
An Interdisciplinary Methodology for Building
Service-oriented Systems on the Web

Steffen Lamparter
Karlsruhe Service Research Institute

University of Karlsruhe (TH), Karlsruhe, Germany
steffen.lamparter@kit.edu

York Sure
SAP Research

CEC Karlsruhe, Germany
york.sure@sap.com

Abstract

Services can be characterized as activities in which
providers and customers co-create value. The need for a
tight collaboration between providers and customers is thus
an important distinguishing aspect of services compared to
products. Traditional software engineering methodologies
provide limited support for collaborative processes at run-
time and are therefore not directly applicable to service en-
gineering. In particular, the design of coordination mecha-
nisms between service provider and customers as well as the
design of a common vocabulary in an interorganizational
setting is not adequately addressed. To face these shortcom-
ings, we present an interdisciplinary approach integrating
just recently proposed Web service engineering methodolo-
gies with market and ontology engineering to one coherent
service engineering methodology.

1. Introduction

In recent years, Web services have developed to a mature
technology, standardized languages and protocols have be-
come available, and consequently more and more interorga-
nizational, service-based systems have emerged. As build-
ing such service-oriented software systems involves a wide
range of technical, business and legal aspects, the engineer-
ing process is highly complex and requires an interdisci-
plinary approach not covered by existing software or service
engineering methods.

In many aspects, service-oriented architectures are
fundamentally different from traditional distributed
component- or object-based software systems. Most no-
tably they introduce the roles of providers and requesters as
first class citizens in the architecture. This is an important
step towards truly inter-organizational business processes
since it allows us to directly apply concepts and ideas
traditionally developed for electronic commerce. Moreover,
the concept of dynamic service binding is introduced that
requires automated discovery, selection and invocation
of new services at runtime of the system. In traditional
software engineering these have been activities usually ac-
complished at design time. These fundamental distinctions

lead to three types of components required for imple-
menting a service-oriented architecture: (i) Web service
technologies provide a hosting platform and a set of stan-
dardized protocols, formats and language specifications that
enable interoperation between services hosted on different
platforms. (ii) Since Web service markets as coordination
mechanism between service providers and requesters are
a cornerstone of a service-oriented architecture, results
from the area of market theory have to be considered in the
engineering process of a SOA. For example, determining
suitable bindings may involve locales for negotiating with
and selecting among many potential providers. (iii) In order
to enable service allocation at runtime, service descriptions
have to be specified in a formal, machine-understandable
way. The state of the art for formally describing services
are ontologies. They come with a standardized logical
foundation providing well-defined semantics which can be
utilized for matching of service descriptions and thereby
improving interoperability.

This paper contributes an integrated methodology for de-
signing service-oriented systems by identifying the relations
and dependencies between service/software, market and on-
tology engineering and showing how they can be merged in
a single engineering process. The individual methodologies
are introduced in 2 and subsequently the interrelations and
dependencies between the methodologies are discussed in
Section 3. Finally, we conclude with a summery in Section
4.

2. Engineering Methodologies

In this section, we shortly review engineering method-
ologies required for software and Web services (Section
2.1), markets (Section 2.2) and ontologies (Section 2.3).
Subsequently we present how these methodologies can be
integrated into one coherent framework.

2.1. Web Service Engineering

First, we address the question of how a Web service and
service-oriented architectures as a whole are built. Gen-

erally, there is an enormous amount of literature dealing
with engineering software systems ranging from sequential
methods such as the influential waterfall model [8] to iter-
ative models which combine top down and bottom up ap-
proaches such as the spiral model [2] or the Rational Unified
Process (RUP) [3]. However, although (software) service
engineering can be seen as a special case of software en-
gineering, when moving to a service-oriented architecture
these methodologies have several shortcomings neither ad-
dressed by object-oriented analysis and design nor by busi-
ness process management techniques: (i) First, the question
of how services can be identified has to be answered which
requires business process aspects as well as the enterprise-
scale application architecture to be taken into account. Ob-
viously, object-oriented analysis is a good starting point, but
it does not address how to discover the functional units of
work from a business perspective. (ii) Second, a paradigm
shift towards explicitly appreciating the key roles found in
service-oriented systems is required. These key roles are
service provider, service requester and intermediaries. (iii)
Third, the methodology should reflect the fact that services
are not built for one single business line or company, but
are potentially exposed to other departments or companies
in which they are used in completely new business contexts.

With these ideas in mind, several methodologies have
been defined that are explicitly tailored towards Web service
engineering. In the following, we look more closely at the
service-oriented analysis and design methodology (SOAD)
propagated by IBM [9] and the service-oriented design and
development methodology proposed in [6]. While the over-
all process strongly conforms with the standard software
engineering process [1] comprising the steps requirement
analysis, design, construction, testing and maintenance,
particularly the design phase has been refined as described
in the following:

System Analysis. First, a bottom-up analysis of the exist-
ing system takes place in order to find resources that could
serve as a basis for providing service functionality. System
analysis is typically executed by the provider.

Domain Decomposition. The top-down approach starts
with the domain decomposition step. Here the business pro-
cess is decomposed into its subprocesses using high-level
business use cases that enable identifying the functionality
required as service.

Component Design. In the next step, viable components
that implement the application logic required for a service
are identified. In the component specification, the messag-
ing and event specification, the internal flow and structure of
the identified components, and other component dependen-
cies are described. Missing components have to be custom
built in the component realization step. Defining the compo-
nent that implements a certain service is called component
allocation. In Figure 1, the component identification, spec-
ification, realization and allocation is captured by the term
component design.

Service Design. Similarly, service design can be broken
down to service identification, specification and realization.
The service identification step deals with deciding which
operations of the component should be accessible via a Web
service. After identification of the services, their character-
istics have to be documented to enable their implementation
and later reuse.(service specification). Finally, new services
are created in the service realization step.

Service Binding. Once services are realized and exposed
by the provider on a service market (offer specification),
requesters can integrate them into their business process.
Therefore, they have to decide in a top-down manner by
means of domain decomposition, which services are re-
quired and which task of the process should be done by
which service (request specification). Thus, the term bind-
ing captures the assignment of service requests to offers.
These bindings can be specified explicitly by the devel-
oper or determined dynamically by the system using the
request and offer specification. In either case, the mecha-
nisms bringing together service demand and supply have to
be carefully designed, which is the main purpose of the field
market engineering discussed in Section 2.2.

Evaluation. Finally, the constructed architecture is eval-
uated in terms of functionality, robustness, efficiency, etc.
While these step mainly corresponds to the traditional soft-
ware engineering methods, some additional criteria are
important, such as reusability of services, efficiency of
provider selection, etc. The latter is addressed in the next
section.

2.2. Market Engineering

An electronic market for coordinating service requests
and offers has to meet certain requirements, such as welfare
optimization or maximizing the transaction volume in the
market. As meeting these requirements can be very com-
plex, the engineering process is broken down into less com-
plex sub-phases. Although structured according to similar
phases as software engineering, market engineering focuses
on different aspects and goals. In this section, we briefly
introduce the different phases. A more fine-grained process
accompanied with a detailed discussion for each phase can
be found in [5].

Environmental Analysis. The environmental analysis
deals with gathering information about the concrete set-
ting for which the market is designed, including informa-
tion about the participants, about the products to be traded,
about possible intermediaries, etc. The phase leads to a set
of requirements for the market mechanism.

Design and Implementation. After identifying the re-
quirements, the market algorithms and infrastructure can be
defined and implemented. First, in the conceptual design
phase, the market is set up in an abstract way, i.e. the in-
stitutional rules are defined without specifying the way they
are implemented. During the embodiment phase the abstract

conceptual design is concretized, but still remains platform
independent. Finally, in the implementation phase the mar-
ket platform is realized.

Evaluation. Once the market infrastructure is set up, it
can be evaluated whether the desired market outcome can
be realized. Usually these evaluations are done with respect
to the requirements specified in the environmental analysis
and include technical aspects (e.g. performance, system re-
liability) and economic aspects (e.g. allocation efficiency).

Since the expression of offers, requests and contracts in
a market typically includes complex description of goods
or services that may involve broad domain knowledge as
well as a wide-range of different parties, defining an appro-
priate market language easily becomes a cumbersome task.
Therefore, ontology engineering provides structured means
that support this task. The ontology engineering process in
sketched in the following section.

2.3. Ontology Engineering

Several ontology engineering methodologies have been
proposed in literature serving different purposes or address-
ing different domains [7]. For example, for ontology build-
ing from scratch TOVE, ENTERPRISE, METHONTOL-
OGY, the OTK-methodology and DILIGENT have been
proposed. Pinto and Martins [7] compare ontology engi-
neering methodologies using a general process containing
the stages specification, conceptualization, formalization,
implementation, and maintenance. Although the tasks clas-
sified within a certain stage differ slightly from one method-
ology to the next, they are sufficient to clarify the general
dependencies to the other methodologies.

Specification. The objective of the specification stage is
to identify the scope of the ontology. In this context, the do-
main that has to be captured and the intended users have to
be specified. This also involves to determine requirements
regarding the expressivity of the ontology language.

Conceptualization. In a second step, the identified spec-
ification is described with a conceptual model. Depend-
ing on the concrete methodology used, different concep-
tualization models ranging from informal models, such as
mind mapsTM , to semi-formal models, like binary relations
diagrams, might be used. These conceptualizations describe
the basic concepts and relations relevant in a domain.

Formalization. After describing the required vocabulary
and the relations between the vocabulary terms in a con-
ceptualization, the conceptualization has to be formalized
in order to get an unambiguous definition of the terms.
The formalization stage involves defining concepts by re-
stricting their interpretation to certain individuals in the
domain. Thus, concepts and relations are mathematically
well-defined, but are not yet serialized in a computer-
interpretable format.

Implementation. In the implementation stage, the for-
malized and semantically well-defined model of the ontol-
ogy is represented by means of a machine-interpretable syn-
tax, as provided by OWL, for instance.

Evaluation. In this stage, the quality of the ontology is
technically judged by a knowledge engineer. According to
[7], this includes verification (i.e. is the ontology correct ac-
cording to the accepted understanding of the domain), val-
idation (i.e. does the ontology meet the specified require-
ments), and user assessment (i.e. judging the usability and
usefulness of the ontology and its documentation).

Maintenance. During testing of the service-oriented ar-
chitecture as well as of the market mechanism, updating and
correcting of ontology modules might be required. Each up-
date or correction should be verified carefully and the imple-
mented ontology should be checked for consistency.

3. An Integrated Methodology

As the development of a SOA infrastructure involves tra-
ditional software engineering as well as designing a coor-
dination mechanism and a communication language for ex-
changing offers, requests and contracts, an integrated en-
gineering methodology is required that handles interdepen-
dencies in terms of time and required information. These
interdependencies are captured by Figure 1 and discussed in
the following.

3.1. Requirements Gathering

As a first step, the analysis of the existing software sys-
tem and the domain decomposition of the planed application
has to be carried out. The environmental analysis directly
makes use of information derived from domain decomposi-
tion. Examples for requirements derived from the domain
decomposition are the numbers of providers/customers that
have to be handled or multi-attribute product descriptions.
Such language-specific requirements are also direct require-
ments for the expressivity and the vocabulary of the ontol-
ogy. The environmental analysis of the market engineer-
ing process represents a good starting point for the ontol-
ogy engineering process. In addition, one cannot finish the
environmental analysis in the market engineering process,
before the specification phase of the ontology engineering
has not been concluded. In all, the requirements gathering
phases for services, markets and ontologies have to be fin-
ished, before the design and realization phases can be ap-
proached.

3.2. Design and Realization

The conceptual design of the market and the conceptual-
ization of the ontology can be started during the component
design phase. The conceptual design of the market requires
to fix the language primitives and therefore depends on the

Web Service
Engineering

Market
Engineering

Ontology
Engineering

Implementation

Specification

Conceptualization

Environmental
Analysis

Conceptual
Design

Evaluation

System Analysis
Domain Decomposition

Component Design

Service Design

Service Binding

Refinement/
Maintenance

Evaluation

Formalization

Embodiment

Implementation

R
eq

ui
re

m
en

ts
G

at
he

rin
g

D
es

ig
n

an
d

R
ea

liz
at

io
n

E
va

lu
at

io
n

Evaluation

Figure 1. An integrated methodology for service-oriented systems on the Web.

conceptualization of the ontology. Before starting the em-
bodiment phase the formalization of the ontology has to be
finished since unambiguous, formal definitions of the bid-
ding languages are required. As the result of the conceptual
market design has to be a formal model, ontology formal-
ization is also a part of the conceptual design phase of the
market engineering processes. Thus, the market design and
implementation phase has to be accompanied by the concep-
tualization, formalization and implementation of the appro-
priate ontologies. As ontologies are independent of a con-
crete implementation platform, they can be implemented in
the embodiment phase. However, to enter the implementa-
tion stage of the market engineering process the concrete se-
rialization of the ontology has to be known and thus a fully
implemented ontology is required. In the implementation
phase the market platform is realized. This involves, for
instance, the implementation of the required matching and
allocation algorithms based on an appropriate ontology rea-
soner. The market mechanism has to be fully implemented
in order to realize service binding mechanisms.

3.3. Evaluation

In the evaluation stage all parts of the system are assessed
with respect to the identified requirements. In this context,
evaluation of one part may reveal problems caused by other
parts. The problem has be corrected by going back to the
corresponding engineering phases and repeating the follow-
ing steps (possibly in all three engineering methodologies).

4. Conclusions

In this paper, developed a coherent methodology for es-
tablishing a service-oriented system on the Web. The pa-
per is novel in showing how service, market and ontology
engineering processes interleave in terms of required infor-

mation and time dependencies. The entire methodology pre-
sented in this paper has been applied to design a Web service
market platform for mobile, grid and enterprise services. As
the discussion of these applications goes beyond the scope
of this paper, the interested reader is referred to [4].

Acknowledgements

This work was partially funded by the Karlsruhe Service
Research Institute (KSRI), German Research Foundation in
scope of the research training program Information Man-
agement and Market Engineering, and the BMBF-project
THESEUS.

References

[1] A. Abran, J. W. Moore, P. Bourque, and R. Dupuis, editors.
Guide to the Software Engineering Body of Knowledge (SWE-
BOK). IEEE Computer Society, February 2004.

[2] B. W. Boehm. A Spiral Model of Software Development and
Enhancement. IEEE Computer, 21(5):61–72, May 1988.

[3] P. Kruchten. The Rational Unified Proces: An Introduction.
Addison-Wesley, 3rd edition, 2003.

[4] S. Lamparter. Policy-based Contracting in Semantic Web Ser-
vice Markets. PhD thesis, Universität Karlsruhe, 2007.

[5] D. Neumann. Market Engineering - A Structured Design Pro-
cess for Electronic Markets. PhD thesis, University of Karl-
sruhe (TH), 2004.

[6] M. P. Papazoglou and W.-J. V. D. Heuvel. Service-oriented
Design and Development Methodology. Int. Journal of Web
Engineering and Technology, 2(4):412 – 442, 2006.

[7] S. Pinto and J. P. Martins. Ontologies: How can They be
Built? Knowledge Information System, 6(4):441–464, 2004.

[8] W. Royce. Managing the Development of Large Software Sys-
tems. Proc. of IEEE WESCON, 26:1–9, August 1970.

[9] O. Zimmermann, P. Krogdahl, and C. Gee. Elements of
Service-Oriented Analysis and Design - An Interdisciplinary
Modeling Approach for SOA Projects. http://www-128.
ibm.com/developerworks/library/ws-soad1/,
June 2004. IBM developerWorks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

