
42 1094-7167/03/$17.00 © 2003 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

I n f o r m a t i o n I n t e g r a t i o n

o n t h e W e b

Annotation for the
Deep Web
Siegfried Handschuh and Raphael Volz, University of Karlsruhe

Steffen Staab, University of Karlsruhe and Ontoprise GmbH

One of the core challenges of the Semantic Web is to create metadata by mass

collaboration—by combining semantic content created by a large number of

people. To attain this objective, researchers have developed several approaches1–3 to deal

with creating manual or semiautomatic metadata from existing information. However,

most of these approaches build on the assumption
that the information sources are static, such as static
HTML pages or books in a library (scenarios A and
B in Table 1).

Today, however, a large percentage of Web pages
are dynamic. Estimates about the ratio of static to
dynamic pages based on Web pages actually crawled
by search engines typically conclude that dynamic
Web pages outnumber static ones by 100 to 1. Man-
ually annotating every single dynamic Web page
generated—for example, from a database that con-
tains a catalog of books—would be tedious. It would
be better to annotate the database so that it is reusable
for site-specific Semantic Web purposes.

To achieve this objective, several approaches pro-
vide for constructing wrappers by explicitly defin-
ing HTML or XML queries or by learning such def-
initions from examples4 (scenario C in Table 1). See
the “Related Work” sidebar for a discussion of
related approaches. It has become possible with these
approaches to create metadata manually for a set of
structurally similar Web pages. These approaches
offer the advantage of not requiring the database
owner’s cooperation. But the drawback to the wrap-
per approach is that the correct scraping of metadata
depends largely on data layout rather than on the
structures underlying the data.

We assume that many sites will participate in the
Semantic Web and will share information. Such Web
sites might present their information only as HTML
pages. Although the Web site administrator might be
reluctant to provide the underlying data so that it con-
forms to a client’s ontology, the administrator might

conveniently describe its current structure on the very
same Web pages. Thus, these sites could give users
the option of using the information itself, the infor-
mation structure, or the information context to cre-
ate mappings to other information structures. This
process is called deep annotation (scenario D in
Table 1). Users could then exploit these mappings to
query the database underlying a Web site to retrieve
semantic data. This process combines the capabili-
ties of conventional annotation with the full capa-
bilities of the databases.

Table 1 summarizes the different approaches, A
to D. Furthermore, it shows another parallel between
scenario A and the deep-annotation scenario D: In
scenario A, the annotator can choose between
embedding the metadata created in the annotation
process into the information proper (through an
HTML metatag) or keeping it remote. Correspond-
ingly for deep annotation, the two choices boil down
to storing the created mappings at the server or at the
client side.

Uses for deep annotation
Countless potential application areas for deep

annotation could be relevant for a large and quickly
growing number of sites that target cooperation. For
example, scientific databases are frequently built
to foster cooperation among researchers. Medline,
Swissprot, and EMBL are just a few examples of sci-
entific databases on the Internet. Many estimate that
more than 500 databases are freely accessible in the
bioinformatics community alone.

Such databases are frequently hard to understand,

One of the core

challenges of the

Semantic Web is to

create metadata by

mass collaboration. A

solution to this problem

is a technique called

deep annotation, which

uses three elements of

information—the

information itself, its

structure, and its

context—to derive

mappings.

and it is often difficult to evaluate whether a
database table named “species” is equivalent
to a table named “organism” in another data-
base. Exploiting the information found in con-
crete tuples might help. But whether the
“leech” considered as entry to an “organism”
is actually the animal or the plant might be
much easier to tell from the context in which
it is presented than from the concrete database
entry, which might resolve to “plant” or “ani-
mal” only through several joins.

Another case for deep annotation is in sup-
ply-chain scenarios. Car manufacturers fre-
quently outsource the problem of providing
mappings to their databases, and they typi-
cally offer their suppliers only a portal with
HTML pages. Suppliers must then either
retype information or replicate it using wrap-
pers. If manufacturers provided information
structures on their portals, a one-time deep-
annotation process could easily create the
mapping for new suppliers.

In addition to direct access to HTML
pages of news stories or market research
reports, commercial information providers
frequently offer syndication services. Inte-
grating such services into a customer’s por-
tal is typically an expensive, manual pro-
gramming effort that could be reduced by a
deep-annotation process that defines the con-
tent mappings.

Perhaps the most significant way deep
annotation can serve the Internet is through
community Web portals. A recent example
based on Semantic Web technology is
www.ontoweb.org. A community portal

serves a community’s information needs by
letting members contribute and share infor-
mation. Some are even designed to deliver
semantic information back to their commu-
nity as well as to the outside world.

The primary objective of a community set-
ting up a portal will always be to provide
human viewers with access to pertinent
information. However, given the appropriate
tools, portal designers could better serve their
members by easily providing deep-annota-
tion pages to their members with the appro-
priate information content, information struc-
ture, and information context.

Architecture
The process of deep annotation consists of

several steps, shown in Figure 1. A Web site
must be driven by an underlying relational
database, with the search results derived from
a server-side markup structure. The mapping
rules between database and client ontology
must be available with the results derived
from the database. The entire deep-annota-
tion process consists of four main steps:

1. The database owner produces server-
side Web page markup according to the
database’s information structures.

2. The annotator produces client-side
annotations that conform to the client
ontology and the server-side markup.

3. The annotator publishes the client
ontology and the mapping rules derived
from the annotations.

4. The querying party loads the second

party’s ontology and mapping rules and
uses them to query the database through
the Web-service API.

In this process, a single person could be the
database owner, the annotator, and the query-
ing party. In other words, the deep-annota-
tion process can work just as well with local
or internal data repositories.

To use deep annotation with our commu-
nity Web portal, for example, the annotator
would annotate an organization entry from
www.ontoweb.org according to the annota-
tor’s own ontology. Then the annotator would
use the ontology and mapping to instantiate
the syndication services by regularly query-
ing all recent entries for titles to match the
list of topics.

As Figure 2 shows, our architecture for
deep annotation consists of three major pillars
that correspond to the three different process
roles: database owner, annotator, and query-
ing party. At the Web site, we assume that
there is an underlying database and a server-
side scripting environment to create dynamic
Web pages. The Web site might also provide
a Web service interface to third-party entities
that want to query the database directly.

Our annotator uses an extended version of
OntoMat-Annotizer to create relational meta-
data that corresponds to a given client ontol-
ogy. The extended OntoMat-Annotizer
accounts for problems that might arise from
generic annotations required by deep anno-
tation. With the help of OntoMat-Annotizer,
we can create mapping rules from such anno-

SEPTEMBER/OCTOBER 2003 computer.org/intelligent 43

Table 1. Static versus dynamic sites.

Web site Cooperative owner Uncooperative owner

Static (A) Embedded or remote metadata by conventional annotation (B) Remote metadata by conventional annotation
Dynamic (D) Deep annotation with server- or client-side mapping rules (C) Wrapper construction, remote metadata

Database 1 Database 2 Database

Database

3 4

Client
ontology

Client
ontology

Mapping
rules

Mapping
rules

Client
ontology

Ontology-based
query results

Web site Server-side markup
Client-side

semantic annotation
Published ontology and

mapping rules Database query

HTML HTML HTML

Figure 1. The four-step process of deep annotation.

tations that are later exploited by an infer-
ence engine.

The querying party uses a corresponding
tool to visualize the client ontology, compile
a query from the client ontology, and inves-

tigate the mapping. We use OntoEdit for
these three purposes. OntoEdit lets us inves-
tigate, debug, and change given mapping
rules. It also lets us integrate and exploit the
Ontobroker inference engine.5

Markup and annotation
The goal of the mapping process is to give

interested parties access to the source data.
Instead of offering the material directly, we
provide pointers to the underlying data
sources in the annotations. That is, we spec-
ify which database columns provide the data
for certain instance attributes depicted on the
Web site and thus combine the capabilities of
databases with conventional annotation.

All information, including the structure of
all tables involved in a Web site query, must be
published so that users can retrieve data. We
specify the database representation using a
dedicated deep-annotation ontology, which we
instantiate to describe the physical structure of
the database element that will help decipher
the Web site query results. We therefore can
publish the structure of all tables involved in a
Web site query. For example, the markup
shown in Figure 3 is part of the HTML head
of the Web page presented in Figure 4.

In Figure 3, the property accessService of
the <DB> class represents the link to a service
that allows anonymous database access. We
rely on a Web service to host the database
access to avoid local protocol issues, because
most standard database connections are made
through sockets on proprietary ports. As Fig-

Deep annotation, as we present it in this article, is a multi-
disciplinary field much like the Semantic Web research com-
munity. There are therefore several communities that have
contributed to reaching deep annotation. So far, we have
identified those related to information integration, mapping
frameworks, wrapper construction, and annotation.

Information integration
Research surrounding information integration seeks to

provide an algebra to translate information between differ-
ent structures. In this field, underlying algebras are used to
provide compositionality of translations as well as a sound
basis for query optimization.1,2 Our objective has not been to
provide a flexible, scalable integration platform. Rather, the
purpose of deep annotation lies in providing a flexible frame-
work for creating the translation descriptions that we can then
exploit with an integration platform.

Mapping and merging frameworks
We can distinguish approaches for mapping or merging

ontologies or database schema mainly along three lines:
discovery,3–6 mapping representation,7–9 and execution.10

Generally speaking, there are researchers11 whose approach
is close to our own because it handles the complete mapping
process involving the three process steps. What distinguishes
deep annotation from all these approaches, however, is that
for the initial discovery of overlaps between different ontolo-

gies, they all depend on lexical agreement of part of the two
database schemata. Deep annotation depends only on the
user understanding the presentation.

Wrapper construction
Methods associated with wrapper construction can achieve

many objectives similar to our own. Some researchers have
designed wrappers to allow for construction by explicitly de-
fining HTML or XML queries or by learning such definitions
from examples. The wrapper approaches have the advantage
of not requiring cooperation with the database owner. How-
ever, the disadvantage is that the correct scraping of metadata
depends to a large extent on data layout rather than on the
structures underlying the data.

Furthermore, when the system provides definitions
explicitly, the user must cope directly with layout constraints.
When the system learns definitions, the user must annotate
multiple Web pages to derive correct definitions. Also, these
approaches do not map to ontologies. They typically map to
lower-level representations—nested string lists from which the
conceptual descriptions must be extracted. We have inte-
grated a wrapper-learning method, called Amilcare, into our
OntoMat-Annotizer.12 The process of bridging between wrap-
per construction and annotation is described elsewhere.13

Annotation proper
Finally, we must consider annotation proper as part of deep

Related Work

44 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n f o r m a t i o n I n t e g r a t i o n

Database

Ontology

OntoMat

Mapping
rules

Database and Web site provider Annotator

HTML HTML Query-GUI

generate

access access

load

Webservice
API

Zope
apply

apply

queryapply

create and
publish

Ontobroker

Query
module

Query initiator

OntoEdit
(OntoMap, OntoQuery)

Figure 2. An architecture for deep annotation.

ure 5 shows, we place the Web site query
itself—used to retrieve the data from a par-
ticular source—in the header of the page. The
header contains the SQL query and is asso-

ciated with a name to distinguish between
queries.

The structure of the query result must be
published by means of column groups. Each

column group must have at least one identifier,
which is used in the annotation process to dis-
tinguish individual instances and detect their
equivalence. Because the database keys are

SEPTEMBER/OCTOBER 2003 computer.org/intelligent 45

annotation. In this case, we have inherited the principal anno-
tation mechanism for creating relational metadata.14 The inter-
ested reader will find an elaborate comparison of annotation
techniques in a forthcoming book on annotation.15

References

1. Y. Papakonstantinou and V. Vassalos, “Architecture and Implemen-
tation of an XQuery-Based Information Integration Platform,” IEEE
Data Eng. Bulletin, vol. 25, no. 1, 2002, pp. 18–26.

2. G. Wiederhold, “Intelligent Integration of Information,” Proc. 1993
ACM SIGMOD Int’l Conf. Management of Data, 1993, ACM Press,
pp. 434–437.

3. S. Bergamaschi et al., “Semantic Integration of Heterogeneous
Information Sources,” Special Issue on Intelligent Information
Integration, Data & Knowledge Eng., Elsevier Science, 2001, pp.
215–249.

4. W. Cohen, “The WHIRL Approach to Data Integration,” IEEE Intelli-
gent Systems, vol. 13, no. 5, Sept. 1998, pp. 20–23.

5. N.F. Noy and M.A. Musen, “PROMPT: Algorithm and Tool for Auto-
mated Ontology Merging and Alignment,” Proc. AAAI/IAAI 2000,
AAAI Press / MIT Press, 2000, pp. 450–455.

6. E. Rahm and P. Bernstein, “A Survey of Approaches to Automatic Schema
Matching,” Very Large Databases J., vol. 10, no. 4, 2001, pp. 334–350.

7. J. Madhavan, P.A. Bernstein, and E. Rahm, “Generic Schema Match-

ing with Cupid,” Proc. 27th Int’l Conf. Very Large Databases (VLDB
01), Morgan Kaufmann, 2001, pp. 49–58.

8. P. Mitra, G. Wiederhold, and M. Kersten, “A Graph-Oriented Model
for Articulation of Ontology Interdependencies,” Proc. Conf.
Extending Database Technology, Konstanz, 2000, pp. 86–100.

9. J.Y. Park, J.H. Gennari, and M.A. Musen, Mappings for Reuse in Knowl-
edge-Based Systems, tech. report SMI-97-0697, Stanford Univ., 1997.

10. T. Critchlow, M. Ganesh, and R. Musick, “Automatic Generation of
Warehouse Mediators Using an Ontology Engine,” Proc. 5th Int’l
Workshop Knowledge Representation Meets Databases (KRDB 98),
Swiss Life, pp. 8.1–8.8.

11. A. Maedche et al., “MAFRA: A Mapping Framework for Distributed
Ontologies,” Proc. EKAW 2002, Springer-Verlag, 2002, pp. 235–250.

12. F. Ciravegna, “Adaptive Information Extraction from Text by Rule
Induction and Generalisation,” Proc. 17th Int’l Conf. Artificial Intel-
ligence, Morgan Kaufmann, 2001, pp. 1251–1256.

13. S. Handschuh, S. Staab, and F. Ciravegna, “S-CREAM: Semiautomatic
CREAtion of Metadata,” Proc. EKAW 2002, Springer-Verlag, 2002,
pp. 358–372.

14. S. Handschuh and S. Staab, “Authoring and Annotation of Web
Pages in CREAM,” Proc. 11th Int’l World Wide Web Conf., ACM
Press, 2002, pp. 462–473.

15. S. Handschuh and S. Staab, eds., Annotation in the Semantic Web,
IOS Press, 2003.

<!--
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns ="http://annotation.semanticweb.org#deepanno">
<DB rdf:ID="OntoSQL">
<accessService

rdf:resource="www.ontoweb.org/database_access.wsdl"/>
</DB>
<Table rdf:ID="Person">
<name>Person</sqlName>
<inDatabase rdf:resource="#OntoSQL" />
<hasColumns rdf:parseType="Collection">

<PrimaryKey rdf:ID="Person.ID"
name="ID" type="int" />

<Column name="FIRSTNAME" type="varchar"/>
<Column name="LASTNAME" type="varchar"/>

</hasColumns>
</Table>
<Table rdf:ID="Organization">
<name>Organization</name>
<inDatabase rdf:resource="#OntoSQL" />
<hasColumns rdf:parseType="Collection" />

<PrimaryKey rdf:ID="Organization.ID"
name="ID" type="int" />

<Column name="ORGNAME" type="varchar"/>
<Column name="LOCATION" type="varchar"/>
...

</hasColumns>
</Table>
<Table rdf:ID="PersonOrg">
<name>Person_Org<name>
<inDatabase rdf:resource="#OntoSQL" />
<hasColumns rdf:parseType="Collection" />

<PrimaryKey name="PERSONID" type="int">
<references rdf:resource="#Person.ID"/>

</PrimaryKey>
<PrimaryKey name="ORGID" type="int">

<references rdf:resource="#Organization.ID"/>
</PrimaryKey>

</hasColumns>
</Table>

</rdf:RDF>
-->

Figure 3. Markup for a dedicated deep-annotation ontology.

local to the respective table—while the Seman-
tic Web has global identifiers—we must estab-
lish appropriate prefixes. The prefix ensures
that we can detect the equality of instance data
generated from multiple queries if the person
maintaining the Web chooses the same prefix
for each occurrence of that ID in a query. Even-
tually, the database keys translate to instance
identifiers through the following pattern:

< prefix > [keyi – name = keyi – value]

Whenever we use parts of the query results
in the dynamically generated Web page, we
surround the generated content with a tag that
carries information about which column rep-
resents the used value. To stay compatible
with HTML, we use the tag as an
information carrier. The actual information
is represented in the attributes of , as
in the following tag:

<span qresult=”q1”
column=”Orgname”>AIFB

The annotation tool then interprets such
span tags and uses them in the mapping
process. An annotation in our context is a
set of instantiations related to an ontology
and referring to an HTML document. We
distinguish

• Instantiations of DAML+OIL classes
• Instantiated properties from one class

instance to a data type instance
• Instantiated properties from one class

instance to another class instance

For deep annotation, we distinguish between
generic and literal annotations. In a literal
annotation, the piece of text might stand for
itself. In a generic annotation, we consider
a piece of text that corresponds to a database
field to be a placeholder. That is, we must
generate a variable for such an annotation.
The variable can have multiple relationships
that allow for the description of general map-
ping rules. For example, the concept institute
in the client ontology could correspond to
one generic annotation for the organization
identifier in the database.

Our user interface supports an annotation
process of server-side markup when the user
opens a Web page. The browser then handles
the server-side markup and provides graph-
ical icons on the page so the user can iden-
tify values that come from the database. The
user selects one of the server-side markups

46 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n f o r m a t i o n I n t e g r a t i o n

<!--
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns ="http://annotation.semanticweb.org#deepanno">
 <Query rdf:ID="Q1">
 <source rdf:resource="#OntoSQL" />
 <hasResultColumns rdf:parseType="Collection">
 <ColumnGroup rdf:about="#g1" />
 <ColumnGroup rdf:about="#g2" />
 </hasResultColumns>
 <sql>
 SELECT Person.*, Person_Org.Orgid, Organization.*
 FROM Person, Organization, Projekt_Org
 WHERE Person.ID = Projekt_Org.PERSONID
 AND Organization.ID = Projekt_Org.ORGID
 </sql>
 </Query>
 <Columngroup rdf:ID="#g1">
 <prefix
 rdf:resource="http://www.ontoweb.org/person/">
 <hasColumns rdf:parseType="Collection">
 <Identifier name="Id" />
 <Column name="Firstname" />
 <Column name="Lastname" />
 </hasColumns>
 </Columngroup>
 <Columngroup rdf:ID="#g2">
 <prefix
 rdf:resource="http://www.ontoweb.org/org/">
 <hasColumns rdf:parseType="Collection">
 <Identifier name="OrganizationId" />
 <Column name="Orgname" />
 <Column name="Location" />
 </hasColumns>
 </Columngroup>
 </rdf:RDF>
-->

Figure 5. Markup for the SQL query found in the page header.

Figure 4. A screen shot of the deep-annotation system with OntoMat-Annotizer.

to create a new generic instance and map the
database field to a generic attribute. Along
with the generic instance, the system stores
the database information necessary to query
the database in a later step.

When the user drags a server-side markup
onto an ontology concept, the system gen-
erates a new generic class instance. The
application displays a dialog for selecting
the instance name and the attributes to which
the database value is to be mapped. The sys-
tem preselects attributes that resemble the
column name. If the user clicks “OK,” the
system performs several checks and then
creates the new generic instance. Generic
instances, which appear with a database
symbol in their icon, store the information
about the database query and the unique
identifier pattern.

The server-side markup contains the ref-
erence to the query, the column, and the
value. The system obtains the identifier pat-
tern from the reference to the query descrip-
tion and the column group. The markup
used to create the instance defines the iden-
tifier pattern for the generic instance. The
system uses the identifier pattern when gen-
erating instances from the database.

For example, if a user selects the server-side
markup AIFB and drops it on the concept institute,
the content of the markup is <span qresult=“q1”
column=“Orgname”>AIFB, which creates a
new generic instance with a reference to the
query ql. The dialog-based choice for the
instance name AIFB assigns the generic attribute
name with the database column Orgname,
which defines the identifier pattern of the
generic instance as in the following fictitious
URL: www.ontoweb.org/org/OrganizationID
=$OrganizationID. The OrganizationID tag is the
name of the database column in query q1 that
holds the database key.

To create a generic attribute instance, the
user simply drops the server-side markup into
the corresponding table entry. Generic attrib-
utes mapped to database table columns will
also show a special icon and their value will
appear in italics. Such generic attributes can-
not be modified, but their value can be deleted.

When the generic attribute is filled, the
system checks for database definition
integrity and examines all attributes of the
selected generic instance. The generic
attribute contains the information given by
the markup, including which column of the
results delivered by a query represents the
value. The attribute is either empty or does
not hold server-side markup. If the attribute

holds markup, the database name and the
query ID of the content on the current selec-
tion must be the same. This issue must be
checked to ensure that result fields come
from the same database and the same query.
If the system does not check this, it could
query nonmatching information.

Mapping and querying
The results of the annotation represent map-

ping rules between the database and the client
ontology. The annotator publishes the client
ontology and the mapping rules derived from
annotations. We used the Ontobroker format to
publish the mapping rules. The Ontobroker for-
mat lets our system use third parties to access
and query the database on the basis of the seman-
tic defined in the ontology. The user of this map-
ping description might be a software agent or a
human user. The querying party uses a corre-
sponding tool to visualize the client ontology,
investigate the mapping, and compile a query

from the client ontology. In our case, we used
the OntoEdit plugins OntoMap and OntoQuery.

OntoMap visualizes the database query,
the client ontology’s structure, and the map-
ping between them, as Figure 6 shows. The
user can control and change the mapping and
also create additional mappings.

OntoQuery is a query-by-example user
interface. Users create a query by clicking on
a concept and selecting the relevant attrib-
utes and relationships. The underlying Onto-
broker system transforms the ontological
query into a corresponding SQL query. Onto-
broker uses the mapping descriptions, which
are internally represented as F-Logic axioms,
to transform the query. The SQL query will
be sent as an RPC call to the Web service,
where it will be answered in the form of a set
of records. The system changes these records
back into an ontological representation auto-
matically so that no interaction with the user
is necessary.

SEPTEMBER/OCTOBER 2003 computer.org/intelligent 47

Figure 6. Mapping between the server database (left) and the client ontology (right).

Figure 7. Querying the server database through the client ontology.

For example, one user could create a query
by selecting the concept Person. In the dialog,
the user can restrict the search to instances
of Person starting with the letter “S” in the
name (see the left side of Figure 7). The sys-
tem expresses this ontological query as an F-
Logic query so that Ontobroker can evaluate
it using the mapping axioms (see the right
side of Figure 7). The data migration exe-
cutes in two separate steps. In the first step,
all the required concept instances are created
without considering relationships or attrib-
utes. The instances are stored together with
their identifier. The identifier is translated
from the database keys using the identifier
pattern. For example, the instance with the
name AIFB of the concept Institute, which is a
subconcept of Organization, has the identifier
www.ontoweb.org/org/OrganizationID=3.

After creating all instances, the system
starts computing the values of the instance
relationships and attributes. The way the sys-
tem assigns the values depends on the map-
ping rules. Because the values of an attribute
or a relationship must be computed from both
the relational database and the ontology, we
generate two queries for each attribute rela-
tionship: one SQL query and one Ontobroker
query. We invoke each query with an instance
key value as a parameter—or a corresponding
database key in SQL queries—and return the
value of the attribute relationship.

The database communication takes place
through bind variables. The system gener-
ates the corresponding SQL query, and, if it
is the first call, caches the query. A second
call would try to use the same database cur-
sor—if it is still available—without parsing
the respective SQL statement. Otherwise, it
would find an unused cursor and retrieve the
results. In this way, the system would main-
tain efficient access methods for relations and
database rules throughout the session.

The deep-annotation technique leaves
semantic data in database systems,

where it can be handled most effectively. In
this way, deep annotation provides a means
to map and reuse dynamic data in the Seman-
tic Web with comparatively simple and intu-
itive tools.

Although we have provided a complete
framework and its prototype implementation
for deep annotation, there is still a long list of
unresolved issues—from the mundane to the
far-reaching. So far, we have only considered
atomic database fields. For example, you

might be able to find a book by searching the
entire bibliography reference as a title query.
But you might instead be interested in sepa-
rating this field into, for example, title, pub-
lisher, location, and date.

In addition, a content-management system
such as Zope (www.zope.org) could provide
the means for automatically deriving server-
side Web page markup for deep annotation.
The database provider could then be freed
from any workload while still providing for
participation in the Semantic Web. For now,
we have built our deep-annotation process on
SQL and relational databases. Future schemes
could exploit XQuery (www.w3.org/TR/
xquery) or an ontology-based query language.
And in the future, deep annotations might even
link to each other, creating a dynamic inter-
connected Semantic Web that allows transla-
tion between different servers.

Querying the database directly certainly
could create problems, such as new possi-
bilities for denial-of-service attacks. In fact,
queries such as the ones that involve too
many joins over large tables might prove haz-
ardous. Nevertheless, we see this problem as
a challenge to be solved by clever schemes
for CPU processing time. Ultimately, we
believe extending deep-annotation research
along these lines might make an intriguing
scheme on which a considerable part of the
Semantic Web could be built.

Acknowledgments
Research for this article was funded by the pro-

jects DARPA DAML OntoAgents, EU IST Bizon,
and EU IST WonderWeb. We gratefully thank Leo
Meyer and Dirk Wenke, Ontoprise, for imple-
mentations that contributed to the deep-annotation
prototype described in this article.

References

1. S. Handschuh and S. Staab, “Authoring and
Annotation of Web Pages in CREAM,” Proc.
11th Int’l World Wide Web Conf., ACM Press,
2002, pp. 462–473.

2. M. Vargas-Vera et al., “MnM: Ontology Dri-
ven Semiautomatic and Automatic Support
for Semantic Markup,” Proc. European
Knowledge Acquisition Workshop 2002,
Springer-Verlag, 2002, pp. 379–391.

3. J. Golbeck et al., “New Tools for the Seman-
tic Web,” Proc. European Knowledge Acqui-
sition Workshop 2002, Springer-Verlag, 2002,
pp. 392–400.

4. A. Sahuguet and F. Azavant, “Building Intel-
ligent Web Applications Using Lightweight
Wrappers,” Data and Knowledge Eng., vol.
3, no. 36, 2001, pp. 283–316.

5. D. Fensel et al., “On2broker: Semantic-Based
Access to Information Sources at the WWW,”
Proc. World Conf. on the WWW and Internet,
IEEE CS Press, 1999, pp. 366–371

For more information on this or any other com-
puting topic, please visit our Digital Library at
http://computer.org/publications/dlib..

48 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n f o r m a t i o n I n t e g r a t i o n

Siegfried Handschuh is a researcher at the Institute of Applied Computer
Science and Formal Description Methods at the University of Karlsruhe. His
research interests include annotations in the Semantic Web and ontology-
based applications. He received a degree in information science from the
University of Constance. Contact him at Institute AIFB, Univ. of Karlsruhe,
76128 Karlsruhe, Germany; sha@aifb.uni-karlsruhe.de.

Steffen Staab is a lecturer in applied computer science at the University
of Karlsruhe. His research interests include computational linguistics, knowl-
edge discovery, knowledge management, ontologies, and the Semantic Web.
He received an MSE in computer and information science from the Univer-
sity of Pennsylvania, a PhD in informatics from Freiburg University, and
a habilitation in applied informatics from the University of Karlsruhe.
Contact him at Ontoprise GmbH, 76131 Karlsruhe, Germany; sst@aifb.uni-
karlsruhe.de.

Raphael Volz is a researcher at the Institute of Applied Computer Science
and Formal Description Methods at the University of Karlsruhe. His research
interests include the intersection of traditional database theory and Seman-
tic Web technologies. He received a degree in computer science from the
University of Karlsruhe. Contact him at Institute AIFB, Univ. of Karlsruhe,
76128 Karlsruhe, Germany; rvo@aifb.uni-karlsruhe.de.

T h e A u t h o r s

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

