been extracted from a text corpus, e.g.
using Text2Onto. These concepts are present in the input ontologies used in the actual experiments, but
the illustrations of the matching and reuse of patterns below is not present exactly in this form, it should
be seen as a simplified example. The input ontology containing only the two unconnected concepts of this
example can be seen in Figure 3.4, using a UML notation. These two concepts can also have a confidence
value associated, representing the confidence with which we believe that they were correctly included in the
ontology.

Now, let us assume that the background knowledge used by OntoCase produces the two hypotheses that
’grader’ is either a vehicle for grading or the role of setting grades for something, i.e. rating the quality of

2006–2009 c© Copyright lies with the respective authors and their institutions.
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Figure 3.4: Two unconnected concepts as input ontology.

something. Such a hypothesis would be provided together with a confidence value, i.e. if WordNet was used
the confidence would among other things be based on the number of senses of both the terms involved,
since the more senses that exist the more uncertain is our hypothesis. The hypotheses mentioned above
match the Object-role pattern, to a certain extent, since a vehicle is a kind of object and in the other sense
the concept is a role. Similarly background knowledge might tell us that ’puddler’ is either the role performing
iron or clay puddling, or the tool used for this purpose, i.e. again either an object or a role. These hypotheses
provide a match to the Object-role pattern, and it can be automatically instantiated as in Figure 3.5. When
the pattern is instantiated the confidence values are transferred to the output ontology.

Figure 3.5: The ontology after applying the Object-role pattern.

The figure illustrates the way OntoCase connects unconnected concepts, through adding hypotheses about
their connections to general patterns. The ontology is now ’connected’, in a graph sense, and also contains a
more general top-structure than before. The two hypotheses for each concept are both correct in the domain,
even though probably in a final version of the ontology only one of these will be selected for each concept,
depending on the focus and task of the ontology. We have however no way of knowing which one of the
alternatives is the correct one, either the role or the object or perhaps both, only with this limited evidence
we have at the moment. One part of this evidence is the confidence values, but rather than using only these
as basis for a decision we would like to let the ontology engineer decide, with the confidence values as one
guiding factor. A result such as the above example would support the first experiment hypothesis, since we
have added a general top structure and connected unconnected concepts, without increasing the error rate.

To illustrate the aim of the second hypothesis, we can use some tool to enrich the input ontology. This could
be an OL tool such as Text2Onto. With ’enrich’ we mean to add additional knowledge and context to the
extracted elements, e.g. to add more concepts and relations connected to the original elements. Let us
assume that we apply such a tool and manage to extract one more concept, ’person’, and two relations
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stating that ’puddler’ and ’grader’ are both subclasses of ’person’. This new input ontology can be seen
in Figure 3.6. The added relations are not certain to be completely correct however, the enrichment might
contain errors as well. Although a puddler is in fact a person, to model the concepts as subclass of person
might not be the best solution, i.e. since it is not an inherent property of a human being to be a puddler or
not to be a puddler. However, this is a typical uncertain result that may be provided when using OL methods.

Figure 3.6: The enriched input ontology.

Using this new input ontology we can derive the same conclusions as previously, matching the Object-
role pattern. In addition we could now discover a connection to the Agent-role pattern, if our background
knowledge contains the common sense information that a ’person’ is a type of ’agent’. Assuming this then we
can see that by enriching the ontology we were able to match an additional pattern and add a more detailed
structure to the ontology than before. The resulting ontology can be seen in Figure 3.7. This ontology is
actually inconsistent, due to the ’grader’ and ’puddler’ being both persons, i.e. agents, and roles, which
are disjoint in the Agent-role pattern. Although this is inherently an error this is also a good starting point
for refinement, since the ontology engineer then has to choose how to model these concepts. Most likely
the conclusion would be that it is the subclass relations of person that introduce the errors, and these can
be replaced by specialisations of the ’hasRole’/’roleOf’ relations between objects and roles. However, this
correction has to be done manually at the moment. The two senses of ’grader’ and ’puddler’ as vehicles/tools
or roles are harder to resolve, and depend more on the task and intention of the ontology, but by including
both the possibilities we at least suggest both options to the ontology engineer.

2006–2009 c© Copyright lies with the respective authors and their institutions.
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Figure 3.7: The output ontology after applying the Agent-role pattern.

3.4 Experiment setup

The data used for the experiments was provided by the FAO and originates within the agriculture domain.
First, a simple lightweight ontology was provided, generated and translated into OWL from a manually engi-
neered concept network representation. The ontology focuses on concepts related to the concept of "rice".
This ontology will here be denoted Ontology_rice, and some information about the ontology can be seen in
Figure 3.1. Additionally three ontologies were produced using the Text2Onto tool based on texts provided
by FAO. Out of the three text corpora two were generated by extracting DBPedia3 abstracts and comments
respectively, collected by using the concepts in Ontology_rice as search terms. The third text corpora was
produced by FAO based on abstracts related to the term “rice” in the AGROVOC thesaurus. Additional infor-
mation about the ontologies generated from these text corpora using Text2Onto can be seen in Figure 3.1,
they are named T2O_DBPabstracts, T2O_DBPcomments, and T2O_AgrovocAbs respectively.

No. of No. of No. of No. of Avg.
concepts top concepts subclass relations properties depth

Ontology_rice 266 155 110 37 1.68
T2O_DBPabstracts 1086 1018 89 17 1.06
T2O_DBPcomments 365 290 189 3 1.34
T2O_AgrovocAbs 3575 1822 1954 49 1.68

Table 3.1: The experiment input ontologies.

For the second part of the experiments the Ontology_rice ontology was then enriched using Text2Onto and
the same data as for producing T2O_DBPabstracts and T2O_DBPcomments. Two new ontologies were
thereby produced, named OntologyRice_EnrichedAbs and OntologyRice_EnrichedComm and details about
these can be seen in Table 3.2.

Next, OntoCase was run with all these ontologies as input, in the pruning mode, meaning that only the parts
matching any patterns were included in the output, mainly for minimising the evaluation effort. The ranking

3http://dbpedia.org/
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No. of No. of No. of No. of Avg.
concepts top concepts subclass relations properties depth

OntologyRice_EnrichedAbs 1256 1080 199 53 1.20
OntologyRice_EnrichedComm 535 352 299 39 1.57

Table 3.2: The enriched ontologies for the second part of the experiment.

threshold for pattern selection was based on previous experiments using the tool, and it was fixed throughout
the whole experiment. A catalogue of 41 ontology patterns was used, containing all content patterns that
were at the time available (and correctly represented) on the ODP portal and in addition a set of patterns
previously used with OntoCase (see [Blo05]).

After producing the ontologies, next is the evaluation of the ontologies. First general characteristics were
gathered for all the ontologies, see tables above and results in the following section. This is in order to give
an idea of the structure of the ontologies, for example indicating the number of top concepts and average
depth of inheritance etc. Also the size of the ontologies is an interesting feature, in order to show that these
are not toy examples. After this collection of basic measures, the correctness needed to be evaluated, in
order to show that the added structure does not affect the correctness negatively.

Since some of the ontologies were quite large and the evaluation had to be done manually we had to use a
random sample of concepts and relations for the evaluation and not the complete ontology. This of course
introduces some uncertainty into the results, but in this case we do not aim to show the exact amount of
improvement but only the general trend that the correctness is not worse than before, hence this uncertainty
can be accepted. Additionally due to time and resource restrictions the ontologies were only evaluated by
one person (ontology expert), which also introduces an uncertainty. The effect of this is reduced by the
fact that the same method and the same judgements were applied to all ontologies, whereas the relations
between the error rates of the input and the output will ideally stay the same. In summary, the numbers
presented below should not be taken as absolute numbers, but can be seen as reliable for comparing the
sets of values for the input and the output ontologies, and for showing the general trend.

Moreover, since the evaluator was an ontology expert and not a domain expert, i.e. not from the agricul-
ture domain, the evaluation had to be based on reliable sources of agriculture information. These sources
were primarily the AGROVOC thesaurus of agricultural terms and their relations, and secondarily agriculture
information available on the web. Nevertheless, there were cases when only a domain expert could have
evaluated the correctness properly, in these cases the evaluator had the choice of marking the concept or
relation with an "I’m not sure" annotation. The other two alternatives were to state that the concept or relation
was “correct” or “not correct”, for inclusion in a domain ontology within the agriculture domain.

The sample size for each ontology was between 104 and 180 randomly selected concepts, and between 51
and 102 randomly selected relations. The relations were a mix of both subclass statements and properties.
The exact sample sizes for each ontology can be seen in Table 3.3. The difference in sample size is due to
the random selection method, which was dependent on the ontology size and concrete representation in the
OWL-file. The aim was initially to evaluate at least around 10% of the concepts and relations of each ontology,
but practical constraints were set by the available resources, i.e. the feasibility of one evaluator evaluating a
high number of concepts and relations during a limited amount of time. However, this aim was reached in
all but one case, the largest ontology T2O_AgrovocAbs and its output counterpart, where only around 4%
of the concepts were evaluated. Similarly the aim was to evaluate at least around 5% of the relations, but
in T2O_AgrovocAbs and its output counterpart we only managed to evaluate between 2% and 4.5% of the
relations due to its total size. Despite these shortcomings it should be noted that many of the samples were
much larger with respect to the actual size, the most reliable results probably being reached for Ontology_rice
and OC_Ontology_rice since there the sample sizes for concepts were 42% and 50% respectively, and for
relations 48% and 24% respectively.

The initial plan was to also include one manually engineered translation of a part of the AGROVOC thesaurus,
connected to rice-concepts, in the experiment. However, this ontology was examined and it was concluded
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Ontology Concepts Relations Concept sample Relation sample %
Ontology_rice 266 147 111 70
OC_Ontology_rice 280 291 139 69
T2O_DBPabstracts 1086 106 117 86
OC_T2O_DBPabstracts 812 1499 132 80
T2O_DBPcomments 365 192 104 78
OC_T2O_DBPcomments 321 644 115 79
T2O_AgrovocAbs 3575 2003 159 91
OC_T2O_AgrovocAbs 2823 4225 104 87
OntologyRice_EnrichedAbs 1256 252 180 84
OC_OntologyRice_EnrichedAbs 1293 1752 126 86
OntologyRice_EnrichedComm 535 338 162 102
OC_OntologyRice_EnrichedComm 570 983 110 51

Table 3.3: The total sizes and sample sizes for each ontology.

that OntoCase is currently not applicable for such ontologies. We provide a short discussion here about why
this is the case and in what way this ontology was not possible to use with the current version of OntoCase, in
order to illustrate the limitations of the current approach. Inherent in OntoCase are some common principles
of ontological modelling, such as the common practice that concepts are given humanly understandable
names or at least labels in natural language. The ontology intended to be used was in fact an ontology, in
the sense that it was represented in OWL and used some of the features in OWL, but it was in all other
respects more of a thesaurus. The transformation was done more or less as a “direct translation”, whereby
the structure was not a common ontological structure. Almost none of the concepts had natural language
names or labels, but were instead encoded as numbers, i.e. c_3259. The ontology provided a very general
top structure which was basically a metamodel of a thesaurus, containing concepts such as ’lexicalization’,
’term’, ’noun’, ’category’, and ’domain concept’. There was a taxonomy and properties specialising this
structure, but all actual domain concepts and terms were instances of the concepts in this structure and the
concept instances were only connected to their lexicalization through properties.

Some of those general metamodel concepts can be recognised by OntoCase, and could match general pat-
tern concepts, thereby some kind of result can actually be produced by OntoCase through pattern reuse.
This would not be a comprehensive result however, since at the moment OntoCase does not treat instances,
whereas the part where the information of the input ontology actually resides would be completely ignored
by the method. The pruning mode used for all the experiments even prunes all the instances of the ontology,
whereas the output would be complete nonsense since all concepts would have been stripped of their lexi-
calizations, which in this case was the only form of concept definitions existing. The output ontology would be
just a set of numbered concepts put in a logical structure without meaning, hence it would also be impossible
to evaluate the correctness of this structure. This is a type of ontology that OntoCase in its current version
cannot handle.

3.5 Experiment results and analysis

Below the results of the two experiments are presented and analysed. Some conclusions are drawn with
respect to the hypotheses.

3.5.1 Providing structure to learnt ontologies

The ontologies resulting from running OntoCase on all the above presented ontologies can be seen in Ta-
ble 3.4, together with their characteristics. Without going into details of the ontologies it may be noted that for
most ontologies the number of top concepts is reduced and the average depth is increased, this is due to the
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added top structure provided by the quite general ontology design patterns that were matched and reused
by OntoCase. Additionally the number of subclass relations has increased for most ontologies, even though
they were pruned of some of their original concepts and thereby reduced in size. This is due to the fact that
OntoCase generally adds all “hypotheses” found in the pattern matching process, i.e. all correspondences
between pattern concepts and input concepts that may be interpreted as subclass relations. This results in a
certain amount of redundancy, and can even result in cycles in the taxonomy. At a first glance these may be
considered as errors, but it is actually an intended feature of OntoCase, since one of its goals is to provide
the ontology engineer with suggestions for alternative modelling choices. The ontologies are also enriched
with more general properties from the patterns, which can be noted in the properties column of Table 3.4.

No. of No. of No. of No. of Avg.
concepts top concepts subclass relations properties depth

OC_Ontology_rice 280 112 245 46 2.19
OC_T2O_DBPabstracts 812 22 1471 28 2.37
OC_T2O_DBPcomments 321 22 628 16 2.39
OC_T2O_AgrovocAbs 2823 27 4162 63 2.84
OC_OntologyRice_EnrichedAbs 1293 758 1679 73 3.36
OC_OntologyRice_EnrichedComm 570 248 921 62 3.06

Table 3.4: The experiment output ontologies.

The following step was to evaluate the ontologies, using the method stated in the previous section. The
results of this evaluation can be seen in Table 3.5. From the results in the table we can note that the
correctness is generally slightly better for the output ontologies than for the original ontologies. However,
the increase in accuracy might be mostly a side-effect of applying the method rather than a direct feature,
since OntoCase does not attempt to explicitly filter out “irrelevant” parts. Rather, the results originate from
the pattern matching, since clearly incorrect concepts will not match anything in a pattern and will therefore
be pruned. Examples of ’clearly incorrect concepts’ are misspelled terms and strangely combined multi-word
concept labels, such as word combinations denoting a somewhat unclear concept, i.e. ’people worldwide’,
or common word combinations not really denoting a concept at all, i.e. ’sativa subsp’ which is a subset of the
words in a sentence discussing subspecies of the species ’sativa’ but where the actual subspecies was not
included, only the abbreviation for subspecies, i.e. ’subsp’. In some domains on the other hand, if the terms
are very specific, some additional domain specific background knowledge might be needed for the pattern
matching in order not to prune too many domain specific concepts and thereby reduce the ontology quality in
this way. At the moment only domain independent background knowledge is used for the matching, whereby
these results are really encouraging, showing that even in a quite specific domain, such as agriculture, this
will be sufficient for most case.

To summarise these results we may note that OntoCase in fact gives an added structure to the ontologies,
and does connect unconnected parts of the ontologies produced by other OL methods. This can be seen
by studying the number of top-concepts of each ontology, and the number of taxonomic and non-taxonomic
relations present, but is of course best viewed in the actual ontology. Unfortunately the ontologies are large
structures and it is not possible to present them here. However, the results presented above provide clear
support for the first hypothesis, stated at the beginning of the chapter. OntoCase is able to connect large
parts of the ontologies to the patterns, even with this very small pattern catalogue used. For this experiment
we used the pruning version of OntoCase, for convenience of evaluating the added parts, but also the version
including all input elements could be used, in order not to loose any of the input elements. Adding structure
to the ontologies is additionally done without reducing ontology quality, in terms of overall correctness of
concepts and relations. It has to be noted however that the ontologies produced are intended as the basis for
further development, manually or semi-automatically. They contain, for example multiple modelling choices
in parallel from which the ontology engineer can choose the needed ones.

2006–2009 c© Copyright lies with the respective authors and their institutions.
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Ontology ConceptsProperties Correct % Not sure % Incorrect %
Ontology_rice C 92.8 5.4 1.8

P 90.0 5.7 4.3
OC_Ontology_rice C 97.8 2.2 0.0

P 92.8 2.9 4.4
T2O_DBPabstracts C 85.5 3.4 11.1

P 61.6 12.8 25.6
OC_T2O_DBPabstracts C 87.9 4.6 7.6

P 77.5 2.5 20.0
T2O_DBPcomments C 94.2 2.9 2.9

P 64.1 11.5 24.4
OC_T2O_DBPcomments C 93.0 4.4 2.6

P 86.1 6.3 7.6
T2O_AgrovocAbs C 84.9 5.7 9.4

P 65.9 13.2 20.9
OC_T2O_AgrovocAbs C 88.5 5.8 5.8

P 79.3 6.9 13.8
OntologyRice_EnrichedAbs C 87.8 5.6 6.7

P 76.2 10.7 13.1
OC_OntologyRice_EnrichedAbs C 88.1 5.6 6.4

P 79.1 8.1 12.8
OntologyRice_EnrichedComm C 92.0 4.3 3.7

P 78.4 4.9 16.7
OC_OntologyRice_EnrichedComm C 93.6 3.6 2.7

P 88.2 5.9 5.9

Table 3.5: The evaluation results for the ontologies.

3.5.2 Enrichment as support for pattern matching

To find support for the second hypothesis the pattern matching results from running OntoCase on the orig-
inal ontology called Ontology_rice above and the two ontologies where this ontology was enriched by the
results from Text2Onto were recorded. The general characteristics of the input ontology Ontology_rice were
presented in Table 3.1 and the characteristics of the enriched ontologies in Table 3.2. Results of running On-
toCase on these ontologies are shown in Table 3.4. The enrichment primarily consisted in adding additional
concepts and relations to the original ontology, it can be seen as a merging of the original ontology and the
results from Text2Onto using the respective text corpora. OntoCase was then run with the same parameters
as before.

Ontology No. of No Not
selected patterns longer used previously used

Ontology_rice 19 NA NA
OntologyRice_EnrichedAbs 24 -2 +7
OntologyRice_EnrichedComm 23 -3 +7

Table 3.6: The number of patterns selected.

The intention in this case is to show that enrichment using OL methods ensures that more patterns are
identified to match the input ontology, without introducing any errors. In this case errors could be both
incorrect concepts and relations in the ontology, as discussed above, or if an inappropriate pattern was
matched and included. For the first type of errors we have already seen in the last section (see Table 3.5)
that the enrichment in itself will in fact introduce some errors, since the OL methods used are not exact and
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the original ontology was manually engineered and thereby quite accurate in its definitions. It is of course
a trade-off to be considered, if we should extend the ontology or not, but this is not the main focus of this
evaluation. We focus only on the effects of the enrichment on the ontology design pattern inclusion.

Ontology_rice OntologyRice_EnrichedAbs OntologyRice_EnrichedComm
Actions.owl Actions.owl Actions.owl
AgentRole.owl AgentRole.owl AgentRole.owl
Classification.owl Classification.owl Classification.owl
CollectionEntity.owl CollectionEntity.owl CollectionEntity.owl
Constituency.owl Constituency.owl Constituency.owl
CoParticipation.owl CoParticipation.owl CoParticipation.owl
Description.owl Description.owl Description.owl
GOtop.owl GOtop.owl GOtop.owl
ObjectRole.owl ObjectRole.owl ObjectRole.owl
Participation.owl Participation.owl Participation.owl
Person.owl Person.owl Person.owl
Precedence.owl Precedence.owl Precedence.owl
Product.owl Product.owl Product.owl
SpeciesModel.owl SpeciesModel.owl SpeciesModel.owl
System.owl System.owl System.owl
TypesOfEntities.owl TypesOfEntities.owl TypesOfEntities.owl
Organisation.owl Organisation.owl EmployeeDepartment.owl
ProductAssociations.owl EmployeeDepartment.owl Metonymy.owl
ProductCategory.owl Metonymy.owl NaryParticipation.owl

NaryParticipation.owl Party.ow
Party.owl Situation.owl
Situation.owl SystemSynthesis.owl
SystemSynthesis.owl TaskRole.owl
TaskRole.owl

Table 3.7: The patterns selected.

The results in terms of the number of selected patterns can be viewed in Table 3.6. 19 patterns out of the
catalogue of 41 were selected for inclusion by OntoCase based on the Ontology_rice ontology. This number
was increased to 24 and 23 for the two enriched ontologies respectively. It may also be noted that patterns
are not only added (see ’Not previously used’ column), some are also no longer selected (see the ’No longer
used’ column). This is due to that the enrichment also slightly changes the focus of the ontologies, whereas
some patterns might now be considered more relevant and some less relevant.

To show that the added patterns are really a positive result we will also study the patterns that were addi-
tionally selected in more detail. It is generally not possible to make a statement if a pattern is valid or not
for a specific domain, rather we have to look at what parts of the pattern could actually be reused in the
ontology and are compatible with the focus of the case at hand. There may be concepts and properties from
a pattern that are valid in a certain domain, even though the complete pattern is not valid in this domain. In
this case most of the patterns in the pattern catalogue are quite general and may be appropriate to include
in any domain, whereas the task of deciding if a pattern was correctly selected is more connected to if the
matches found are indeed correct. Below, in Table 3.7, the patterns actually selected are listed, for each of
the ontologies.

The patterns were judged in a similar way as the correctness of concepts and properties previously, assigned
either “complete”, “incorrect” or “partial” by an ontology engineer. “Complete” denoting that the complete
pattern fits the domain and case at hand, “partial” meaning that there are some parts of the pattern that may
be used for this domain and the case at hand, and finally “incorrect” meaning that this pattern does not fit the
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domain nor the case at hand. The task of the evaluator was to judge if the pattern was correctly or incorrectly
selected, based on if any part of the pattern could be applicable in the domain, rather than to evaluate all
the actual matching results. Missing patterns were not considered. In Table 3.8 the number of patterns in
each category can be seen for each ontology. In parentheses the number of added and removed patterns in
comparison to the matching of Ontology_rice are listed.

Ontology Complete Partial Incorrect
(added/removed) (added/removed) (added/removed)

Ontology_rice 15 4 0
OntologyRice_EnrichedAbs 20 (5/0) 4 (2/2) 0 (0/0)
OntologyRice_EnrichedComm 19 (5/1) 4 (2/2) 0 (0/0)

Table 3.8: The number of completely and partially applicable patterns.

The four patterns considered to only partially match the domain of Ontology_rice are the Person, Product,
ProductAssociations, and ProductCategory patterns. The Person pattern is not completely suitable since it
is intended for ontologies about people and the information associated to individuals, such as social security
numbers, age, height, weight, which in case of an agricultural ontology might be considered irrelevant. The
other three patterns are domain specific patterns from the product developments domain, still some general
parts of these patterns treating products and their features are also applicable in the agriculture domain,
agriculture does in fact produce some types of products.

Based on the results presented above it can be noted that enrichment of ontologies, whether learnt or hand-
crafted, can lead to the selection of more relevant patterns for inclusion in the ontology. The enrichment
in itself might introduce some errors compared to a manually constructed ontology, but this is natural since
enrichment is in this case done in an automatic manner using OL methods. Nevertheless, the error rate is
not increased by applying OntoCase on top of the results, and the additional patterns selected are to a high
extent correctly selected. The overall conclusion is clear, the second hypothesis is supported, enrichment
support the OntoCase matching and selection of patterns.
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Chapter 4

Conclusion and Outlook

In this deliverable, we presented a method for exploration-based ontology refinement which supports the user
in specifying complex property restrictions (see Section 2.2.4) as well as a novel plugin for the NeOn Toolkit
(cf. Section 2.3). Initial experiments with the well-known SWRC ontology demonstrated the usefulness of our
methods for semi-automatic ontology refinement (Section 2.2.5).

In Chapter 3, we reported on a set of evaluation experiments that aim to demonstrate the synergies arising
from a combination of ontology design patterns and ontology learning techniques. The first experiment
aimed to show that applying OntoCase on top of the results from the OL methods in Text2Onto improve the
learnt ontologies, in terms of adding more relations, thus connecting unconnected parts, and adding missing
background knowledge, thus giving the ontologies a general top-structure. The experiments support this
hypothesis and show that the resulting ontologies include a richer structure, in terms of relations, and at
the same time have a lower error rate than the input ontologies. The second experiment aimed to show
that enriching existing ontologies using an OL tool, such as Text2Onto, will facilitate and improve the pattern
matching of OntoCase, and result in more relevant patterns being selected and reused. The experimental
results show that more patterns were selected and reused, and that those patterns were in fact relevant for
inclusion in the ontology, thus also the second hypothesis is supported.

In the near future, we will extend our framework for exploration-based ontology refinement by additional, non-
logical experts. Support for reasoning with uncertain and contradictory knowledge might be required, in order
to enable an even higher degree of automation. Notwithstanding, we are also planning to develop a second
plugin for the NeOn Toolkit to assist ontology engineers in refining the domain and range restrictions of onto-
logical properties. Further evaluation experiments will be conducted to demonstrate the feasibility of learning
ontology alignments by exploring and bridging the semantic gap between different ontologies. With respect
to OntoCase, the method will be further developed and a main focus is to add a graphical user interface, thus
enabling the user to select among the modelling choices generated by the pattern matching process. Further
evaluation experiments are also planned, in order to more precisely determine the accuracy of the approach.
The pattern catalogue will also be extended with more domain-specific patterns, and experiments to study
the effects of providing such patterns are planned.
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