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Abstract

In recent years, electronic markets have gained much attention as institutions to allocate
goods and services efficiently between buyers and sellers. By leveraging the Web asa
global communication medium, electronic markets provide aplatform that allows par-
ticipants throughout the world to spontaneously exchange products in a flexible manner.
However, ensuring interoperability and mutual understanding in such a highly dynamic
and heterogenous environment can easily become very tricky, particularly if the services
and goods involved are complex and described by multiple attributes. In this paper, we
present a comprehensive ontology framework that allows thespecificationof bids for Web-
based markets. By expressing utility function policies with a logic-based and standardized
formalism, the framework enables a compact bid representation particularly for highly con-
figurable goods and services while ensuring a high degree of interoperability. To facilitate
matchmaking of offers and requests in the market, a method forevaluatingbids based on
logical reasoning is presented. In addition, as proof of concept, we show how the framework
can be applied in a Web service selection scenario.
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1 Introduction

Electronic markets are institutions that allow the exchange of goods and services
between multiple participants through global communication networks, such as the
Internet. In the process, Web-based markets create economic value for buyers, sell-
ers, market intermediaries, and for the society at large [6]. For example, they reduce
search costs, enable companies to automate their transactions with business part-
ners all over the world, and facilitate product customization and aggregation. Gen-
erally, the design of market platforms involves two components [43]: (i) A bidding
language which defines how offers and requests can be specified and submitted to
the market mechanism. In this context, abid is considered as “a statement of what
one will give or take for something”.1 That means requests express the price some-
one is willing to pay and offers the price someone charges for a certain product. (ii )
An outcome determination that evaluates the bids in order tocalculate an alloca-
tion between offers and requests. Depending on the domain, this step might involve
market mechanisms ranging from simple take-it-or-leave-it markets to mechanisms
implementing complex negotiation and auction protocols.

When moving to a heterogenous Web environment where business partners dy-
namically join and leave the market and where participants might not know each
other beforehand, designing a bidding language is a non-trivial task since it requires
ensuringmutual understandingbetween different participants in the market. This
problem is aggravated by the fact that many trading objects in the Web arehighly
configurable, described by different attributes and traded under different conditions.
A prominent example for such highly configurable trading objects are Web-based
services, which have become increasingly important with the emerging service-
oriented computing paradigm in recent years. Consider, forexample, a route plan-
ning Web service, which offers the service of computing a road route between two
locations. Various configurations of the service may take into account the current
traffic situation or weather situation when computing the route, or the service may
be configured to compute the shortest or quickest route, one that avoids small roads
and so on. Naturally, each configuration may have a different price attached. Deci-
sion making in markets with such complex services and goods generally requires
that bothseller pricing functionsas well as buyerscoring (preference) functionsbe
taken into account.

The key contribution of this work is to develop a means for specification and eval-
uation of bids that enables compact representation of multi-attribute offers and re-
quests while addressing the challenges that arise from a Web-based environment.
For expressing pricing and preference functions we suggestcombining a declar-
ative policy approach with utility theory, which quantifiespreferences by assign-
ing cardinal valuations to each configuration. Suchutility function policiesenable
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efficient specification of multi-attribute bids, while being exchangeable between
different market participants due to their declarative nature.

In order to achieve interoperability and ensure mutual understanding, our technol-
ogy of choice is ontologies. Given our assumption of heterogeneous market partici-
pants and global markets, it is quite likely that requests and offers will use differing
descriptions for the same service or product. Going beyond XML-enabled inter-
operability, ontology-based descriptions of service or product attributes enable the
comparison of requests and offers that are semantically related. Existing electronic
markets do without ontology-based descriptions of products, but at the expense
of rigidly requiring each participant to agree a priori to conform to the standard
protocol and product descriptions of the market. Using ontologies within markets
enables participants to describe their service or product the way they deem best,
leaving it to the market to identify the best matches and thusfacilitate interoper-
ability. In addition, they make the market (participants) resilient to changes in the
vocabularies or market mechanisms.

Before presenting our ontology framework, we discuss the requirements this frame-
work has to meet and review related work to determine whetherthe requirements
are already supported by existing approaches (Section 2). Subsequently in Section
3, we introduce the concept of utility function policies andthe basic principles be-
hind ontologies. Based on these foundations, an ontology framework for express-
ing configurable offers and requests is presented. The main building blocks of the
framework are described in the following sections: the CorePolicy Ontology that
enables expressing utility function policies is introduced in Section 4 and the Core
Ontology of Bids that extends the formalization for expressing offers and requests
is presented in Section 5. Finally, as proof of concept, a concrete implementation
of the framework in the Web service domain is presented in Section 6. Section 7
concludes the paper with a discussion and brief outlook.

2 Requirements Analysis and Related Work

In this section, we first introduce the main requirements forthe specification of bids
in a Web-based market (Section 2.1) and discuss whether existing approaches meet
these requirements (Section 2.2).

2.1 Requirements

In this paper, we consider the problem of designing a mechanism for specifica-
tion as well as evaluation of bids that enables the expression of highly configurable
offers and requests in an efficient way, while being applicable in an open Web envi-
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ronment. Such a mechanism has to meet several requirements,which are discussed
in the following.

Multi-attribute Requests and Offers: First, since we are dealing with various con-
figurable products, the bid specification has to supportmulti-attribute requests
and offers, i.e. requests and offers that involve multiple attributes beyond just the
price. Often these attributes considerably influence the price of a trading object in
the market. For example, in the case of Web services quality of service attributes
are in fact an essential part of the service description although they do not ad-
dress the service functionality itself. The attributes that have to be described in
this context can be discrete as well as continuous.

Expression of Functions: Second, pricing as well as scoring policies require the
expression of functionsthat map configurations to a pricing or a preference struc-
ture, respectively. A functional form is essential particularly for highly config-
urable trading objects since enumeration of configurationsis made difficult by
the exponential size of the attribute space. For instance, aproduct described by
5 attributes, each with 5 attribute values, already involves over 3000 configura-
tions. Moreover, preferences have to be measured on a cardinal scale, so that
one can specify both an ordering between offers and an acceptance threshold for
offers that satisfy the request to a certain degree.

Web-compliant Interoperability: Third, since offers have to be communicated
to the buyer and/or requests to the seller (e.g. in a procurement auction),in-
teroperabilitybecomes an important issue. This is particularly crucial inopen
markets on the Web, where participants may use highly heterogenous data for-
mats and participants as well as descriptions may change frequently. Therefore,
a standardized syntax and semantics is essential that ensures valid matching in
the market although requests and offers are often specified differently. For ex-
ample, a service provider might specify that routes betweenall cities in Europe
are supported, while a customer might look for a route between exactly two
cities Karlsruhe and Munich. To bridge different levels of abstraction sophisti-
cated logical inferencing mechanisms are required which, in this case, utilize the
knowledge about cities being in countries and countries belonging to continents.
Moreover, when implementing markets using Web infrastructure offers and re-
quest descriptions have to becompliant to existing protocols and languages on
the Web, i.e. they should be serialized using XML/RDF, identify objects by Uni-
form Resource Identifiers (URI), feature modularization, etc.

2.2 Related Work

In this section, we present various existing approaches in electronic markets for
modeling buyer preferences and seller offerings. Table 1 summarizes the approaches
discussed in terms of which of the three requirements they support (indicated by
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Table 1
Languages for specifying offers and requests.

Approach Requirement

Multi-attribute Expressing Web-compliant
Offers/Requests Functions Interoperability

EDI/EDIFACT (X) (X) -

XML-based Languages X - (X)

Ontology-based approaches X - X

Rule-based Languages X (X) (X)

Product/Service Catalogs - - X

Bidding Languages for CA X X -

CPML X X (X)

Our Approach X X X

check marks).

One of the first attempts to exchange order information within electronic markets
were the Electronic Data Interchange (EDI) protocols (e.g.EDIFACT [60], X12
[2]), which serialize request and offer information according to a predefined format
agreed upon by both communication parties. Thus, EDI could potentially be used to
describe multi-attributive requests and offers with preference and pricing functions.
However, these pairwise agreements were rarely based on anystandards and turned
out to be effort-intensive, highly domain-dependent and inflexible. Thus, EDI is not
addressing the interoperability requirement.

More recent approaches, such as WS-Policy [66], EPAL [27] and XACML-based
Web Service Policy Language (WSPL) [39], use XML (eXtensible Markup Lan-
guage) [65] as a domain-independent syntax, to define constraints on attributes of
configurable trading objects within the context of Web service agreements. How-
ever, they are not suitable for our purposes, because they only allow the expres-
sion of attribute value pairs and thus cannot be used to express seller pricing and
buyer scoring functions. In addition, the meaning of XML annotations is defined
in a natural language specification, which is not amenable tomachine interpre-
tation and supports ambiguous interpretation. Therefore,such approaches require
extensive standardization efforts, which is also a major problem for ebXML [46].
WS-Agreement [3] is another XML-based specification that can be used to express
different valuations for configurations. However, it supports only discrete attributes.
An approach to extend WS-Agreement for expressing continuous functions is pre-
sented in [54]. The XML annotations still lack formal semantics and therefore do
not provide the required interoperability.
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One way to enable machine interpretation of buyer requests and seller offers is to
specify them using a machine-interpretable ontology. Suchan ontology consists of
a set of vocabulary terms, with a well-defined semantics provided by logical ax-
ioms constraining the interpretation and well-formed use of the vocabulary terms.
Based on this idea several proposals for semantically enabled matching in elec-
tronic markets have been presented [45,36,58,19]. The approaches improve seman-
tic interoperability by utilizing logical descriptions contained in requests and offers.
Depending on the logic used and on the concrete trading objects in the market, dif-
ferent notions of match can be defined. However, logical matching does typically
lead only to a coarse preference structure over the different alternatives, e.g. [51]
presents four different levels of match, namelyexact, plugin, subsumesand fail.
Therefore, [56,31] argue that pure logical matching is not sufficient and has to be
augmented by “value reasoning”. This is also the approach wefollow in our work
by introducing functional descriptions. Another problem with these approaches is
that they do not directly support constraints on multiple attributes. Therefore, the
ontology-based policy languages KAoS [61] and REI [28] can be used to extend
the matching approaches in order to allow the definition of multi-attribute policies
for representing constraints on attributes. However, these approaches are limited in
that they always evaluate either to true or false thus cannotexpress the scoring or
pricing functions required for configurable products.

More expressivity in this context is provided by rule languages such as SweetDeal
[20] and DR-NEGOTIATE [57]. Both are rule-based approachesthat use defeasible
reasoning (i.e. Courteous Logic Programs or defeasible logic) to specify contracts
or agent strategies, respectively. Similar to our approachthey feature automatic
reasoning based on a formal logic. However, although RuleMLis available as a
standard syntax, the semantics of the syntax is not yet standardized which hinders
interoperability. In addition, while the underlying rule language might be capable
of expressing utility-based policies, they do not provide the required policy specific
modeling primitives directly, rather the rules for interpreting such policies have to
be added manually by the user. In the DR-NEGOTIATE approach qualitative pref-
erences are expressed via defeasible rules and priorities among them. While such
an approach is suitable for ranking of alternatives, it is not possible to assess the
absolute suitability of an alternative, which is importantin case the best alternative
is still not good enough (cf. Section 3.1). Most similar to our approach is the work
presented in [50], where WS-Agreement is extended with an ontological model
and preferences are expressed via a rule-language. However, similar to the previ-
ous approaches they use a non-standard rule language and do not elaborate on the
structure of the preference rules.

A separate stream of work has focussed on developing highly expressive bidding
languages for describing various kinds of attribute dependencies and valuations,
particularly in the context of (combinatorial) auctions (e.g. [44], [11], [55]). How-
ever, they assume a closed environment and therefore, even if they do use XML-
based bidding languages [9], they do not deal with interoperability issues. Many
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B2B scenarios use standardized product and service taxonomies, such as UN/SPSC
[59], CPV [15], or the MIT Process Handbook [37]. However, while these tax-
onomies are suitable for pure functional descriptions, their static hierarchical struc-
ture makes them inappropriate for multi-attribute descriptions since each new prod-
uct configuration requires the introduction of a new subclass in the hierarchy. There-
fore, they might be applicable to describe individual attributes, but not the entire
multi-attribute trading object.

Recapitulating, two major streams of work can be identified.First, approaches com-
ing from the area of market engineering that propose highly expressive bidding
languages for complex electronic markets. However, they lack support for inter-
operability in a Web environment. Second, there are approaches addressing inter-
operability in heterogenous and dynamic environments suchas the Web. These
approaches typically do not focus on market-specific requirements. Our work uni-
fies these two aspects in one coherent framework. We draw fromutility theory to
express scoring and pricing functions of market participants and thereby enable
compact representation of request and offers. Furthermore, we show how these
functions can be expressed declaratively with a standardized and Web-compliant
ontology formalism.

3 Ontology-based Specification of Requests and Offers

In this section, we first introduce the principles of policy-based decision making fo-
cusing on the concept of utility function policies (Section3.1). Such policies allow
encoding preference and price information in an efficient and declarative way. In
Section 3.2, we argue how interoperability in the Web can be realized by means of
ontologies. Finally, relying on these concepts we present in Section 3.3 an ontology
framework for compactly expressing configurable requests and offers.

3.1 Utility Function Policies

Policies are declarative rules that guide the decision making process by constraining
the decision space, i.e. they specify which alternatives are allowed and which are
not. The decision space can be divided into “indifference ranges” [14] that represent
sets of alternatives with the same preference level. [53,30] refer to such policies as
goal policies. However, when making a decision it is often not enough to know
which alternatives are allowed, but rather which is the bestalternative and how
good the alternative is (e.g. the best alternative might still be not good enough).
Therefore, we suggest combining a declarative policy approach with utility theory
[29], which quantifies preferences by assigning cardinal valuations to each alterna-
tive. With suchutility function policies, detailed distinctions in preferences can be

7



expressed, providing improved decision making between conflicting policies com-
pared to traditionalgoal policiesby explicitly specifying appropriate trade-offs be-
tween alternatives [30].

In the context of electronic markets, utility function policies can be used on buyer-
side to specify preferences, assess the suitability of trading objects and derive a
ranking of trading objects based on these preferences. Further, they allow the ex-
change of preferences with sellers which might be required,for instance, in pro-
curement auctions or exchanges. Since the functional form avoids enumerating all
configuration to attach prices, utility function policies enable the compact repre-
sentation of pricing or cost functions on the seller-side and thus provide an effi-
cient way of communicating pricing information to the customers. In the remain-
der of this paper, we denote rules that define the relation between configurations
and prices defined by a seller aspricing policiesand rules that define how much
a buyer is willing to pay for a certain configuration asscoring policies(or buyer
preferences).

For our policy specification we use the following utility model. Assume alterna-
tives (e.g. configurable trading objects) are described by aset of attributesA =
{A1 . . .An}. Attribute valuesa j of an attributeA j are either discrete,A j ∈ {a j1, . . . , a jm},
or continuous,a j ∈ [minj ,maxj]. Then the cartesian productC = A1 × · · · × An de-
fines the potential configuration space, wherec ∈ C refers to a particular configu-
ration. Based on these definitions a preference structure isdefined by the complete,
transitive, and reflexive relation�. For example, the configurationc1 ∈ C is pre-
ferred toc2 ∈ C if c1 � c2. The preference structure can be derived from the value
functionV : C→ R, where the following condition holds:∀ca, cb ∈ C : ca � cb ⇔

V(ca) ≥ V(cb).

In literature there is a broad stream of work about modeling value functions (e.g. [16,29,62,5]).
The goal is to provide sufficient expressivity for modeling complex decisions, while
keeping the elicitation and computation effort at an admissible level. In the most
general case, a value function is directly defined as a function V(a1, . . . , an) map-
ping each configuration to a valuation. Since the number of configurations is ex-
ponential with respect to the number of attributes and theirvalues, this approach
is infeasible already for relatively small problems. Fortunately, preferences of a
customer often have an underlying structure which is introduced by the indepen-
dency of the attributes. Relying on this structure substantially improves compact-
ness and analytic manipulability [62]. The most prominent approach in this context
are additive models, where the valuationV(c) is decomposed into several lower-
dimensional functions. There are several well known approaches for doing this de-
composition based on different structural assumptions. In the following, we shortly
introduce theadditivevalue model which has favorable computational properties
but also requires very restrictive assumptions.

Theadditive value functionis defined in Equation (1) below assumingmutual pref-

8



erential independencybetween the attributes [29]. The attributesA1, . . . ,An are
considered mutually preferential independent if every subset of these attributes is
preferentially independentof its complement. The set of attributesX ⊂ A is pref-
erentially independent from the setY ⊂ A with X ∩ Y = ∅ only if for somey′ the
following condition holds:∀y, x′, x′′ : [(x′, y′) � (x′′, y′)] ⇒ [(x′, y) � (x′′, y)]. Un-
der this assumption, we can decompose the utility functionV(c) into the individual
functionsvj(a j) of the attributeA j. The overall value can be calculated by Equation
(1), whereλ j represents the weighting factor of an attribute normalizedin the range
[0, 1].

V(c) =
n
∑

j=1

λ jv j(a j ),with
n
∑

j=1

λ j = 1 (1)

However, in real markets the preferential independency often does not hold. In or-
der to at least partly capture this, dependent attributesAk, . . . ,Al ∈ A can be treated
as one single attributeA∗j in our model, where the utility function is modeled as a
complex (higher dimensional) functionvj∗(ak, . . . , al). Since this approach allows
one attribute of the productA j to influence several of the aggregated attributesA∗j ,
we support the family ofgeneralized additivevalue functions [16,5]. While the
generalized model requires expressing high dimensional functions for the entire
product, the additive model requires attaching an one dimensional function to each
attribute of the product. Since in general determining value functions of an agent
is rather difficult, we assume extensive methodology and tool support in the prefer-
ence elicitation process (cf. [13]).

In the following, we show how utility function policies can be declaratively speci-
fied and evaluated in a Web environment.

3.2 Achieving Interoperability with Ontologies

In order to achieve interoperability we useontologies. In recent years, ontologies
became an important technology for knowledge sharing in distributed, heteroge-
neous environments, particularly in the context of theSemantic Web[63,7]. An
ontology is a set of logical axioms that formally define a shared vocabulary [21].
By committing to a common ontology, software agents can makeassertions or ask
queries that are understood by the other agents. Moreover, such logic-based defi-
nitions come with executable calculi that enable data integration required in elec-
tronic markets for matching offers and requests (e.g. [36,58,45]). In the following,
we briefly introduce the logical formalisms we use to specifybids, namely theon-
tology language OWL-DLand therule language SWRL.
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In order to guarantee mutual understanding, the underlyinglogic has to be stan-
dardized. The Web Ontology Language (OWL) standardized by the World Wide
Web Consortium (W3C) [64] is the only standardized ontologylanguage that is
currently available. OWL ontologies can be serialized via RDF/XML syntax while
resources are identified using URIs. Both features and the extensive modulariza-
tion possibilities provided by OWL ensure compatibility with existing World Wide
Web languages. OWL comes in three levels of expressiveness.We use the most
expressive decidable fragment OWL-DL. It is based on a family of knowledge rep-
resentation formalisms calledDescription Logics (DL)[4], where the meaning of
the provided modeling constructs like concepts, relations, datatypes and individuals
is formally defined via a model theoretic semantics, i.e. it is defined by relating the
language syntax to a model consisting of a set of objects, denoted by a domain, and
an interpretation function, which maps entities of the ontology to concrete entities
in the domain [25]. Thereby, the meaning of an axiom defines certain constraints
on the model. For example, we can define that the conceptGermanRouteis a sub-
concept ofRoute, which captures routes starting from a German city and ending in
a German city. Using the OWL abstract syntax [4] this can be written as follows:
GermanRoute⊑ Route⊓∃from.GermanCity⊓∃to.GermanCity. From a set of such
axioms conclusions can be derived that are not explicitly stated in the ontology,
e.g. a subsumption hierarchy between concepts in the ontology can be constructed.
This is particularly important for matchmaking in markets since offers and requests
are usually described on different levels of abstraction, e.g. when looking for a
route planning service for Germany also route planning service for entire Europe
are relevant. In the remainder, DL axioms are denoted byA1, . . . ,An.

In order to define our ontology, we require additional modeling primitives not pro-
vided by OWL-DL, e.g. triangle relations between concepts.Such modeling con-
structs are provided by rule languages. The Semantic Web Rule Language (SWRL)
[23,24] allows us to combine rule approaches with OWL. Sincereasoning with
knowledge bases that contain arbitrary SWRL expression usually becomes unde-
cidable [23], we restrict ourself to theDL-safefragment of SWRL [42], which is
more relevant for practical applications due to its tractability and support by ex-
isting inference engines. In addition, SWRL provides an extensible set of built-in
predicates that can be used for implementing operations such as arithmetic calcu-
lation, string comparisons or manipulations, etc. For the notation of rules we rely
on the standard first-order implication syntax, where built-ins are identified by the
prefix “swrlb”. In the following, rules are labeled byR1, . . . ,Rn.

3.3 Ontology Framework for Web-based Markets

In this section, we present an ontology framework for modeling offers and requests
containing utility function policies introduced in Section 3.1 with the formalism
presented in Section 3.2. Our framework consists of severalontology modules.
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Table 2
Upper level concepts from DOLCE, Descriptions and Situations (DnS), Ontology of Plans
(OoP) and Ontology of Information Objects (OIO) that are used as modeling basis.

Module Concept label Explanation

DOLCE Endurant Static entities such as objects or substances

Perdurant Dynamic entities such as events or processes

Quality Basic entities that can be perceived or measured

Region Quality space

DnS Description Non-physical objects like plans, regulations, etc. defining
Roles, Courses and Parameters

Role Descriptive entities that are played by Endurants (e.g. a cus-
tomer that is played by a certain person)

Course Descriptive entities that sequence Perdurants (e.g. a service
invocation which sequences concrete communication activ-
ities)

Parameter Descriptive entities that are valued by Regions like the age
of customer

Situation Concrete real world state of affairs using ground entities
from DOLCE

OoP Task Course that sequences Activities

Activity Perdurant that represents a complex action

OIO InformationObjectEntities of abstract information like the content of a book
or a story

These modules are arranged in three layers:

Top-level Ontology: As a modeling basis, we rely on the domain-independent
upper-level foundational ontology. By capturing typicalontology design pat-
terns (e.g. location in space and time), foundational ontologiesprovide basic
concepts and associations for the structuring and formalization of application
ontologies. Reusing these building blocks considerably reduces modeling effort.
Furthermore, they provide precise concept definitions and ahigh axiomatization.
Thereby, foundational ontologies facilitate the conceptual integration of differ-
ent languages and thus ensure interoperability in heterogenous environments. As
foundational ontology we use DOLCE (Descriptive Ontology for Linguistic and
Cognitive Engineering) [38]. DOLCE provides the ontology design patterns re-
quired for formalizing policies such as contextualizationand is available in the
ontology language we use. The DOLCE concepts that are directly used for align-
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ment of our ontology are briefly introduced in Table 2. A detailed description of
DOLCE and its modules is given in [38,17].

Core Ontology: As a second layer we add modules for describing offers and re-
quests in electronic markets. These ontologies are specificfor a certain purpose,
but still domain independent. The first module is theCore Policy Ontology(CPO)
formalizing the notion of utility function policies which is then used in the sec-
ond module. This module is calledCore Ontology of Bidsand introduces gen-
eral communication primitives for expressing the intentions of participants in the
market.

Domain Ontology: While the first two layers contain domain-independent off-
the-shelf ontologies, the third layer comprises ontologies for customizing the
framework to specific domains (e.g. an ontology for modelingproducts and their
attributes).

In this paper, we focus on the second level of our ontology framework. The Core
Policy Ontology is described in Section 4 and the Core Bidding Ontology in Section
5. To illustrate the use of these ontologies we also introduce fragments of a domain
ontology for route planning services as a running example.

4 Core Policy Ontology (CPO)

The Core Policy Ontology (CPO) provides primitives for specifying goal and util-
ity function policies introduced in Section 3.1. The remainder of this section is
structured as follows: First, we extend the DOLCE ground ontology by modeling
primitives required for representing functions between attribute values and their
individual valuation by a user (Section 4.1). Secondly, based on these functions,
we show how the DOLCE ontology module Description & Situation is applied to
model product configurations and policies (Section 4.2). Inaddition, we discuss in
this section how configurations are evaluated according to the specified policies.
Finally, Section 4.3 introduces a mechanism to specify and evaluate collections of
policies.

Note that although in the following we focus on applying the policy ontology for
specifying scoring and pricing functions in electronic markets, due to its general-
ity it is not restricted to this domain. In fact, it can be usedfor a wide range of
multi-attribute decision problems, e.g. to define preferences over agent strategies
or penalties in electronic contracts.
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-
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ParameterValue

patternParameter1

patternParameterN

...

DOLCE:Region UtilityValue

Fig. 1. Modeling value functions2

4.1 Valuation Functions

As discussed in Section 3.1, utility function policies are expressed via functionsV :
C → R that map configurationsc ∈ C to a corresponding valuation between 0 (or
−∞) and 1, where a valuation of−∞ refers to forbidden alternatives and a valuation
of 1 to the optimal alternative [35]. We now show how the fundamental concepts
formalized in DOLCE can be extended to allow expressing valuation functions.

As depicted in Figure 1, aFunction3 is a specialization ofOIO:InformationObject
which represents abstract information that exists in time and is realized by some
entity [17]. Currently our framework supports three ways ofdefining functions: (i)
Functionscan be modeled by specifying sets of points that explicitly map attribute
values to valuations. This is particularly relevant for nominal attributes. (ii ) We al-
low to extend these points to piecewise linear value functions, which is important
when dealing with continuous attribute values, such as the response time of a ser-
vice. (iii ) Thirdly, we allow reusing typical function patterns, which are mapped to
predefined, parameterized valuation rules. Note that such patterns are not restricted
to piecewise linear functions since all mathematical operators provided by the rule
language can be used. The different ways of declarative modeling functions are
discussed next in more detail.
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4.1.1 Point-based Functions

As depicted in Figure 1,PointBasedFunctionsareFunctionsthat areconstitutedBy
a set ofPoints. EachPoint has a propertypolicyValuereferring to anAttribute-
Valueand a propertyvaluationthat assigns exactly oneUtilityValue to this attribute
value.4 An AttributeValueis a specialization ofDOLCE:Regionthat defines which
attribute values a certain attribute may adopt, e.g. the attribute WeatherConsider-
ation in the route planning example requires theDOLCE:Region WeatherConsid-
erationValuecontaining the elements{“yes” , “no” }. Similarly, theDOLCE:Region
UtilityValuecomprises the range [0, 1] and−∞.

In our route planing example introduced in Section 1, a requester might specify
her preferences with respect to the service propertyWeatherConsiderationby a
PointBasedFunction, which isconstitutedBytwo instances ofPoint with (“yes” , 1)
and (“no” , 0.2). Thus, the requester would highly prefer weather information to be
taken into account, but has some small use for routes calculated without weather in-
formation. Similarly, the preferences for the attributeRouteTypecalculation can be
defined withPoints(“quickest” , 1) and cheapest (“cheapest” , 0.4). These mappings
are illustrated in Figure 2.

In order to evaluate this function, additional axioms are required that more closely
define the semantics of the conceptsPointBasedFunctionandPoint as well as their
relations. Rule (R1) below defines how thevaluationof a certainpolicyValue x
can be determined based on the specification of thePointBasedFunction f. For
this purpose we iterate over allPointsconstituting the function and compare their
policyValueto the desired attribute valuex.

2 For the reader’s convenience we define DL axioms informally via UML class diagrams,
where UML classes correspond to OWL concepts, UML associations to object properties,
UML inheritance to subconcept-relations and UML objects toOWL individuals [12].
3 Concepts and relations of the ontology are written initalics. All concepts and relations
imported from other ontologies are labeled with the corresponding namespace. Sometimes
concept names in the text are used in plural to improve the readability.
4 Note that in case we have dependent attributes and thus complex value functions
v j∗ (xk, . . . , xl) (cf. Section 3.1) eachPoint might have severalpolicyValue relations,
i.e. policyValuek, . . . , policyValuel .
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degree( f , x, v) ← PointBasedFunction( f ), constitutedBy( f , p),

policyValue(p, pv),match(x, pv), valuation(p, v) (R1)

The comparison of attribute values is realized by thematch-predicate. This predi-
cate has to be customizable since the way attributes are compared depends on the
domain of interest, i.e. on the concrete attribute. In orderto keep Rule (R1) appli-
cable for all attributes, we specify this in a separate matching rule. For example,
considering the attributeWeatherConsideration, for matching the attribute values a
simple string matching predicate as provided with the built-in equalsis sufficient.
Rule (R2) illustrates this by defining the matching rule for the attributeWeather-
Consideration.

match(x, y) ←WeatherConsiderationValue(x),

WeatherConsiderationValue(y), swrlb:equals(x, y) (R2)

Unfortunately, in many cases attribute values have to be described in a more com-
plex way beyond simple strings or numbers, e.g. to express subclass relations be-
tween attribute values. In such cases it might be required tomodel attribute values
as concepts in OWL. Since in our ontology they are modeled as individuals a meta-
modeling approach is required where a URI can be treated as concept as well as
instance.5 This allows us to specify preferences on a more abstract level and thus
avoids enumerating all possible attribute values.

For example, consider an attributeIndicatedAttractionthat specifies which types
of attractions along the route can be suggested by a certain service. In this case
the corresponding value spaceIndicatedAttractionValuemight comprise the alter-
nativesCulturalAttraction, HistoricSite, MuseumandCastlewhich are all related
to each other. In particular,CulturalAttractioncan be seen as a class containing
all other values.HistoricSite, in turn, comprisesCastlesbut notMuseums. Conse-
quently, a scoring function mapping historic sites to a valuation of 0.8 has to assign
the same value to information aboutCastlesalong the route (although this might
not be specified explicitly). Such a behavior can be realizedby defining aPoint that
maps thepolicyValue HistoricSiteto 0.8 and anotherPoint that maps everything
else to zero using the concept definitionAttraction⊓ ¬HistoricS ite. Similar to the
attributes above we can define a matching rule for the attribute IndicatedAttraction
by replacing the built-in implementing string matching with a built-in that features
DL subsumption checking between two concepts.

5 Although such an approach is outside of the ontology formalism and part of OWL-Full,
many reasoners such as KAON2 can handle meta-modeling to some extent [40].
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match(x, y) ←IndicatedAttraction(x), IndicatedAttraction(y),

swrlb:subsumes(x, y) (R3)

Several other matching variants have been proposed in literature (e.g. [36,45,8]).
We support these different notions of match by providing a flexible framework that
can be customized via declarative matching rules.

4.1.2 Piecewise Linear Functions

In order to support definition ofFunctionson continuous properties too, we intro-
ducePiecewiseLinearFunctionsas shown in Figure 1. Continuous attribute exhibit
a natural ordering between the attribute values which can beutilized for specify-
ing the function. We therefore extend the previous approachby the propertynext
between twoPointswith adjacent attribute values.

Such adjacentPointscan be connected by straight lines forming a piecewise linear
value function as depicted in Figure 3.
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Fig. 3. Example of a piecewise linear value function

For every line between thePoints(x1, y1) and (x2, y2) as well as a givenPolicyValue
x, we calculate the valuationυ as follows.

υ =















y2−y1
x2−x1

(x− x1) + y1, if x1 ≤ x < x2

0, otherwise

This equation is formalized by a predicatecal(v, x, x1, y1, x2, y2). This predicate can
be realized either directly by means of a built-in or by exploiting the math as well
as the comparison built-in predicates provided by the rule language.6

6 Although predicates with arity higher than two cannot be modeled with the formalism at
hand directly, many reasoning tools support them. Moreover, techniques for reifying higher
arity predicates are well known [26].
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Using this predicate, Rule (R4) defines the valuation of a certain attribute valuex
(as Rule R1 does forPointBasedFunctions). The rule makes sure that only adjacent
Pointsare considered in the calculation.

degree( f , x, v)←PiecewiseLinearFunction( f ),
∧

i∈{1,2}

(constitutedBy( f , pi), policyValue(pi , pvi),

valuation(pi , vi)), next(p1, p2),

cal(v, x, pv1, v1, pv2, v2) (R4)

As an example, let us assume theFunctionfor the attributeResponse Timeof the
route planing service is given by aPiecewiseLinearFunctionwith thePoints (0, 1),
(10, .8), (30, .3), (60, 0)as depicted in Figure 3. Now, we can easily find out which
valuation va certainpolicyValue xis assigned to. The predicatecalv(v, x, x1, y1, x2, y2)
is true iff thepolicyValue xis between two adjacentPoints(x1, y1) and (x2, y2) and
thevaluationequalsv. For instance, for aResponse Timeof 20 sec.calv evaluates
the straight line connecting the adjacent Points(10, .8)and(30, .3), which results
in a Valuation vof .675.

4.1.3 Pattern-based Functions

Alternatively, value functions for continuous attributescan be modeled by means
of PatternBasedFunctions. This type refers to functions likeup1,p2(x) = p1ep2x,
wherep1 andp2 represent parameters that can be used to adapt the function.In our
ontology, theseFunctionsare specified through parameterized predicates which
are identified bypatternIdentifiers. A patternIdentifierpoints to aDOLCE:Region
IdentifierValuethat uniquely refers to a specific rule predicate. This predicate is
denotedpattern. A patternParameterdefines how a specific parameter of thepat-
tern-predicate has to be set. For allowing an arbitrary number ofparameters in a
rule, universal quantification over instances ofpatternParameterwould be neces-
sary in the body of the rule. Since this is not expressible with our rule language,
the different parameters are modeled as separate properties in the ontology, viz.
patternParameter1,. . . , patternParameterN. Of course, this restricts the modeling
approach as the maximal number of parameters has to be fixed atontology design
time. However, we believe that keeping the logic decidable justifies this limitation.

As shown in the example below (Rule (R5)), eachpattern is identified by a hard-
coded internal string. This is required to specify, which pattern is assigned to a
certain attribute in the ontology. Thus, in order to find out which pattern-predicate
is applicable, thepatternIdentiferspecified in the policy is handed over to the pred-
icate by using the first argument and then it is compared to theinternal identifier. If
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the two strings are identical the predicate is applied to calculate thevaluationof a
certainpolicyValue.

As an example, we again focus on the attributeResponseTimeof the route planning
service. In many scenarios the dependency between configurations and prices or
valuations are given by functions. Assume the preferences for Response Timeare
given by the exponential functionup1,p2(x) = p1ep2x with the patternParameters
p1 = 1.03 andp2 = −.04 (Figure 4). Rule (R5) formalizes the pattern. The internal
identifier in this example is‘id:exp’. The corresponding comparison is done by the
built-in equals, which is satisfied if the first argument is the same as the second
argument.

pattern(v, id, x, p1, . . . , pn)←

String(id),PolicyValue(x),Valuation(v),

swrlb:equals(id, “ id:exp”) , swrlb:multiply(t1, p2, x),

swrlb:pow(t2, “2.70481”, t1), swrlb:multiply(v, p1, t2) (R5)

SWRL supports a wide range of mathematical built-in predicates (cf. [24]) and
thus nearly all functions can be supported. As in our example, these functions are
typically parameterized only by a rather small number of parameters. Therefore, we
believe that there are few practical implications of defining the maximal number of
parameters at ontology design time.

Based on the definition of thepattern-predicate we can define thedegreeof a certain
attribute value according to aPatternBasedFunctionusing the following rule.

degree( f , x, v) ←PatternBasedFunction( f ), patternIdentifier( f, id),

patternParameter( f , p1), . . . , patternparameter( f , pn),

pattern(v, id, x, p1, . . . , pn) (R6)
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Fig. 5. Policy description framework. To improve the readability we illustrate certain re-
lations by plotting UML classes within other UML classes: The classPolicyDescription
has aDnS:defines-relation and the classConfigurationa DnS:settingFor-relation to each
contained class.

Based on the notion ofFunctionsintroduced above, we show in the following how
they are used to define and reason about policies.

4.2 Modeling Policies and Configurations

As discussed in Section 3.1, we formalize preferences of a user as well as pricing
information of a provider in a functional form by means of policies. For instance, a
price-conscious user might prefer a cheap service althoughthe service has a rather
slow response time, whereas a time-conscious user might accept any costs for a fast
service. Hence, policies can be seen as different views on a certain configuration.
For modeling such views we use and specialize the DOLCE module Descriptions &
Situations (DnS) which provides a basic theory of contextualization [17]. Hence, a
certain configuration can be considered as more or less desirable depending on the
scoring policies of a buyer or a configuration can be priced differently depending
on the pricing policies of a seller.

When using DnS with DOLCE, we distinguish between DOLCEground entities
that form aDnS:Situationanddescriptive entitiescomposed in aDnS:SituationDescription,
i.e. the view in whichSituationsare interpreted. As depicted in Figure 5, we special-
ize theDnS:SituationDescriptionto aPolicyDescriptionthat can be used to evalu-
ate concreteConfigurationswhich are modeled as special kind ofSituations. This
distinction enables us, for example, to talk about productsas roles on an abstract
level, i.e. independent from the concrete entities that play the role. For instance, a
certain product configuration can be evaluated in the light of either a pricing policy
of the seller or the preferences of a user depending on the point of view.

In the following, we describe how suchConfigurationsandPolicyDescriptionsare
modeled and then show how the evaluation of policies is carried out.
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4.2.1 Configuration

In a first step, we define the ground entities that constitute aDnS:Situation. In our
context, suchDnS:Situationsreflect multi-attribute real-world objects or activities.
In a concreteDnS:Situationthese products have one distinct configuration. Recall
in Section 3.1 we defined the set of configurationsC as the cartesian product of
the attributesC = A1 × · · · × An. Hence, as shown in Figure 5, we modelCon-
figuration as a subclass ofDnS:Situationthat exactly defines one configuration
c ∈ C of a product. Since there are various different ways of describing prod-
ucts, a generic approach is used in this work, where concreteobjects and activities
are represented by instances ofDOLCE:EndurantandOoP:Activity, respectively.
Attributes ofDOLCE:EndurantsandOoP:Activitiesare modeled via thelocate-
dIn property that points to a value range represented by theDOLCE:Region At-
tributeValue[18]. The following axioms capture this notion by ensuring that each
Configurationcomprises at least one multi-attribute object (Axiom (A1)). Axiom
(A2) ensures that eachAttributeValuebelongs to exactly oneDOLCE:Endurantor
OoP:Activity.

Configuration⊑DnS:Situation⊓ ∃DnS:defines.(DOLCE:Endurant⊔

OoP:Activity) ⊓ ∃DnS:defines.AttributeValue (A1)

AttributeValue⊑DnS:Parameter⊓ =1 locatedIn−.(OoP:Activity⊔

DOLCE:Endurant) (A2)

Coming back to our example, a configurable Web service can be modeled by a
combination ofDOLCE:Endurantsand OoP:Activities[48]. Hereby, specializa-
tions ofOoP:ActivitiescaptureServiceActivitieslike RoutePlanningActivity. Spe-
cializations ofDOLCE:Endurantsrepresent the objects involved in such aSer-
viceActivity (e.g. inputs and outputs). ARoutePlanningActivitymight have sev-
eral DOLCE:Qualitiesthat are located in specializations ofAttributeValuesuch
as WeatherConsiderationValue, IndicatedAttractionValue, ResponseTimeValueor
AvailabilityValue. In addition, theRoutePlanningActivityinvolves aServiceOutput
which specializesDOLCE:Endurant(or more specifically OIO:InformationObject)).
ServiceOutputis associated to aRouteTypeValuethat defines whether the output is
the cheapest or the fastest route.

4.2.2 Policy Description

In a second step, we define views on the ground entities definedin Section 4.2.1.
This is realized by specializing the descriptive entitiesDnS:Roles, DnS:Courses,
DnS:Parameters, andDnS:SituationDescriptions. As depicted in Figure 5, policies
are modeled as specialization ofDnS:SituationDescription, calledPolicyDescrip-
tions, which have toDnS:defineaPolicyObjectorPolicyTaskrepresenting the entity
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on which the policy is defined, e.g. this could be a certain type of good or a service.
SincePolicyObjectsandPolicyTasksare modeled as specialization ofDnS:Roles
andOoP:Tasks, policies can be defined on an abstract level without referring to a
concreteDOLCE:Endurantor Activity. For instance, policies can be defined for a
certain service category (specialization ofOoP:Task) such as route planning ser-
vices in general. Then allOoP:Activitiesthat fulfill the task of route planning in
a certainSituationare evaluated according to the policy. Axiom (A3) formally de-
fines aPolicyDescription. It ensures that at least one entity is constrained by means
of theDnS:Parameter Attribute. Moreover, eachAttributethat is introduced has to
constrain exactly onePolicyObjector PolicyTaskwhich can be realized by means
of theDnS:requisiteFor-relation (Axiom A4).

PolicyDescription⊑DnS:SitutationDescription⊓ ∃DnS:defines.(PolicyObject

⊔ PolicyTask) ⊓ ∃DnS:defines.Attribute (A3)

Attribute⊑DnS:Parameter⊓ =1 DnS:requisiteFor.(PolicyObject

⊔ PolicyTask) (A4)

Up to now aPolicyDescriptioncan be used to define constraints on certain prop-
erties of an entity. This is exactly what we consider as Goal policies. A similar
approach is used in [49] for expressing policies such as access rights. However,
as discussed in Section 3.1, utility function policies generalize this approach by
addressing the fact that configurations are preferred to varying degrees depend-
ing on the concrete attribute values. Therefore, theDnS:Role Preferenceis intro-
duced.Preferencescan be assigned to anAttribute (via theisAssignedTo-relation)
to enable modeling additive preference functions. Thus, preference structures on
attributes are imposed byFunctions. As discussed in Section 4.1,Functionsare
OIO:InformationObjects. They play the role ofPreferencesin a PolicyDescription
and define howpolicyValuesare mapped tovaluations. That means, a policy defines
which Functionshould be used in which context (i.e. for which attribute). Besides
definingFunctions, Preferencesalso define the relative importance of the givenAt-
tributevia theDnS:Parameter Weightand the DnS:RegionWeightValue(omitted in
Figure 5). Consequently,Preferencesare formally defined as follows:

Preference⊑DnS:Role⊓ =1 DnS:playedBy.Function⊓

=1 DnS:requisites.Weight (A5)

As an example, consider the policy that specifies the scoringfunction for the prop-
erty response time of a Web service. To express this we instantiate OoP:Taskby
a WebServiceTask. In addition, anAttribute ResponseTimeis introduced that rep-
resents a constraint (DnS:requisiteFor) that has to be fulfilled byWebServiceTask.
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In order to define preferences over all possible attribute values,ResponseTimeis
DnS:valuedBya AttributeValue ResponseTimeValuecomprising the entire value
space (e.g. represented by a subclass ofDOLCE:Temporal-Region). Moreover, a
conceptPreference isAssignedTo ResponseTimethat identifies aPatternBasedFunc-
tion or PiecewiseLinearFunction. TheseFunctionsmapAttributeValuesto Utility-
Valuesas discussed in Section 4.1.2 and 4.1.3.

After presenting howConfigurationsas well asPolicyDescriptionsare modeled,
we introduce the rules for evaluating concreteConfigurationswith respect to given
PolicyDescriptions. We show how pricing policies are applied to determine the
price of a configuration or scoring policies to determine thewillingness to pay.

4.2.3 Policy Evaluation

With our approach, policies that definePreferencesno longer lead only to a pure
boolean statement about the conformity of aConfiguration, but rather to a degree
of conformity of theConfiguration. Therefore, the originalDnS:satisfies-relation
between aDnS:SituationandDnS:SituationDescriptionis not sufficient any more
since additional information about the degree of conformity has to be captured.
However, since checking for satisfaction can be interpreted as the evaluation of the
Goal policy aspect in thePolicyDescription, meeting this requirement can be seen
as a necessary prequisite. That means, if aConfigurationdoes not satisfy aPolicy
we can assign aUtilityValue of −∞. This is captured by the following rule which
refines theDnS:satsfies-relation. The reader familiar with DOLCE will notice that
Rule (R7) largely corresponds to thecompletely-satisfiesrelation described in [17].
Since our formalism is not expressive enough to capture thisrelation directly, we
provide a workaround that explicitly enumerates the attributes 1, . . . , n and checks
for classification of an appropriate ground entity, thus implementing qualified sat-
isfaction (cf. [17]). Note that we assume an ownAttributeValuefor each attribute.

satisfiesPolicy(c, p) ← Configuration(c),PolicyDescription(d),

DnS:satisfies(c, p),
∧

i∈1...,n

(Attributei(a),

DnS:defines(p, ai ),DnS:valuedBy(ai , avi),

DnS:settingFor(c, cvi ),match(avi , cvi)) (R7)

Ontologically, modeling utility function policies requires putting in relation the
PolicyDescription, a concreteConfigurationand anoverallDegreethat represents
the valuation to which the latter satisfies the former. For the sake of simplicity and
compact representation we use predicates of higher arity inthe following. How this
could be avoided by introducing anOIO:InformationObject Satisfiabilitythat links
ConfigurationandPolicyDescriptionis outlined in [34]. IfsatisfiesPolicydoes not
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hold no further evaluation will be necessary and a value of−∞ is assigned by Rule
(R8).

overallDegree(c, p, v) ← ¬satisfiesPolicy(c, p), assign(v, “ −∞”) (R8)

In line with the additive utility model defined in Equation (1), we first calculate
the valuation for each independent set of attributes individually and then aggregate
the individual valuations to get the overall degree of a configuration. The local
utility values can be calculated by Rules (R1), (R4) and (R6)depending on the
type of function used. The valuation derived from these rules can be interpreted as
the valuation a single attribute contributes to the overallvaluation. Note that the
non-additive case is a simplification of this approach, where the local utility value
corresponds to the overall value.

overallDegree(c, p, d) ←
∧

i=1,...,n

(DnS:defines(p, ai ),DnS:defines(p, p fi),

isAssignedTo(p fi , ai),DnS:valuedBy(ai , avi),

DnS:settingFor(c, cvi),match(avi , cvi),DnS:playedBy(p fi , fi),

degree( fi , cvi , vi)), sum(v, v1, . . . , vn) (R9)

Rule (R9) is simplified in a sense that predicates for weighting of attributes accord-
ing to their relative importanceλi are omitted. However, adding this is straightfor-
ward as shown in [34].

To illustrate this approach, we assume a customer with the scoring policiesp based
on the exampleFunctionsdefined in Section 4.1.1 - 4.1.3. We can query the knowl-
edge base to compare theoverallDegreefor Configuration cwith respect to the
PolicyDescription p. As an example, we assume aConfigurationof a route plan-
ning service, which returns the cheapest route that includes information about his-
torical sites while considering weather information. Further, a response time of 20
sec. is guaranteed. Evaluating the (local)degree-predicates for eachAttributeleads
to a score of 1 for theAttribute WeatherConsideration, 0.4 for RouteType, 0.8 for
IndicatedAttractionand 0.47 for Response Time, respectively. Provided that allAt-
tributesare equally important thisConfigurationresults in aoverallDegreeof 0.67.

4.3 Policy Aggregation

Up to now we focused on scenarios where only one policy was used by a sin-
gle buyer or seller. However, since policy-based approaches are usually applied
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in large-scale applications, typically more than one policy may be specified in or-
der to regulate a certain decision. For example, a Web service selection process of
a company might be regulated by several scoring policies coming from different
departments of the company. The information systems department, for instance,
might prefer a highly secure service, while the management might prioritize cheap
services. Of course, different scoring policies lead to different valuations as well as
rankings and thus to different selections of services. In the remainder of this sec-
tion, we present a method to derive a coherent decision from such diverse policies.
Therefore, policies are first evaluated and the results of this evaluation step are then
aggregated.

In traditional policy languages there are two major operators that can be used to
combine policies [35,66]: we can use either a logicaland-operator in order to de-
fine a conjunction of policies (i.e. the aggregated policy isadmissible if all con-
tained policies are admissible) or a logicalor-operator to derive a disjunction of
policies (i.e. the aggregated policy is admissible if at least one contained policy is
admissible).

However, since our policy language results in degrees of satisfiability, this tradi-
tional interpretation of the logical operators cannot be used. In order to define the
semantics of the logical operators for such multi-valued logics, we borrow ideas
from fuzzy logic where the semantics of conjunction and disjunction is defined via
T-normsandT-conorms. In the following, we use the T-norm/T-conorm defined by
Zadeh [68] as follows:

⊤(a, b) = min(a, b) for and-operators (2)

⊥(a, b) = max(a, b) for or-operators (3)

We use the definitions above to make sure that if one of the policies is evaluated
to −∞, the overall valuation of the conjunction of policies is also −∞. In case
of disjunctions only one policy has to be fulfilled and thus wetake the maximal
valuation.

We next introduce the modeling primitives required for representing conjunctions
and disjunctions of policies, as shown in Figure 6. To be ableto evaluate a cer-
tain Configurationwith respect to a set of policies, we adapt Rule R9 that it can
be used not only for a singlePolicyDescription, but also for aPolicyCollection.
A PolicyCollectionis defined as aDnS:SituationDescriptionthat has exactly two
memberPolicy-relations pointing toPolicyDescriptions. This is formalized using
the following DL axioms:
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Fig. 6. Policy Collection

PolicyCollection⊑DnS:SituationDescription⊓

=1 memberPolicy1.(PolicyDescription⊔

PolicyCollection)⊓

=1 memberPolicy2.(PolicyDescription⊔

PolicyCollection) (A6)

memberPolicy1⊑DnS:expands (A7)

memberPolicy2⊑DnS:expands (A8)

The reason why we restrict aPolicyCollectionto exactly twomemberPolicy-relations
is the fact that SWRL does not support universal quanitifcation in the rule body.
Hence, we cannot iterate about an arbitrary number ofPolicyDescriptionscon-
tained in the collection (e.g. the first order logic term ‘∀y.memberPolicy(x, y)’ is
not expressible in SWRL). However, restricting aPolicyCollectionto exactly two
memberPolicy-relations is in fact no limitation, since an arbitrary number of Poli-
cyCollectionswith two memberPolicy-relations can be nested which has the same
effect as multiplememberPolicy-relations within onePolicyCollection.

In order to define a relation between the members of aPolicyCollectionwe intro-
duce the two subclasses ofPolicyCollection, ConjunctivePolicyCollectionandDis-
junctivePolicyCollection. Then, for each of these subclasses a rule is introduced that
calculates theoverallDegreeof the collection based on theoverallDegreesof the
elements contained. The following rule does the calculation for aConjunctivePoli-
cyCollectionwhere the individual elements are connected by a logicaland-relation
based on the T-norm defined in Equation (2).
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overallDegree(c, p, v) ← ConjunctivePolicyCollection(p),
∧

i∈{1,2}

(memberPolicyi(p, pi), overallDegree(c, pi , vi)),

min(v, v1, v2) (R10)

Note that Rule (R10) recursively calculates theoverallDegreeof the elements con-
tained in the collection. Rule (R10) will only be used if aConjunctivePolicyCollec-
tion is passed to theoverallDegree-predicate. If it refers to a singlePolicyDescrip-
tion, Rule (R9) will be applied as before.

Analogously, we can define the Rule (R11) forDisjunctivePolicyCollectionswhere
the T-conorm (Equation (3)) is used to calculate theoverallDegree.

overallDegree(c, p, v) ← DisjunctivePolicyCollection(p),
∧

i∈{1,2}

(memberPolicyi(p, pi), overallDegree(c, pi , vi)),

max(v, v1, v2) (R11)

DisjunctivePolicyCollectionsandConjunctivePolicyCollectionscan be nested within
each other provided that the leafs of the emerging tree structure are always primitive
PolicyDescriptions.

5 Core Ontology of Bids

After having introduced a policy ontology for specifying valuation functions over
multi-attribute objects or activities, we show how such policies are used for at-
taching price information to goods or services in the following. As introduced in
Section 1, a statement that captures such information is called abid in economic
literature. For modeling bids we apply the pattern Description & Situation again. In
line with the structure of the previous section, we first define how to specifytrades
in Section 5.1. Trades capture one possible transaction in the market and define
exactly the objects and services to be exchanged and their concrete configuration.
Based on this definition we introduce the specification ofBids, which can be seen
as views that select the desired subset of trades (Section 5.2). Finally in Section 5.3,
a method for evaluating bids is presented.
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5.1 Specification of Trades

As defined in [14], a (bilateral)trade is a potential transaction between two parties
b ands where agentb buys an object or service from agents for a certain amount
of moneyπ. We model this by introducing a specialDnS:Situationcalled TradeSi-
tuation which extends theCPO:Configuration(Axiom (A11)). In this context, we
restrict trades to two classes of products: the class ofGoodsas specialization of
DnS:Endurantand the classServiceas specialization ofDnS:Activity(Axiom (A9)
and (A10)). Since theseServicesor Goodsare multi-attributive they have to refer
to aCPO:Configurationthat defines the values of the different properties of these
products, as discussed in Section 4.2.1. A certainTradeSituationshould refer to ex-
actly oneCPO:Configurationand could specify the corresponding priceπ which is
modeled via theDOLCE:Region PriceValue. Moreover, at least oneDnS:Agenthas
to be part of theTradeSituation(Axiom (A11)). Note that this formalization does
not require to specify both participants –b ands – of a trade, since this is usually
not needed in the bid evaluation process.

Service⊑DnS:Activity⊓ ∃DnS:definedBy.CPO:Configuration (A9)

Good⊑DnS:Endurant⊓

∃DnS:definedBy.CPO:Configuration (A10)

TradeSituation⊑DnS:Situation⊓ ∃DnS:settingFor.(Service⊔

Good)⊓ =1 DOLCE:part.CPO:Configuration⊓

∃DnS:settingFor.DnS:Agent (A11)

PriceValue⊑DOLCE:Region (A12)

The lower part of Figure 7 illustrates the specification of aTradeSituation– called
John’sTrade– by means of an example:Johnprovides the route planning service
John’sServiceto a price of $2 per invocation. Moreover, John provides a certain
configurationConf1. The specification ofConf1 is omitted in Figure 7, since an
example for modelingConfigurationsis already given in Section 4. Since the price
is explicitly modeled as a property of the service, for each additional configura-
tion John wants to provide, a newTradeSituationinstance has to be introduced.
Therefore, enumeration based approaches are only feasiblefor very low number
of configurations.7 In order to avoid such enumerations the concept ofBid is pre-
sented in the following section.

7 In addition, this approach is imprecise from an ontologicalpoint of view, since a price is
not an inherent quality of a product that can be observed but might depend on the context
and other factors.
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Request_Annika : AtomicBid

RoutePlanning : TradingTask

DnS:defines

DnS:defines

RouteServicePolicy : CPO:PolicyDescription

definesPolicy

$2:PriceValue

PriceLimit : Price

John'sService : RouteService

DnS:sequences

Conf1 : CPO:Configuration

DnS:
settingFor

DnS:
requisiteFor

DnS:defines

DnS:settingFor

locatedIn

DOLCE:properPart

John'sTrade : TradeSituation

DnS:
settingFor

John : DnS:Agent
DnS:settingFor

DOLCE:
participateIn

Requester : IssuerDnS:defines

Annika : DnS:Agent

DnS:playedBy

$3:PriceValue

DnS:valuedBy

?

Fig. 7. Example for aTradingSituationandAtomicBid. The parts of the diagram are suc-
cessively introduced in Sections 5.1–5.3.

5.2 Specification of Bids

Not all trades that are possible in a market are favorable foran agent. According
to Engel et al. [14], a bid expresses the willingness to participate in trades. We
thus model a bid asDnS:DescriptionthatDnS:classifiesexactly thoseTradeSitua-
tions in which theIssuerof a bid is willing to participate. In suchBidDescriptions
GoodsandServicesof a concreteTradeSituationplay the role ofTradingObjects
andTradingTask, respectively. In order to implement matching in the marketone
has to define what entities can beDnS:classifiedBya TradingObjector Trading-
Task, e.g. that aRoutePlanningTasks DnS:sequencesonly RoutePlanningServices.
Moreover, the description defines a ParameterPrice that constrains theseTradin-
gObjectsandTradingTasks. This Price can be defined explicitly for each service
configuration or implicitly by means ofCPO:PolicyDescriptions. In our ontology
we capture this by introducing the conceptAtomicBidas follows:

AtomicBid⊑DnS:SituationDescription⊓ ∃DnS:defines.(TradingObject⊔

TradingTask)⊓ =1 DnS:defines.Price⊓

∀definesPolicy.(CPO:PolicyDescription⊓

CPO:PolicyCollection) (A13)

definesPolicy⊑DnS:expandedBy (A14)

TradingObject⊑CPO:PolicyObject⊓

∃DnS:playedBy.DOLCE:Endurant (A15)

TradingTask⊑CPO:PolicyTask⊓

∃DnS:sequences.DOLCE:Perdurant (A16)
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Price⊑DnS:Parameter⊓ =1 DnS:requisiteFor.(TradingOb ject⊔

TradingTask) ⊓ ∀DnS:valuedBy.PriceValue (A17)

Issuer⊑DnS:Role⊓ ∃DnS:playedBy.DnS:Agent (A18)

In addition, aPricemight represent a maximal price (MaxPrice) or a minimal price
(minPrice). As formalized in Axiom (A19) and (A20), we denote anAtomicBid
with minimal price asOffer and anAtomicBidwith maximal price asRequest. That
meansOffers classify TradeSituationswhere the propertyPriceValueis above a
certain threshold andRequestsclassifyTradeSituationswherePriceValueis below
the threshold.

Offer ⊑ AtomicBid⊓ ∃DnS:defines.MinPrice (A19)

Request⊑ AtomicBid⊓ ∃DnS:defines.MaxPrice (A20)

Some market mechanisms support more complex bid specifications beyond the
simple case ofAtomicBids[44]. Most prominent in this context are combinatorial
bids that enable expressing superadditive as well as subadditive prices for a bundle
of products. Superadditive prices occur in case of complementary products that are
usually used together, such as desktop computers and computer monitors. For such
products the value of a bundle containing both products is typically valued higher
by a customer than the sum of the value for the single products. Similarly subad-
ditivity describes substitutes where products suit the same purpose, e.g. a laptop
and a desktop computer. In line with [55] we model superadditivity by introduc-
ing ANDBidsand subadditivity by means ofXORBids. Intuitively, ANDBidsare
bids on several products where one would like to have all of them or nothing. In
case ofXORBidsexactly one product should be allocated. As formalized in Axiom
(A23) and (A24),ANDBidsandXORBidsare specialization ofBundleBidwhich
are allBidsthat consist of exactly two otherBids(Axiom (A21)). A Bid represents
the superconcept ofAtomicBidsandBundleBids. While ANDBidshave to contain
a Price attached to each bundle (either explicitly or using policies), noPricescan
be attached toXORBids, since in this context only thePricesof the AtomicBids
are relevant. Note that since eachBundleBidhas to contain exactly twoBids, all
BundleBidshave to terminate solely withAtomicBidsin a consistent knowledge
base (possibly after an arbitrary number of nestedBundleBids). The axioms below
formalize combinatorial bids.

BundleBid⊑DnS:SituationDescription⊓ =2 consistsOf.Bid (A21)

consistsOf⊑DnS:expandedBy (A22)
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ANDBid⊑BundleBid⊓ =1 andRelated1.(AtomicBid ⊔ ANDBid)⊓

=1 andRelated2.(AtomicBid ⊔ ANDBid)⊓

∃DnS:defines.Price⊓ ∀definesPolicy.(CPO:PolicyDescription⊓

CPO:PolicyCollectinon) (A23)

XORBid⊑BundleBid⊓ =1 xorRelated1.Bid⊓ =1 xorRelated2.Bid (A24)

Bid ≡AtomicBid⊔ BundleBid (A25)

The relationsandRelated1and andRelated2as well asxorRelated1and xorRe-
lated2are all modeled as subproperties ofconsistsOf. As done in Section 4.3 for the
conceptPolicyCollection, we fix the number ofBids in a BundleBidby explicitly
introducing twoconsistsOf-relations. This technique allows us to avoid universal
quantification in rule bodies which is not supported by our rule language. Due to
the fact that bundles can be nested, an arbitrary number ofAtomicBidscan be com-
bined.

A simpleAtomicBidis exemplified in the upper part of Figure 7. Annika needs a
service for a route planning task. Therefore, she instantiatesAtomicBidandDnS:defines
a TradingTaskcalledRoutePlanning. Her willingness to pay is specified implic-
itly via her policy RouteServicePolicy. That means theDnS:Parameter Priceis
DnS:valuedBya PriceValuethat has to be calculated with respect to a concrete
TradeSituation. This evaluation of a bid is discussed in Section 5.3.

5.3 Bid evaluation

BidsareDnS:Descriptionsthat selectTradeSituationsthat fulfill the specified re-
quirements. Requirements are expressed viaCPO:PolicyDescriptions. Therefore,
evaluation ofBids can be largely reduced to policy evaluation. Rule (R12) deter-
mines thePriceValue pof aAtomicBid bwith respect to a concreteTradeSituation
t using the predicateoverallDegreewhich has been introduced in Section 4.2.3.

price(b,t, p)← AtomicBid(b),CPO:PolicyDescription(d),

definesPolicy(b, d),TradeSituation(t),DnS:settingFor(t, c),

CPO:Configuration(c), overallDegree(c, d, p) (R12)

ForBundleBidswe apply Rule (R12) for eachAtomicBidcontained in the bundle. In
case ofXORBidsonly oneBid in the bundle has to be fulfilled. We thus evaluate the
TradeSituationwith each containedBid separately and then determine the price of
theAtomicBidthat is most suitable. Rule (R13) captures this in a recursive manner.
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price(b,t, p)← XORBid(b), xorRelated1(b, b1), price(b1, t, p1),

xorRelated2(b, b2), price(b2, t, p2), swrlb:max(p, p1, p2) (R13)

For calculating the price of anANDBidonly policies attached to theANDBid itself
are considered. This is realized simply by replacing the term AtomicBid(b) in Rule
(R12) withANDBid(b).

After introducing the calculation of aBid’s PriceValuewe can define thesatisfies-
Bid-relation that determines if a certainTradeSituationis acceptable according to a
Bid. For the case whereServicesare traded, the following rule checks whether the
right service is provided in theTradeSituationand whether the price is in an accept-
able range (which is defined by the policy). For comparing theTradingTask we use
the built-insubsumes, which has already been used in Rule (R3). Thereby, we make
sure that the providedServicefulfills the same purpose as theServicesequenced by
theTradingTask. As already discussed in Section 4.1.1, a meta-modeling approach
is required whereServicesare seen as concepts as well as individuals.

satisfiesBid(b, t) ← Bid(b),TradeSituation(t),DnS:defines(b, o),

TradingTask(o),DnS:sequences(o, e),DnS:settingFor(t, d),

DOLCE:Service(d), type(e, d),DnS:defines(b, t, pb),

MaxPrice(pb),DnS:settingFor(t, pt),

swrlb:lessThanOrEqual(pt,pb) (R14)

Rule for Offers and forBids containingTradingObjectsare defined analogously.
To illustrate this approach, we come back to the example in Figure 7. Here we
are interested if theTradeSituation John’sTradeis relevant for Annika’s bid (Re-
questAnnika). In order to determine the maximal price Annika is willing to pay
for theConfiguration Conf1provided by John, we use Rule (R12). Assume the re-
sult of this evaluation step is aMaxPriceof $3. For checking if John provides the
right service, we assume the following definition:RoutePlanning⊑ OoP:Task⊓
∀DnS:sequences.RouteService. Since John provides exactly this type of service for
$2, thesubsumes-predicate as well as thelessThanOrEqual-predicate evaluate to
true and theTradeSituationsatisfies theBid. Note that if John defines the service
price also via policies, the evaluation leads to a more complex optimization prob-
lem which is beyond the scope of this paper. The interested reader is referred to
[33] for a more detailed discussion.
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6 Proof of Concept

After having introduced an ontology framework for a compactrepresentation of
multi-attribute as well as configurable bids, we present here an application of the
framework as proof of concept. We introduce the scenario of dynamic Web service
selection in Section 6.1 and in Section 6.2 a prototype that implements our frame-
work in this setting. Finally, in Section 6.3 we evaluate thebid specification as well
as the bid evaluation using this prototype.

6.1 Service Bus

A service busarchitecture enables dynamic Web service selection and avoids hard-
wiring of Web services within a service-oriented implementation of a business pro-
cess. Dynamic selection of services is required in service oriented architectures,
because often at development time of the business process the concrete Web ser-
vice for a certain task is not known (e.g. the choice might depend on runtime spe-
cific context). In addition, the set of services available for accomplishing a certain
task may change frequently. In addition, dynamic selectionprovides a high flex-
ibility of the implementation since switching from one service to another can be
done automatically during run-time without changing code.This can lead to more
robust systems and to lower costs, since erroneous and expensive services can be
automatically replaced.

Figure 8 exemplifies the architecture of service bus architecture. On the left side,
a company’s business process is visualized as a workflow of tasks that have to be
accomplished by a Web service, e.g. calculation of a route. The company further
defines general policies how the business process should behave. These policies
have to contain scoring policies specifying the company’s preferences about Web
service properties. Once a Web service is required within the business process (step
D), the following steps have to be carried out:
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(1) Together with the first service request, scoring policies including attribute
weighting information are sent to the service bus and storedin a knowledge
base. Note that this initialization step only has to happen once for the initial-
ization of the system. Based on this scoring policy, the service bus is able to
take over the responsibility of selecting between potential providers, such as
A and B. In this sense a service bus can be seen as a simple take-it or leave-it
market for Web services. Since the decision for a certain service might depend
on runtime information, different scoring policies might have to be specified
for different contexts (current location, time, etc.).

(2) Once a request from an application arrives, the service bus first queries a
UDDI registry for suitable providers. Here only a very simple matching of
the service functionality is carried out. This means only the addresses of ser-
vices are returned that provide the required functionality.

(3) In a next step, offers from the providers are collected in parallel. These offers
contain a list of provided configurations together with the pricing policies of
the corresponding provider. The pricing policies are also stored in the knowl-
edge base of the service bus.

(4) Finally, the service bus queries the knowledge base for all service offers and
configurations that fulfill the required functionality. A list of services ranked
according to the difference between score and price is returned. Based on the
ranking, the best provider is selected and the respective service invoked. In
case this invocation fails, the second best service is chosen. This is repeated
until the required task is accomplished or no acceptable service remains.

In the next section we present a prototype that (partially) implements this function-
ality based on the ontology framework introduced above.

6.2 Prototype

Our prototype8 consists of two components: (i) A server component providesa
repository for Web service offers and thus implements the Service Bus described
in the previous section. The repository is a DL knowledge base that can be queried
using the KAON2 inference engine.9 KAON2 is chosen because it supports the de-
scription logicSHIQ as well as DL-safe rules and thus the ontology as well as rule
language required for our bid descriptions. KAON2 has been optimized for query
answering [41], which is the required functionality for bidevaluation. In addition,
due to the lack of a publicly available UDDI repository we added components to
the server that crawl the Web, collect WSDL files and HTML forms and transform
them to offer descriptions. (ii) The second component is a client that facilitates

8 More information about the prototype is available at<http://kasws.sourceforge.
net/> (accessed 17.03.2008).
9 Available at<http://kaon2.semanticweb.org/> (accessed 17.03.2008).

33



the specification of Web service offers and requests. Since the terminology used
by participants might be different, mapping between ontologies can be specified
using the formalism presented in [22]. Generally, the framework supports more ex-
pressive service descriptions than discussed in this paper. For example, the service
description could include behavioral aspects as presentedby Agarwal and Studer
[1].

Coming back to our initial scenario, the prototype allows Company A in Figure 8
to specify aRequestand the query for a concrete service. To query the KAON2
repository the query is formalized using SPARQL [67]. It canbe used to derive all
suitableServicesfrom the knowledge base ranked according to the scoring policies
specified by the company. To illustrate this approach, the following query is used to
find all Servicesthat satisfy a certainBid b and to rank theseServicesaccording to
difference between willingness to pay specified in the request and the actual price.

BASE < http://emo.ontoware.org/0.1/ >

SELECT ?service ?utility

WHERE { b satisfiesBid ?trade .

EVALUATE ?bidPrice := price(b,?trade) .

?trade DnS:settingFor ?price ; ?service .

?service rdf:type Service .

?price rdf:type PriceValue .

EVALUATE ?utility := sub(?bidPrice,?price) .}

ORDER BY DESC(?utility)

Instead of taking care of the business process execution itself, the client tool can
be augmented with a WS-BPEL engine [47]. To enable dynamic service selection
at runtime, Web service queries generated with the client tool can serve as abstract
goal/task descriptions in a BPEL4WS process. At execution time these descrip-
tions are used to query the repository and the address of the selected service is
dynamically assigned to corresponding invoke-statement.However, dynamic re-
assignment of ports in BPEL4WS is only feasible if alternative services have iden-
tical interfaces, i.e. WSDL port types [52]. Scenarios beyond this simple case are
currently not covered by our prototype.

6.3 Evaluation

Our work presents a novel approach to express preferences ofmarket participants
that relies on the concept of utility function policies. In this section, we discuss
the consequences of such a modeling approach on communication efficiency and
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bid evaluation complexity. Thus, this section addresses mainly two aspects: First,
in terms of bid specification we are interested whether our functional modeling
approach reduces the storage capacity and therefore improves communication ef-
ficiency in the market. Second, we are interested in the performance of the bid
evaluation process. For both aspects we compare the policy-based bid specification
with a baseline approach that enumerates all provided or requested configurations.

To investigate these questions, we have randomly generatedWeb service offers
with a varying number of configurations using a uniform distribution and stored
them in the repository. For one set of offers prices are defined implicitly via poli-
cies, whereas for the other set price information is explicitly attached to each con-
figuration. Figure 9 shows the number of axioms that are required to represent
multi-attribute offers in the market. The number of possible configurations per of-
fer is increased from 1 to 400 and the number of offers published in the repository
from 1 to 500. Already with two configurations the policy-based approach requires
less axioms than the enumeration-based approach for expressing the same infor-
mation. If we further increase the number of configurations per offer, the number
of axioms required for the enumeration-based approach increases linearly, which
leads to an overall space complexity ofO(|O||C|) . Because the setC of configura-
tions is defined asC =

∏

j A j (compare Section 3.1), the number of configurations
grows exponentially with the number of attributes. We thus get a space complexity
of O(|O|n|A|), wheren represents the maximal number of attribute values of an at-
tribute (n = maxj A j). For the policy-based approach, in contrast, axioms increase
linearly with the number of attributes

∑

j |A j | and thus this approach exhibits a loga-
rithmic space complexity with respect to the number of configurations. In addition,
no PriceValueinstance for eachOffesandConfigurationinstance has to be intro-
duced. The policy-based approach leads therefore to an overall space complexity
of O(|O|+ log(|C|)) andO(|O|+n|A|), respectively. Note that this holds only for dis-
crete attributes. Continuous attributes can be specified even more efficiently with
the policy-based approach. A representation using enumeration is not possible at
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all. In fact, only a constant number of axioms might be required for continuous
attributes and a space complexity ofO(|O|)) can be reached. Therefore, we can
conclude that policy-based bid specification considerablyimproves scalability in
the presence of highly configurable products.

In the second step, we investigate the performance of bid evaluation. Therefore, we
send queries to the repository and measure the time that elapses until we receive the
ranked list of configurations and offers. To avoid network delays this simulation is
performed on a single computer. Figure 10 shows the average query answering time
depending on the number of configurations and offers. Since the time complexity
of query answering is completely predefined by the ontology language as well as
the corresponding reasoning algorithms, theoretically nodifference between the
complexity of the two approaches exists. However, in practice some differences
can be observed.

As depicted in Figure 10, while query answering in case of enumeration is ex-
tremely fast for small scenarios (i.e. less than 60 configurations), the lookup time
of thePriceValueinstances in the knowledge base increases considerably with an
increasing size of the A-box (indicated by the solid lines inFigure 10). For exam-
ple, the service selection with 200 offers each referring to 20 configurations can be
done within 194ms, whereas query answering with 200 offers and 225 configura-
tions requires already 10 sec. If we further increase the complexity to 800 offers and
600 configurations the enumeration-based approach takes 6 minutes for selecting
the best service. This is clearly too long for service election at runtime.

In case of policy-based descriptions similar performance characteristics can be
identified, however, on a lower level (indicated by the dashed lines in Figure 10).
In small scenarios the policy-based approach is outperformed by the enumeration-
based approach, while for medium and large scenarios the policy-based approach
performs considerably better. Assuming 200 offers each with 20 configurations the
selection can be done in 301ms, whereas in the case of 800 offers and 600 configu-
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rations the selection requires 2 minutes. This is an improvement of over 60% com-
pared to the enumeration-based approach. As a reason for thepoor scalability of
the enumeration-based approach the exponential increase of PriceValueinstances
can be identified. This exponential explosion can be avoidedusing the policy-based
approach. However, in small scenarios the evaluation of Rules (R12) and (R13) is
more expensive than looking up the right price in the knowledge base. As discussed
in [32], this issue can be addressed with intelligent caching algorithms that, e.g., ex-
plicitly store price information of frequently queried configurations. Using such a
strategy, the costly policy evaluations have to be done onlyonce for the first query.

Although the policy-based approach does provide a considerably improved scala-
bility compared to the enumeration-based approach, it might still not be sufficient
for dynamic service selection at runtime. Therefore, in [33] two alternative match-
ing variants have been introduced. However, they are only applicable in scenarios
where the no full ranking of all configurations is required and where preferences
have an additive structure. They utilize a linear programming formulation and stan-
dard linear programming solvers. Using such techniques a considerably speedup
of the policy-based approach can be realized. For example, for the setting of 800
offers and 600 configurations an improvement of more than 90% canbe observed.

7 Conclusion

In this paper, we have provided an ontology framework that captures multi-attribute
combinatorial requests and offers. In this context, we have presented theCore Pol-
icy Ontologythat realizes the advantages of utility function policies,such as pref-
erence modeling and inherent conflict resolution, with a purely declarative, Web
compliant and standard-based approach. In addition, we introduced theCore On-
tology of Bidsthat uses utility function policies for compact representation of bids
for configurable goods and services. The specification and evaluation mechanism
we have presented is particularly tailored for Web-based markets by providing flex-
ibility and interoperability in heterogenous environments. In order to exemplify our
approach we have developed a prototype which enables dynamic selection of Web
services. Since Web technologies facilitate customization and personalization of
products, we believe that expressing offers and requests for configurable products
in a compact and interoperable way will be crucial for futuremarkets on the Web.

In future, we plan to extend our approach in several directions. First, we are going
to investigate how matching of offers and requests can be realized purely based
on policies without explicitly considering each possible trade. Second, we plan to
extend the Core Policy Ontology in a way that pricing and scoring policies can
be defined on behavioral aspects of services (cf. [1,10]). Third, in terms of im-
plementation we plan to enable dynamic service selection beyond simple port re-
assignments.
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