Towards Semi-automatic Ontology Building
Supported by Large-scale Knowledge Acquisition

Yimin Wang and Johanna Volker and Peter Haase
Institute AIFB, University of Karlsruhe (TH)
76128, Karlsruhe, Germany
{ywa, jvo, pha}@aifb.uni-karlsruhe.de

Abstract

Knowledge acquisition is usually the first step in building
ontologies. On the one hand, knowledge is typically im-
plicitly contained in large collections of unstructured docu-
ments. Therefore it is extremely troublesome to manually
identify relevant concepts. On the other hand, users are of-
ten not fully satisfied with the results of automated state-
of-the-art ontology learning techniques. In this paper we
present a technique for large-scale Knowledge Acquisition
supported Semi-automated Ontology building (KASO) and
a corresponding software system. By applying KASO and
using this software, users are able to bootstrap the process
of building high quality ontologies by automatically acquir-
ing concepts from large-scale document collections and to
make use of traditional knowledge acquisition approaches to
refine and organize the machine-generated concepts. Evalua-
tion studies and user experiences indicate the applicability of
KASO in bootstrapping ontology construction.

Introduction

With the growing population of digital knowledge over the
web, finding information with effectiveness, efficiency and
accuracy becomes an increasingly challenging task, espe-
cially since most knowledge is contained in large collections
of unstructured textual documents. Ordinary approaches
are to acquire knowledge from the documents manually and
then structure the knowledge at the conceptual level. How-
ever, conventional knowledge acquisition approaches are
usually driven by humans, which means that they are labor-
intensive, time-consuming and troublesome. Thus, auto-
mated or semi-automated knowledge acquisition techniques
are urgently required.

Recently, machine learning and text mining methods have
been introduced to assist users in this process. Text2Onto !
(Cimiano & Volker 2005), a framework for ontology learn-
ing from textual resources, is able to automatically create
ontologies from a corpus of documents within a certain do-
main. This approach is a machine-centered task, so major
human tasks are to define the input knowledge resource, tune
the parameters and select the output destination.

Copyright (© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

I'Text20nto is distributed under the LGPL and can be obtained
from http://ontoware.org/projects/text2onto/.

Consider the following scenario of large-scale knowledge
acquisition: A knowledge manager, or a domain expert, is
going to build a knowledge base from a large set of domain-
specific documents. The traditional way is to seek through
the documents for the key terms and map them onto concepts
using knowledge development tools, such as Protégé (Noy
et al. 2001), which is typical manual tooling. Alternatively,
we have automated knowledge acquisition approaches such
as Text20nto, which gathers concepts from large set of doc-
uments and directly outputs as intermediate ontologies. The
user has to interact with this intermediate representation in
order to transform it into a “real” ontology.

Both of the two aforementioned approaches have their
particular advantages and disadvantages. People using man-
ual acquisition usually build ontologies for specific purposes
so that they can directly use the ontologies in their appli-
cations — they know well about the ontology structure, in-
terconnections, rules, semantics and so on. But it’s really
difficult if there are thousands of concepts to manage for
the manual acquisition. Automatic ontology generation sys-
tems are essentially quite fast and effective in use, but the
automatically manipulated ontologies are not meant to be
used directly by the end ontology users. Thus we are going
to find a balance point that combines the success of con-
ventional knowledge acquisition approaches and automatic
ontology learning framework to facilitate the ontology engi-
neering life-cycle support.

The main contribution of this paper is a novel semi-
automatic ontology building technique based on large-scale
knowledge acquisition — KASO, presented in Section “The
KASO Technique”, and a corresponding software system
implemented as a Protégé plug-in which is described in Sec-
tion “Implementation”. This plug-in allows for automati-
cally eliciting knowledge from large documents in combi-
nation with traditional knowledge acquisition approaches to
refine and organize the elicited concepts. Through investi-
gating several existing knowledge acquisition technologies
(Section “Related Works and Challenges”), card sorting and
laddering methods are selected for performing tasks after
the automated acquiring phase, for which we decided to
use Text2Onto. For the user interface, we applied User-
centered Design techniques (Section “User-centered Design
for KASO”) to help users in creating ontologies in a con-
venient and straightforward manner. The implementation of

of KASO was thoroughly evaluated against the requirements
(Section “Evaluation and Comparison”). The evaluation and
comparison results show that this software successfully im-
plements this novel technique and indeed saves users a con-
siderable amount of time.

Related Work and Challenges

There are two major research areas involved in KASO,
namely, the domains of conventional Knowledge Acquisition
and Ontology Learning.

Conventional Knowledge Acquisition

In the past several decades, people tried to develop knowl-
edge acquisition techniques to acquire knowledge with ef-
fectiveness, efficiency and correctness. A number of these
methods were borrowed from Cognitive Science and other
disciplines such as Anthropology, Ethnography, and Busi-
ness Administration (Boose 1988; Hoffman 1987). Knowl-
edge acquisition techniques were effectively used in the
early 1990s, when graphical interfaces for personal comput-
ers became more and more popular (Shadbolt, Hara, & Crow
1999)

Card sorting is a comprehensive technique which is con-
currently being used in several disciplines such as Knowl-
edge Engineering, Psychology, and Marketing (Upchurch,
Rugg, & Kitchenham 2001). In the field of Knowledge Ac-
quisition, card sorting is considered to be one of the most
effective ways for eliciting the domain expert’s idea about
the knowledge structure. Many evidences show that card
sorting has a lot of positive aspects in making a useful and
reasonable elicitation experiment, including: (i) helping the
respondents to recall the domain concepts; (ii) providing
a structured concepts pile for future processing — such as
laddering; (iii) fast acting and (iv) easy handling (Shadbolt,
Hara, & Crow 1999). Currently the card sorting method is
mainly performed manually and is not widely applied as a
computer tool. Figure 5 shows a snapshot of typical card
sorting task along with the prototype in section “Implemen-
tation”.

Laddering has been widely used in knowledge acquisi-
tion activities in recent years. The basic purpose of the lad-
dering method is to elicit people’s goals and values (Shad-
bolt, Hara, & Crow 1999). People from the knowledge
acquisition community have developed a range of well-
established formal semantics, procedures and notations for
building ladders. Based on the Rugg and McGeorge’s (Rugg
et al. 2002) categorization, the laddering can be used for
three major purposes — the elicitation of sub-classes, ex-
planations and goals/values. An independent tool for lad-
dering is provided by the PCPACK? toolkit which supports
the CommonKADS methodology (Schreiber et al. 1994).
But the implementation in PCPACK lacks the full support of
the standard OWL language®, and the well integration with
state-of-the-art ontology engineering tools, like Protégé. In
this paper, we are going to use the laddering method to build

’http://www.epistemics.co.uk/Notes/55-0-0.
htm

*http://www.w3.org/2004/0WL/

up the data and object properties for OWL classes. A typical
conceptual ladder example for the Pizza related concepts is
depicted by Figure 5.

There are also some other popular human-driven acqui-
sition techniques, such as repertory grid, a matrix-based
approach, which was developed mainly for eliciting and an-
alyzing knowledge and for self-help and counseling pur-
poses (Boose 1988). Another informal approach, user ob-
servation (Ericsson & Simon 1984), was developed decades
ago and is still widely used for interviews, questionnaires
and other common social science methods. Both of the ap-
proaches are difficult to be directly applied to ontology en-
gineering. Therefore, card sorting and laddering will be de-
ployed to combine with the ontology learning techniques,
which is one of our major concerns in this paper.

Ontology Learning

Several ontology learning frameworks have been designed
and implemented in the recent years. For instance, the
Mo’K workbench (Bisson, Nedellec, & Canamero 2000) ba-
sically relies on unsupervised machine learning methods to
induce concept hierarchies from text collections. An on-
tology learning plug-in for Protégé called OntoLT (Buite-
laar, Olejnik, & Sintek 2003) is targeted more at end users
and heavily relies on linguistic analysis. The framework by
Velardi et al., OntoLearn (Velardi et al. 2005), mainly fo-
cuses on the problem of word sense disambiguation. Fi-
nally, TextToOnto (Maedche & Staab 2004), the predeces-
sor of Text2Onto, is a framework implementing a variety of
algorithms for diverse ontology learning subtasks. In partic-
ular, it implements diverse relevance measures for term ex-
traction, different algorithms for taxonomy construction as
well as techniques for learning relations between concepts
(Maedche & Staab 2000).

Common to all the above mentioned frameworks is some
sort of natural language processing to derive features on the
basis of which to learn ontological structures.

% POM
— Visualization
\—> Workflow

Manager
= = API
Evidence Reference
Store Store

POM ‘1 Ontology
GATE j -
>
Algorithm Controller
OowL RDFS | | F-Logic
Writer Writer Writer

Text20nto] : :

Figure 1: The scenario of using Text2Onto.

As shown in Figure 1, three main features distinguish
Text20nto from its predecessor, TextToOnto, as well as
other state-of-the-art ontology learning frameworks. The
first is to represent the learned knowledge at a meta-level

in the form of instantiated modeling primitives within a so
called Model of Possible Ontologies (POM). Second, by in-
corporating strategies for data-driven change discovery, we
avoid processing the whole corpus from scratch each time it
changes, only selectively updating the POM according to the
corpus changes instead. Third, user interaction is a central
aspect of Text20nto’s architecture, although it is still not
sufficient enough to build ontologies for end users. Actu-
ally, the fact that every instantiated modeling primitive gets
assigned a probability or confidence factor by the system
permits us to design sophisticated visualizations on top of
the Text20nto API in which the user can prune or filter the
POM on the basis of the system’s confidence.

Challenges

Truly, both the human-driven knowledge acquisition tech-
niques, like card sorting and laddering, and the existing on-
tology learning frameworks, like Text2Onto, are able to con-
struct initial ontologies. However, neither of them could
fully satisfy the users. Whereas human-driven acquisition
approaches are short of the effectiveness and efficiency, on-
tologies generated by ontology learning algorithms is highly
required to be refined.

The challenge hereby is to create a novel technique
which combines the advantages of these two approaches and
presents users a new technique of building ontologies. An-
other major challenge consists in applying this novel tech-
nique to a real application, which on the one hand, gives
people exact view of the new ontology building approach,
and on the other hand, proves the soundness, correctness and
applicability of this technique.

The KASO Technique

The technique introduced in this section aims to (i) reduce
the work-load for knowledge engineers and domain experts,
(ii) increase the reusability of laddering and card sorting pro-
cesses, (iii) effectively manage the knowledge acquisition
tasks, and (iv) seamlessly integrate with existing software
systems.

Our work is to find a midpoint so that we can balance the
trade-off between the automatic and purely manual ontology
building approaches. The technique introduced here goes
well with this demanding goal. We use a large collection
of documents as a knowledge source, apply the Text2Onto
technology to elicit the concepts, and then manually orga-
nize the raw outcome in an intuitive way by adopting tra-
ditional knowledge acquisition methods, i.e., card sorting
and laddering. Thereafter, we have the basic ontology struc-
ture which can be output in a standard OWL ontology for-
mat for future editing. As shown in Figure 2, users perform
tasks from top to bottom, starting with the KASO technique,
which is integrated from conventional knowledge acquisi-
tion and ontology learning techniques, to get and refine the
ontology structure and generate the OWL output.

To be more specific, in Figure 3, the basic taxonomy of the
ontology is built by using the card sorting procedure, which
is equal to sorting cards with concept labels. The ladder-
ing method is used afterwards to construct the relationships

Conventional
KA

The KASO Technique

Start Building Ontology

Learning

1

Get Concepts

1

Refine Structure

1

Output Result

Figure 2: Task roadmap of KASO.

between the concepts that are typically object properties in
OWL. The ontology skeleton is completed mainly by de-
ploying KASO, whereas in normal cases, ontologies consist
of many other elements like restrictions, annotations, rules,
etc. So other knowledge acquisition procedures can be in-
cluded which are not explicitly defined. For example, ontol-
ogy engineers could add restrictions, annotations and rules
with help of ontology engineering tools. These editing ac-
tivities are summarized as “Future Editing” and their corre-
sponding acquisition methods are stated as “Others” in the
Figure 3.

Refine Ontology Structure Conventional KA

Build Concepts Tree Card Sorting

Laddering

Build Object Properties
between Classes

Future Editing
Ontology Structure Refinement Phase

Figure 3: The human-driven knowledge acquisition as a re-
fining procedure in KASO involves different detailed knowl-
edge acquisition techniques and their corresponding usages
in constructing ontologies.

KASO applies the successful elements of two major on-
tology building approaches, whose background technologies
have been developed in many actual systems, as indicated in
section “Related Work and Challenges”. Thus, we believe
that the technique indicated in this section is practical for
implementation and real use.

User-centered Design for KASO

In this section we discuss design considerations we took
into account for defining the user interface of KASO. In the

Human-Computer Interaction (HCI) research domain, User-
centered Design is one of the most essential methodologies
and now widely used in various disciplines, including Soft-
ware Engineering, Knowledge Management and Informa-
tion Systems (Shneiderman 1997).

One aspect of user-centered design techniques is to make
users involved in the software design process, by interview-
ing various groups of users based on certain requirements,
such as age, occupation, gender, culture and so on. There-
fore, we interviewed potential users of KASO and collected
interview results in order to discover the goals and needs of
the target user group. The techniques of participatory design
are necessary in implementing KASO to a real software, be-
cause the target user group mainly consists of scientific re-
searchers with different disciplines, requirements, personal-
ities, ways of working and thinking.

Participatory design includes observing and recording the
manual activities, such as using the rectangles on paper as
software window frames; cutting the paper into rectangles
with different size as dialogues and menus; choosing differ-
ence colors to indicate the selection status; drawing, drag-
ging while necessary to modify the interface; taking the pic-
ture while performing activities and many other actions. All
these activities are performed by the real target group of
users. The picture below was taken from the interview ac-
tivities within the software design process.

Figure 4: A user participant design case with hand-draw
window frames

By adopting these design techniques, we successfully col-
lected enough data for the implementation. Eleven people
with varying backgrounds participated in the interview. The
same people later participated in the user evaluation in order
to discover whether the outcome meets their requirements.
The interview results show many variances among people
due to different academic backgrounds and level of exper-
tise and also indicate that the cultural background plays an
essential role. For example, a first year Asian undergrad-
uate student may have difficulties in modeling an ontology
about the domain of pizzas, because he is normally not fa-
miliar with different kinds of pizzas and does not have much
experience on knowledge systems.

After analyzing the interview results, we discovered that
certain number of people asked for a quick execution for
concepts input and some comprehensive approaches to or-
ganize them, as well as standard output and good user in-
terface. Thus, we derived the following functionalities as
requirements:

1. a text processor for a series of documents belonging to a
certain domain as knowledge source for building ontolo-
gies;

2. aflexible and straightforward user interface;

3. human-driven knowledge acquisition techniques inte-
grated with graphical manipulation;

4. areusable and well-formatted output;

5. integration with other ontology editors.

When implementing KASO, we took into account the afore-
mentioned requirements derived from the user interviews.

Implementation

We implemented the KASO technique by firstly creating a
prototype with the main functionality and afterwards inte-
grating the prototype into an ontology engineering environ-
ment.

Prototype for KASO Implementation

There are two ways to generate the knowledge source for
eliciting concepts. One is to gather a large collection of doc-
uments within a domain separately, for example, from the
sports news we can easily find enough football reports and
save them to a corpus folder. The other way is to find a
large document, perhaps a book, divide the book into many
sections and put them into a same corpus folder. This task
is so straightforward that a user with basic PC and internet
knowledge can successfully handle this.

As soon as the corpus has been prepared for the ontology
learning process, the users can begin to build their ontolo-
gies. The first step is generally automatic — the users just
need to select the corpus and run the program. After a while,
a list of concepts will be extracted from the documents ready
for future organizing. Conventional knowledge acquisition
activities are applied to help users in this process. In par-
ticular, the card sorting technique is used to select concepts
and insert them into a taxonomy, while laddering aims to
initialize the relations between the concepts by building a
conceptual ladder.

After addressing the aforementioned issues, we get a pro-
totype for this plug-in as depicted by Figure 5. Card sorting
is mandatory because the basic taxonomy of an ontology has
to be settled by arranging cards with concepts, whereas lad-
dering sometimes is optional due to actual use cases and dif-
ferent goals for building ontologies. What is worth mention-
ing is that both the card sorting and the laddering approaches
are implemented as working panels that allow a style of in-
teraction, which is largely similar to that of domain experts
working on the desk.

1'[ext20nto

Raw Concepts List /

Pizza American AmericanHot
Fiorentina

Rosa Soho SpicyPi [
VegetarianPizza NamedPizza
PizzaBase DeepPan
ThinAndCrispyBase PizzaToppin
DairyTopping CheeseTopping
FourCheesesTopping
GoatsCheeseTopping
GorgonzolaTopping
MozzarellaTopping
ParmesanTopping EggTopping
FishTopping AnchoviesTopping
MixedSeafood Topping
PrawnsTopping FruitTopping
SultanaTopping CajunSpice Toppi
RosemaryTopping MeatTopping
ChickenTopping HamTopping
HotSpicedBeefTopping

Ladderin
hasTopping ¥ 1222 9

|

izzaTopping ~ orderBy
AIFBers

hasSubClass

HotSpicedBeefTopping NutToppirlg
SauceTopping SpiSYJ 0pping
VegetableTopping Artgoke Topping Chees¢gXopping
CaperToppinag GarlicTopRing P\
<rd cuk'>
>

hasMember

likes

PizzaFans

Figure 5: The software prototype for KASO, the big up-
down arrow points out the overall process, while the small
arrows lead to different sub-steps.

The KASO Protégé Plugin

Considering the requirements raised by the users during the
interview session, we find a trade-off between working with
existing mature ontology development toolkits and running
as a standalone application. While it is comparatively eas-
ier to implement this system as a self-stand application, the
users may find it difficult to access the software and get used
to it. Otherwise, the output of the software will probably be
edited in other ontology editors, so the users may find it trou-
blesome to switch between different applications. Finally,
we decided to implement the KASO prototype as a plugin
for Protégé — one of the most popular ontology engineering
environments.

The prototype is implemented as a Protégé plug-in and
depends on the Protégé OWL plug-in API (Knublauch et
al. 2004), executing smoothly as depicted by Figure 6. The
button of “Auto Elicit” enables users to select the corpus
folder in the local storage system, which is marked as “1”.
The window with number “3” shows the internal text files of
the selected folder, while window with the number “2” is a
sample of a text file in window “3”. Now the users just need
to click the “OK” button in window “1”. The system will
call the Text2Onto engine to process the selected corpus and
return the result to the user interface.

The user interface consists of card sorting and laddering
working panels, as well as other controlling functionalities.
Figure 7 indicates the conventional knowledge acquisition
tasks performed after automatically eliciting the concepts.
We can see that as opposed to Figure 6, the card sorting
window with mark number “2” is now running as a sepa-
rate window to facilitate users to perform card sorting and

laddering simultaneously. The outputs of the Text2Onto en-
gine now directly appear as cards with concept labels on the
card sorting panel. The window with number “4” displays
the Text2Onto runtime status, while Text2Onto runs in the
background.

Focus on Figure 7, users usually start in the card sorting
panel, inserting the concepts into the ontology tree following
the bigger arrow from right to the left. The selection and the
status of the cards are rendered by means of different col-
ors. At the same time, users can ladder up the concepts with
different relationships to the laddering window with number
“1”, to construct object properties in the OWL language. Af-
ter constructing the basic contents of the ontology, the users
can save the result to an OWL file as opened in a browser’s
window marked with number “3” — this step is represented
by the arrow pointing from right to left.

Following the steps described above, in brief, the sample
text file in Figure 6 contributes several concepts to the card
sorting panel of Figure 7, from which the users refine the on-
tology skeleton and output to the OWL formatted document.
Hence, on the one hand, domain ontology engineers can suc-
cessfully create a high quality ontology from a large set of
domain-specified documents without searching the key con-
cepts from scratch, which is extremely troublesome. On the
other hand, Text2Onto users can easily filter out the con-
cepts which were not appropriately selected by the system,
to make their auto-generated ontology more applicable.

Evaluation and Comparison

In this section, we explicitly evaluate the software which ap-
plied the KASO by performing user evaluation based on the
usability requirements, and moreover, we also compare dif-
ferent ontology building approaches, to prove the correct-
ness of KASO and the quality of this implementation. The
feedbacks from user evaluation were treated as an essential
guideline for the application testing and debugging.

User Evaluation Results

The user evaluation has two different parts. One is the in-
terface evaluation which mainly concerns the software’s
graphical user interface (GUI), including look and feel, in-
terface layout, ease of use, and flexibility. And the other is
functional evaluation which focuses on the application for
KASO. This evaluation procedure aims to detect the user’s
comments on three basic aspects in the domain of User-
centred Design — the software should be powerful, flexible
and robust.

Eleven people were involved in the user evaluation ac-
tivities. They were diverse in academic and cultural back-
ground. In order to quantify the results, a grading system
similar to evaluating university examination was borrowed,
that is, 5 is a pass, 6 is a good pass, above 7 is a distinction
and 10 is the full score. In the arrays of the scores intro-
duced below, the first five scores in each array come from
the experts or skilled users of knowledge systems. The par-
ticipants are marked with “E” for expert and “N” for “Non-
expert” plus the reference number.

In terms of the user interface design, the grading results
will be given to four different aspects as interface evaluation.

g

"o00 pizza.owl Protégé 3.2 beta _(file:/Applicatiopd]Proteg: ..
He £ Eopc OWL Cose Tods icow e Auto Elicit
NeE B3 ma €% BEE <> <€pmtégé
| @ Metadata | | OWLClasses | MM Properties | 4 Individuals | = Forms | X Tool |
New openfile | | Savefile | | Delete | | Edit ave Status_| | _LeafSiarm | | Document Elicitation Show Cards
(& Transactions “ [cardSorting | Ladderihg | 0006 2 7471664.txt
[Transaction 1 [New | [open Tuto | ~MT for ontology developnent

Ontologies are beconing increasingly inportant because they provide the
critical senantic foundation for many rapidly expanding technologies such
as softuare agents, e-comnerce and knowledge nanagement (McGuinness, 2882).
The Unified Modelling Language (UML) has been widely adopted by the

500
Automatic Elictation Using Text20nto software engineering cotunity and its scops is broddening to includs nore
aiverse il ling Lasks i pope ascses o secent.comergrce o U

e [e @R and ontologies and suggests sone possible future directio

3 corpus_km

2

Filname: \ [Users/iamwym/project_datajcordgkm ‘ \

Files\of Type: \ Al Files ~

New Group | [openNy| cancel
i Z Z

corpus_sw2

Groups

Name %] Date Modified Size | Kind
= 1234567.txt Mar 8, 2006, 3:03 PM 4KB Plain text document
7222520.1xt Mar 8, 2006, 3:04 PM 4KB Plain text document
737104 1.txt Mar 8, 2006, 3:05 PM 4KB Plain text document
7468669.txt 00 4 KB Plain text document
7471664.txt 4 KB Plain text document
= 7561271.txt Mar 8, 2006, 3:04 PM 4KB Plain text document

= Yimin Wang's Com.

|| @ Nework

| 2 Macintosh HD

2! WINDOWS |

{3 Desktop |

| A iamwym R TS ER Mar 8, 2006, 3:04 PM 4KB Plain text document
| /A Applications 7658329.1xt Mar 8, 2006, 3:04 PM 4K8 Plain text document

% Documents 7748749.1xt Mar 8, 2006, 3:04 PM 4KB Plain text document
1| & vovies Mar 8, 2006, 3:04 PM 4KB Plain text document

om | 794481 11xt Mar 8, 2006, 3:04 PM 4K8 Plain text document

usic
) Pictures |
Tof 11 selected, 34.81 GB available 2

Figure 6: Screenshot of initializing the concepts eliciting. The different numbers are mapped to the components in the figure.

000 pizza.owl Protégé 3.2 beta (file:/Applications/Protege 3.2t @ © © Card Sorting
Fle Edit Project OWL Code Tools Mindow Help New | | Open | | AmoBict | | Delete | | Eoit | | AddtoGroup | | Group Cards | | AddtoLadde*]
NeoHEH B0 wd ¢% EED 4> §
document method language ontology design taxono|
| @ Metadata | | OWlClasses | MM Properties | 4 Individuals | = Forms | KE To
New | | openfile | [Savefile | | Delete | Save Stat [information l [model l [problem] [metada l [datur
[Transactions (2] (Cacering
0 Transaction 1 e l dormain I l source [knowledge I l applical
ontology Component
[) [(o] o
management
[change I l goal I l internet I I{HUW\EGGE management FVS l conten
[ommm] [wmomr] [] [wore] [oume
[management l [purpose l [communication l [applet of
NewGroup | | Detete | |
Set Parent H Re-sort H ology l template l lrerersnnanmegmy l [knnmmgesamza l [memb|
Groups
¥ Ontole
nology [cube l [repont l [part l [content l [individ
applet ontology
template ontology
| [) [] (v)) [
manufacturing domain
Kl [

> management
v system

knowledge management s
¥ Ontalogy Cormponent

indivicual - <rdf:RDF xml:base="hitp
metada <owl: ()nmlo).',v rdf:about
model ="#applet ontology">
¥ Language = 0. 6157578737857983 ="Ontology"/>
ontology desi 51578137857983
~ ;_‘ﬁm T A ClamsOt ra: resource="http://www w3 0rg/2002/07/owl#Thing" />
88
Pmbézm *aﬂ‘:9557305 3{591024 s rdf:about="#knowle management”>
Gatom = 00§7187044425361253 ubClassOF rdf:resource="hp:/waww 3 org/20020Tiow i
ing_dom 4236
domain = 0.42363681067863746 ass rdr ID="management’/>
source = 0.42363681067869746
knowledge = 0.4146248787602317 it “hL lassOL>
applica 48702000317 J
use = 0.39361610682955
systen - 0.393616106829)
paper = 0.3677709738053 dfsisubClassOb> . .
knowledge management = 0.2894759460557413 ss rdf:ID="domain"/>
access = 0.2636715033162067 :
=
(B % Run] [2 6:ToDO 1

Figure 7: Working with human-driven knowledge acquisition to manipulate OWL ontology. The numbers and arrows show the
steps after eliciting concepts from documents with the help of Text2Onto.

Participant El E2 E3 E4 E5 E6 |[NI N2 N3 N4 N5 | Average
Look and feel 9 7 7 8 9 7 7 6 7 8 6 7.3
Interface layout | 7 7 9 6 8 6 9 5 6 5 6 7.3
Ease of use 7 7 6 7 8 7 6 6 6 6 5 6.4
Flexibility 7 8 8 6 5 6 6 6 9 6 8 6.8
Table 1: Interface evaluation results
Participant El E2 E3 E4 E5 E6 |[NI N2 N3 N4 N5 | Average
Card sorting 9 8 7 9 9 7 8 8 7 7 8 7.9
Laddering 7 6 7 7 7 17 6 7 7 9 8 7.0
Relationship setting | 6 7 6 6 6 8 7 9 7 8 8 7.0
Table 2: Functional evaluation results
The users were asked for the grades of the four points, and Methodology Concepts Time
their grading results are listed in table 1. To be statistically Conventional KA 25 14 minutes
accurate, the average score was calculated by eliminating the KASO 25 12 minutes
highest and the lowest scores in each array. Conventional KA 100 1 hours
The functional evaluation involves the grading of each ba- KASO 100 20 minutes
sic component, including card sorting, laddering and rela- Conventional KA 200 2 hours+
tionship setting. They are three major components provided KASO 200 30 minutes

by this software and users are easily getting familiar with
them. So the grading of these components is direct.

The overall score is calculated by calculating the aver-
age value. We get 7.0 points for interface evaluation and
7.3 points for functional evaluation. For the component
of concept eliciting, we refer to the existing evaluation
from Text2Onto (Volker, Vrandeci¢, & Sure 2006). The
Text2Onto engine has been widely evaluated and is undoubt-
edly considered to be a stable and reliable automatic on-
tology constructing system using text-based documents as
knowledge source.

The Comparison

Notwithstanding the evaluation indicates the success of
KASO in practical usage, compared to the ordinary human-
based ontology editing, we can also see the advantages
owned by KASO.

This comparison is performed by recording the approxi-
mate time required to build an ontology with fixed number
of concepts by using pure conventional knowledge acquisi-
tion techniques and KASO, respectively. Because the times
required to organize the ontology structure vary based on
different cases, it is not necessary and practical to have more
accurate timing scale. The timing by minutes is suitable for
this comparison.

In the table 3, the conventional knowledge acquisition
technique stands for selecting the concepts from documents
using the mouse instead of using Text20Onto. The sample is a
university website that mainly consists of a bunch of HTML
documents. The requirement of using KASO techniques is
to build an KASO ontology that is similar to the manually
constructed ontology, which contains rich semantics and is
not practical to be generated just by using ontology learning
tools.

In addition, many redundant concepts are suggested by
Text20nto, which means that many of the auto-elicited con-

Table 3: The comparison of ontology building approaches,
“Concepts” column shows the fixed number of concepts for
an ontology and “Time” indicates the approximate time re-
quired for building ontologies.

cepts are not selected for inclusion into the ontology by
the user. While performing the KASO technique, the ex-
perimenter’s experience showed that the redundancy rate is
around 30% — 40%. However, this means that the users def-
initely need human-driven acquisition approaches as a com-
plementary part for fully automated ontology learning ap-
proaches when they build ontologies.

Analysis and Discussion

The evaluation scores illustrate that users are mostly satis-
fied with the functionalities of this software and the imple-
mentation of the technique. With respect to the interface
of this software, although the score is comparatively moder-
ate, the users generally have positive comments. To discover
more based on the evaluation results, we find that the look
and feel of the interface, concept eliciting and card sorting
have the highest ratings and are thought to be best imple-
mented. Meanwhile, the elements related to the ease of use
principle and interface layout arrangement require some fu-
ture improvements.

It is worthwhile to mention the evaluation of this software
system from the independent UK Freshwater Life Biological
Association*. Their comment on this software was: “It was
good to see what he has been doing and looks like a poten-
tially very useful tool. We really liked to get our hands on a
copy to play around with. Even in its current state it could
save us considerable time.”

*http://www.freshwaterlife.org/

In a nutshell, the KASO technique is proved to be sound
and useful in assisting ontology engineer’s daily work. The
corresponding software is commonly considered to be a
well-implemented and powerful tool in real use. The tar-
get user group of this software — knowledge system experts
acknowledge that the software interface is straightforward
and intuitive. All the evidences obtained from this user eval-
uation procedure indicate that people are very willing to see
the future development of this software.

Conclusion and Outlook

In this paper, we presented KASO, a technique for ontology
building by automatically acquiring raw knowledge from
large-scale document collections, and refining the taxonomy
by using integrated traditional knowledge acquisition tech-
niques, i.e. card sorting and laddering. We also developed
a usable software as a use case for our technique, and then
integrated it as a Protégé plug-in. The implementation out-
come and evaluation results demonstrate that our technique
is well applicable and this software plug-in is welcomed by
most real users.

Future work includes the extension of this software with
more capabilities provided by the Text2Onto toolkit and
to apply further ontology learning and ontology evaluation
techniques to heuristically assist users in building the fine-
grained ontologies. The NeOn project(Dzbor et al. 2005) re-
quirements also provide us with an opportunity to align our
technique to the forthcoming networked ontology model,
specifically, posing as the collaborative ontology engineer-
ing environment with support from large-scale knowledge
acquisition techniques.

Acknowledgements

The authors’ current research is supported by the EU-IST-
027595 NeOn project and EU-IST-506826 SEKT project.
The research reported in this paper was partly supported in
part by the CO-ODE project funded by the UK Joint Infor-
mation Services Committee (JISC). We would like to thank
our colleagues for fruitful discussions.

References

Bisson, G.; Nedellec, C.; and Canamero, L. 2000. Design-
ing clustering methods for ontology building - The Mo’K
workbench. In Proc. of the ECAI Ontology Learning WS.

Boose, J. H. 1988. Knowledge acquisition techniques
and tools: Current research strategies and approaches. In
Proceedings of Fifth Generation Computer Systems, 1221—
1235.

Buitelaar, P.; Olejnik, D.; and Sintek, M. 2003. OntoLT:
A protégé plug-in for ontology extraction from text. In
Proceedings of the International Semantic Web Conference
(ISWC).

Cimiano, P., and Volker, J. 2005. A framework for ontol-
ogy learning and data-driven change discovery. In Proc. of
the NLDB’2005.

Dzbor, M.; Motta, E.; Studer, R.; Sure, Y.; Haase, P;
Gmez-Prez, A.; Benjamins, R.; and Waterfeld, W. 2005.

Neon - lifecycle support for networked ontologies. In Pro-
ceedings of 2nd European Workshop on the Integration
of Knowledge, Semantic and Digital Media Technologies
(EWIMT-2005),451-452. London, UK: IEE.

Ericsson, K., and Simon, H. 1984. Protocol Analysis: Ver-
bal Reports as Data. Cambridge, MA USA: MIT Press.

Hoffman, R. R. 1987. The problem of extracting the
knowledge of experts from the perspective of experimen-
tal psychology. Al Magazine 8(2):53-67.

Knublauch, H.; Fergerson, R. W.; Noy, N. F.; and Musen,
M. A. 2004. The protégé owl plugin: An open develop-
ment environment for semantic web applications. In Inter-
national Semantic Web Conference, 229-243.

Maedche, A., and Staab, S. 2000. Discovering conceptual
relations from text. In Horn, W., ed., Proceedings of the
14th ECAI’2000.

Maedche, A., and Staab, S. 2004. Ontology learning. In
Staab, S., and Studer, R., eds., Handbook on Ontologies.
Springer. 173-189.

Noy, N. F; Sintek, M.; Decker, S.; Crubézy, M.; Ferger-
son, R. W.; and Musen, M. A. 2001. Creating semantic
web contents with protégé-2000. IEEE Intelligent Systems
16(2):60-71.

Rugg, G.; Eva, M.; Mahmood, A.; Rehman, N.; Andrews,
S.; and Davies, S. 2002. Eliciting information about or-

ganizational culture via laddering. Journal of Information
System 12(3):215-230.

Schreiber, G.; Wielinga, B. J.; Akkermans, H.; de Velde,
W. V.; and Anjewierden, A. 1994. CML: The Com-
monKADS conceptual modelling language. In Proceed-
ings of Sth European Knowledge Acquisition Workshop
(EKAW), 1-25.

Shadbolt, N.; Hara, K. O.; and Crow, L. 1999. The ex-
perimental evaluation of knowledge acquisition techniques
and methods: history, problems and new directions. Inter-
national Journal of Human-Computer Studies 51:729-755.

Shneiderman, B. 1997. Designing the User Inter-
face: Strategies for Effective Human-Computer Interac-
tion. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc.

Upchurch, L.; Rugg, G.; and Kitchenham, B. 2001. Us-
ing card sorts to elicit web page quality attributes. IEEE
Software 18(4):84—89.

Velardi, P.; Navigli, R.; Cuchiarelli, A.; and Neri, F. 2005.
Evaluation of ontolearn, a methodology for automatic pop-
ulation of domain ontologies. In Ontology Learning from
Text: Methods, Applications and Evaluation. 10S Press.

Volker, J.; Vrandedié, D.; and Sure, Y. 2006. Data-driven
change discovery - evaluation. Technical report, Univer-
sitdt Karlsruhe. SEKT Deliverable 3.3.2.

