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Abstract

In recent years, electronic markets have gained much itteas institutions to allocate
goods and servicedtiently between buyers and sellers. By leveraging the Weh as
global communication medium, electronic markets providplaform that allows par-
ticipants throughout the world to spontaneously exchamgdyzts in a flexible manner.
However, ensuring interoperability and mutual underdtamdn such a highly dynamic
and heterogenous environment can easily become very tpekticularly if the services
and goods involved are complex and described by multipkbatés. In this paper, we
present a comprehensive ontology framework that allowspleeificatiorof bids for Web-
based markets. By expressing utility function policieswatlogic-based and standardized
formalism, the framework enables a compact bid repredentparticularly for highly con-
figurable goods and services while ensuring a high degresteroperability. To facilitate
matchmaking of fiers and requests in the market, a methodefaluatingbids based on
logical reasoning is presented. In addition, as proof otepty we show how the framework
can be applied in a Web service selection scenario.
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1 Introduction

Electronic markets are institutions that allow the excleaaofjgoods and services
between multiple participants through global communaratietworks, such as the
Internet. In the process, Web-based markets create ecowaine for buyers, sell-
ers, market intermediaries, and for the society at largdH@] example, they reduce
search costs, enable companies to automate their tramsaetith business part-
ners all over the world, and facilitate product custommatnd aggregation. Gen-
erally, the design of market platforms involves two compuag43]: () A bidding
language which defines howfers and requests can be specified and submitted to
the market mechanism. In this contexbid is considered as “a statement of what
one will give or take for something®. That means requests express the price some-
one is willing to pay and fders the price someone charges for a certain product. (
An outcome determination that evaluates the bids in ordeatculate an alloca-
tion between fers and requests. Depending on the domain, this step mighven
market mechanisms ranging from simple take-it-or-leawearkets to mechanisms
implementing complex negotiation and auction protocols.

When moving to a heterogenous Web environment where bisspeasners dy-
namically join and leave the market and where participanghtmot know each
other beforehand, designing a bidding language is a neiattask since it requires
ensuringmutual understandingetween dierent participants in the market. This
problem is aggravated by the fact that many trading objectee Web ardnighly
configurabledescribed by dierent attributes and traded undefelient conditions.
A prominent example for such highly configurable tradingealtg are Web-based
services, which have become increasingly important withémerging service-
oriented computing paradigm in recent years. ConsidegxXample, a route plan-
ning Web service, whichfters the service of computing a road route between two
locations. Various configurations of the service may take atcount the current
traffic situation or weather situation when computing the rout¢he service may
be configured to compute the shortest or quickest route fatavoids small roads
and so on. Naturally, each configuration may havefi@dint price attached. Deci-
sion making in markets with such complex services and goedsmlly requires
that bothseller pricing functionas well as buyescoring (preference) functiorse
taken into account.

The key contribution of this work is to develop a means forc#pzation and eval-
uation of bids that enables compact representation of ratitibute dters and re-
guests while addressing the challenges that arise from abAsbd environment.
For expressing pricing and preference functions we suggeabining a declar-
ative policy approach with utility theory, which quantifipseferences by assign-
ing cardinal valuations to each configuration. Sudtity function policiesenable
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efficient specification of multi-attribute bids, while beingceangeable between
different market participants due to their declarative nature.

In order to achieve interoperability and ensure mutual ustdading, our technol-
ogy of choice is ontologies. Given our assumption of hetenegus market partici-
pants and global markets, it is quite likely that requesthsaifers will use difering
descriptions for the same service or product. Going beyoktl.¢nabled inter-
operability, ontology-based descriptions of service adpict attributes enable the
comparison of requests anffers that are semantically related. Existing electronic
markets do without ontology-based descriptions of pragluotit at the expense
of rigidly requiring each participant to agree a priori tonéarm to the standard
protocol and product descriptions of the market. Using logties within markets
enables participants to describe their service or procheimay they deem best,
leaving it to the market to identify the best matches and fhasitate interoper-
ability. In addition, they make the market (participan&silient to changes in the
vocabularies or market mechanisms.

Before presenting our ontology framework, we discuss thairements this frame-
work has to meet and review related work to determine whetterequirements
are already supported by existing approaches (SectioruBseguently in Section
3, we introduce the concept of utility function policies aheé basic principles be-
hind ontologies. Based on these foundations, an ontol@gydwork for express-
ing configurable fiers and requests is presented. The main building blockseof th
framework are described in the following sections: the Geoéicy Ontology that
enables expressing utility function policies is introddiee Section 4 and the Core
Ontology of Bids that extends the formalization for expreg®offers and requests
is presented in Section 5. Finally, as proof of concept, a@a implementation
of the framework in the Web service domain is presented iri@e6. Section 7
concludes the paper with a discussion and brief outlook.

2 Requirements Analysis and Related Work

In this section, we first introduce the main requirementsHerspecification of bids
in a Web-based market (Section 2.1) and discuss whethdimexegpproaches meet
these requirements (Section 2.2).

2.1 Requirements

In this paper, we consider the problem of designing a mesharor specifica-
tion as well as evaluation of bids that enables the expressibighly configurable
offers and requests in affieient way, while being applicable in an open Web envi-



ronment. Such a mechanism has to meet several requiremaritb, are discussed
in the following.

Multi-attribute Requests and Offers: First, since we are dealing with various con-
figurable products, the bid specification has to suppurtti-attribute requests
and gfers i.e. requests andi@rs that involve multiple attributes beyond just the
price. Often these attributes considerably influence tloe f a trading object in
the market. For example, in the case of Web services qudlggroice attributes
are in fact an essential part of the service descriptioroalih they do not ad-
dress the service functionality itself. The attributed thave to be described in
this context can be discrete as well as continuous.

Expression of Functions: Second, pricing as well as scoring policies require the
expression of functiorthat map configurations to a pricing or a preference struc-
ture, respectively. A functional form is essential paréely for highly config-
urable trading objects since enumeration of configuratismade dificult by
the exponential size of the attribute space. For instanpepduct described by
5 attributes, each with 5 attribute values, already in@leeer 3000 configura-
tions. Moreover, preferences have to be measured on a abstiale, so that
one can specify both an ordering betwedies and an acceptance threshold for
offers that satisfy the request to a certain degree.

Web-compliant Interoperability: Third, since dfers have to be communicated
to the buyer an@r requests to the seller (e.g. in a procurement auction),
teroperabilitybecomes an important issue. This is particularly cruciadpen
markets on the Web, where participants may use highly hgeemus data for-
mats and participants as well as descriptions may changadrgly. Therefore,
a standardized syntax and semantics is essential thatesngiid matching in
the market although requests anffleos are often specified féerently. For ex-
ample, a service provider might specify that routes betvadlecities in Europe
are supported, while a customer might look for a route betweectly two
cities Karlsruhe and Munich. To bridgefi#irent levels of abstraction sophisti-
cated logical inferencing mechanisms are required whicthis case, utilize the
knowledge about cities being in countries and countriegrigghg to continents.
Moreover, when implementing markets using Web infrastmectffers and re-
guest descriptions have to bempliant to existing protocols and languages on
the Webi.e. they should be serialized using XN¥RDF, identify objects by Uni-
form Resource Identifiers (URI), feature modularizatida, e

2.2 Related Work

In this section, we present various existing approacheseictrenic markets for
modeling buyer preferences and sellffedngs. Table 1 summarizes the approaches
discussed in terms of which of the three requirements thppat (indicated by



Table 1
Languages for specifyingfi@rs and requests.

Approach Requirement
Multi-attribute Expressing Web-compliant
OffergRequests Functions Interoperability
EDI/EDIFACT ) ) -
XML-based Languages v - )
Ontology-based approaches v - v
Rule-based Languages v ) )
ProductService Catalogs - - v
Bidding Languages for CA v v -
CPML v v )
Our Approach v v v

check marks).

One of the first attempts to exchange order information witHectronic markets
were the Electronic Data Interchange (EDI) protocols (EBIFACT [60], X12
[2]), which serialize request andfer information according to a predefined format
agreed upon by both communication parties. Thus, EDI cootlergially be used to
describe multi-attributive requests anffiers with preference and pricing functions.
However, these pairwise agreements were rarely based astamgards and turned
out to be &ort-intensive, highly domain-dependent and inflexibleu§lEDI is not
addressing the interoperability requirement.

More recent approaches, such as WS-Policy [66], EPAL [2d] ¢ACML-based
Web Service Policy Language (WSPL) [39], use XML (eXtensiMarkup Lan-
guage) [65] as a domain-independent syntax, to define @ntstion attributes of
configurable trading objects within the context of Web sasvagreements. How-
ever, they are not suitable for our purposes, because thgyalow the expres-
sion of attribute value pairs and thus cannot be used to sg@ler pricing and
buyer scoring functions. In addition, the meaning of XML atations is defined
in a natural language specification, which is not amenablmachine interpre-
tation and supports ambiguous interpretation. Therefreh approaches require
extensive standardizatiorferts, which is also a major problem for eb XML [46].
WS-Agreement [3] is another XML-based specification thatloa used to express
different valuations for configurations. However, it supponly discrete attributes.
An approach to extend WS-Agreement for expressing contisfienctions is pre-
sented in [54]. The XML annotations still lack formal semesiand therefore do
not provide the required interoperability.



One way to enable machine interpretation of buyer requestsaller dfers is to
specify them using a machine-interpretable ontology. Sucbntology consists of
a set of vocabulary terms, with a well-defined semanticsigeal/by logical ax-
ioms constraining the interpretation and well-formed usthe vocabulary terms.
Based on this idea several proposals for semantically edailatching in elec-
tronic markets have been presented [45,36,58,19]. Th@appes improve seman-
tic interoperability by utilizing logical descriptions otained in requests andfers.
Depending on the logic used and on the concrete trading tshjethe market, dif-
ferent notions of match can be defined. However, logical magcdoes typically
lead only to a coarse preference structure over tfferént alternatives, e.g. [51]
presents four dierent levels of match, namebxact plugin, subsumesndfail.
Therefore, [56,31] argue that pure logical matching is nfficgent and has to be
augmented by “value reasoning”. This is also the approacfold@v in our work
by introducing functional descriptions. Another problenthithese approaches is
that they do not directly support constraints on multipkeilawtes. Therefore, the
ontology-based policy languages KAoS [61] and REI [28] carubed to extend
the matching approaches in order to allow the definition oftiradtribute policies
for representing constraints on attributes. However glaggproaches are limited in
that they always evaluate either to true or false thus caextess the scoring or
pricing functions required for configurable products.

More expressivity in this context is provided by rule langea such as SweetDeal
[20] and DR-NEGOTIATE [57]. Both are rule-based approadhasuse defeasible
reasoning (i.e. Courteous Logic Programs or defeasibie)dg specify contracts
or agent strategies, respectively. Similar to our apprdhely feature automatic
reasoning based on a formal logic. However, although Ruled/available as a
standard syntax, the semantics of the syntax is not yet atdizeédd which hinders
interoperability. In addition, while the underlying rulgnguage might be capable
of expressing utility-based policies, they do not provitke tequired policy specific
modeling primitives directly, rather the rules for intezpng such policies have to
be added manually by the user. In the DR-NEGOTIATE approactitgtive pref-
erences are expressed via defeasible rules and priontieagathem. While such
an approach is suitable for ranking of alternatives, it it pussible to assess the
absolute suitability of an alternative, which is importantase the best alternative
is still not good enough (cf. Section 3.1). Most similar ta approach is the work
presented in [50], where WS-Agreement is extended with dological model
and preferences are expressed via a rule-language. Howewdar to the previ-
ous approaches they use a non-standard rule language amd elalorate on the
structure of the preference rules.

A separate stream of work has focussed on developing higiplsessive bidding
languages for describing various kinds of attribute depaniks and valuations,
particularly in the context of (combinatorial) auctionsyd44], [11], [55]). How-
ever, they assume a closed environment and therefore, etregyido use XML-
based bidding languages [9], they do not deal with interaipéty issues. Many



B2B scenarios use standardized product and service taxespsnch as UNSPSC
[59], CPV [15], or the MIT Process Handbook [37]. However,ithhese tax-
onomies are suitable for pure functional descriptiongy gtatic hierarchical struc-
ture makes them inappropriate for multi-attribute deswiys since each new prod-
uct configuration requires the introduction of a new sulxilashe hierarchy. There-
fore, they might be applicable to describe individual htites, but not the entire
multi-attribute trading object.

Recapitulating, two major streams of work can be identifieikt, approaches com-
ing from the area of market engineering that propose higkpressive bidding
languages for complex electronic markets. However, thel saupport for inter-
operability in a Web environment. Second, there are appesaaddressing inter-
operability in heterogenous and dynamic environments siscthe Web. These
approaches typically do not focus on market-specific reguents. Our work uni-
fies these two aspects in one coherent framework. We draw uitdity theory to
express scoring and pricing functions of market participaand thereby enable
compact representation of request artteis. Furthermore, we show how these
functions can be expressed declaratively with a standeddand Web-compliant
ontology formalism.

3 Ontology-based Specification of Requests andftars

In this section, we first introduce the principles of poliggsed decision making fo-
cusing on the concept of utility function policies (Sectia). Such policies allow
encoding preference and price information in dliiceent and declarative way. In
Section 3.2, we argue how interoperability in the Web careladéized by means of
ontologies. Finally, relying on these concepts we preseseiction 3.3 an ontology
framework for compactly expressing configurable requestisofers.

3.1 Utility Function Policies

Policies are declarative rules that guide the decision nigiiocess by constraining
the decision space, i.e. they specify which alternativesaiowed and which are
not. The decision space can be divided into “ifelience ranges” [14] that represent
sets of alternatives with the same preference level. [33€3€r to such policies as
goal policies However, when making a decision it is often not enough toakno
which alternatives are allowed, but rather which is the ladistrnative and how
good the alternative is (e.g. the best alternative mightlsti not good enough).
Therefore, we suggest combining a declarative policy agugravith utility theory
[29], which quantifies preferences by assigning cardinkiatéons to each alterna-
tive. With suchutility function policies detailed distinctions in preferences can be



expressed, providing improved decision making betweefiictng policies com-
pared to traditionagjoal policiesby explicitly specifying appropriate tradd¥s be-
tween alternatives [30].

In the context of electronic markets, utility function pmés can be used on buyer-
side to specify preferences, assess the suitability ofnigadbjects and derive a
ranking of trading objects based on these preferenceshdtuthey allow the ex-
change of preferences with sellers which might be requiedinstance, in pro-
curement auctions or exchanges. Since the functional feowa enumerating all
configuration to attach prices, utility function policiesadle the compact repre-
sentation of pricing or cost functions on the seller-sidd #rus provide an f&-
cient way of communicating pricing information to the custrs. In the remain-
der of this paper, we denote rules that define the relatiowdsst configurations
and prices defined by a seller pgcing policiesand rules that define how much
a buyer is willing to pay for a certain configuration ssoring policies(or buyer
preferences).

For our policy specification we use the following utility meldAssume alterna-
tives (e.g. configurable trading objects) are described bgteof attributesA =
{A1... Ay} Attribute values; of an attribute?; are either discretd; € {a;1, . . ., ajm},

or continuousg; € [min;, max]. Then the cartesian produCt= A x - - - X A, de-
fines the potential configuration space, where C refers to a particular configu-
ration. Based on these definitions a preference structaefiised by the complete,
transitive, and reflexive relation. For example, the configuratian € C is pre-
ferred toc, € C if ¢; > ¢,. The preference structure can be derived from the value
functionV : C — R, where the following condition hold$c,,c, € C: cy > ¢, ©
V(cy) = V().

In literature there is a broad stream of work about modelalge/functions (e.g. [16,29,62,5]).
The goal is to provide dticient expressivity for modeling complex decisions, while
keeping the elicitation and computatiofiat at an admissible level. In the most
general case, a value function is directly defined as a foné&t{a,, . .., a,) map-
ping each configuration to a valuation. Since the number ofigorations is ex-
ponential with respect to the number of attributes and thalwes, this approach

is infeasible already for relatively small problems. Fodtely, preferences of a
customer often have an underlying structure which is intoed by the indepen-
dency of the attributes. Relying on this structure subsfiypimproves compact-
ness and analytic manipulability [62]. The most promingagraach in this context
are additive models, where the valuatig(c) is decomposed into several lower-
dimensional functions. There are several well known apgrea for doing this de-
composition based onftierent structural assumptions. In the following, we shortly
introduce theadditive value model which has favorable computational properties
but also requires very restrictive assumptions.

Theadditive value functiors defined in Equation (1) below assumimgitual pref-



erential independencipetween the attributes [29]. The attributgs ..., A, are
considered mutually preferential independent if everysstilof these attributes is
preferentially independerdf its complement. The set of attribut¥sc A is pref-
erentially independent from the sétc A with X Nn'Y = 0 only if for somey’ the
following condition holds¥y, X', X" : [(X,Y) = (X", ¥)] = [(X,y) = (X’,y)]. Un-
der this assumption, we can decompose the utility fundti@m) into the individual
functionsv;(a;) of the attributeA;. The overall value can be calculated by Equation
(1), whereq; represents the weighting factor of an attribute normalinete range

[0, 1].

V(c) = Z /ljvj(aj),withz =1 (1)
=1 =1

However, in real markets the preferential independenanafioes not hold. In or-
der to at least partly capture this, dependent attribites ., Al € A can be treated
as one single attributa; in our model, where the utility function is modeled as a
complex (higher dimensional) function-(a, . . ., &). Since this approach allows
one attribute of the produé; to influence several of the aggregated attribigs
we support the family ofjeneralized additivesalue functions [16,5]. While the
generalized model requires expressing high dimensiomaitions for the entire
product, the additive model requires attaching an one démeal function to each
attribute of the product. Since in general determining @dlinctions of an agent
is rather dificult, we assume extensive methodology and tool supportiptéfer-
ence elicitation process (cf. [13]).

In the following, we show how utility function policies car lnleclaratively speci-
fied and evaluated in a Web environment.

3.2 Achieving Interoperability with Ontologies

In order to achieve interoperability we usatologies In recent years, ontologies
became an important technology for knowledge sharing itridiged, heteroge-
neous environments, particularly in the context of Smmantic Welp63,7]. An
ontology is a set of logical axioms that formally define a slavocabulary [21].
By committing to a common ontology, software agents can naakertions or ask
gueries that are understood by the other agents. Moreaydr,legic-based defi-
nitions come with executable calculi that enable data natégn required in elec-
tronic markets for matchingfters and requests (e.g. [36,58,45]). In the following,
we briefly introduce the logical formalisms we use to spebifys, namely then-
tology language OWL-DlanNd therule language SWRL



In order to guarantee mutual understanding, the underlygigig has to be stan-
dardized. The Web Ontology Language (OWL) standardizechbyWorld Wide
Web Consortium (W3C) [64] is the only standardized ontoltayyguage that is
currently available. OWL ontologies can be serialized VikHML syntax while
resources are identified using URIs. Both features and ttensixe modulariza-
tion possibilities provided by OWL ensure compatibilitythvexisting World Wide
Web languages. OWL comes in three levels of expressivel¢ssise the most
expressive decidable fragment OWL-DL. It is based on a fanfiknowledge rep-
resentation formalisms callddescription Logics (DL)4], where the meaning of
the provided modeling constructs like concepts, relatidatatypes and individuals
is formally defined via a model theoretic semantics, i.es defined by relating the
language syntax to a model consisting of a set of object®itddrby a domain, and
an interpretation function, which maps entities of the &gy to concrete entities
in the domain [25]. Thereby, the meaning of an axiom defineiceconstraints
on the model. For example, we can define that the corfGephanRoutés a sub-
concept ofRoute which captures routes starting from a German city and enidin
a German city. Using the OWL abstract syntax [4] this can bi&ewr as follows:
GermanRout& Route1dfrom.GermanCity1 3to.GermanCityFrom a set of such
axioms conclusions can be derived that are not explicidyest in the ontology,
e.g. a subsumption hierarchy between concepts in the @ytckn be constructed.
This is particularly important for matchmaking in marketsce dfers and requests
are usually described onftirent levels of abstraction, e.g. when looking for a
route planning service for Germany also route planningiserfor entire Europe
are relevant. In the remainder, DL axioms are denotedly. ., An.

In order to define our ontology, we require additional maatgfprimitives not pro-
vided by OWL-DL, e.g. triangle relations between conceftech modeling con-
structs are provided by rule languages. The Semantic WeblRuiguage (SWRL)
[23,24] allows us to combine rule approaches with OWL. Sire&soning with
knowledge bases that contain arbitrary SWRL expressioallysbecomes unde-
cidable [23], we restrict ourself to tHBL-safefragment of SWRL [42], which is
more relevant for practical applications due to its traiitgband support by ex-
isting inference engines. In addition, SWRL provides areesible set of built-in
predicates that can be used for implementing operatiorts asi@rithmetic calcu-
lation, string comparisons or manipulations, etc. For tb&tion of rules we rely
on the standard first-order implication syntax, where kostare identified by the
prefix “swrlb”. In the following, rules are labeled B34, ..., Rn

3.3 Ontology Framework for Web-based Markets

In this section, we present an ontology framework for madgtiters and requests
containing utility function policies introduced in Seati®.1 with the formalism
presented in Section 3.2. Our framework consists of sewaradlogy modules.
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Table 2
Upper level concepts from DOLCE, Descriptions and SitueibnS), Ontology of Plans
(OoP) and Ontology of Information Objects (OIO) that areduge modeling basis.

Module Conceptlabel Explanation

DOLCE Endurant Static entities such as objects or substance

Perdurant Dynamic entities such as events or processes

Quiality Basic entities that can be perceived or measured

Region Quiality space

DnS Description Non-physical objects like plans, regoladi etc. defining
Roles, Courses and Parameters

Role Descriptive entities that are played by Endurants éecgs-
tomer that is played by a certain person)

Course Descriptive entities that sequence Perdurantsa(eagvice
invocation which sequences concrete communication activ-
ities)

Parameter Descriptive entities that are valued by Regikeghe age
of customer

Situation Concrete real world state dfars using ground entities
from DOLCE

OoP Task Course that sequences Activities
Activity Perdurant that represents a complex action
olo InformationObjectEntities of abstract informatiokdithe content of a book
or a story

These modules are arranged in three layers:

Top-level Ontology: As a modeling basis, we rely on the domain-independent
upper-level foundational ontology. By capturing typicaitology design pat-
terns (e.g. location in space and time), foundational ontologies/ide basic
concepts and associations for the structuring and foret#édiz of application
ontologies. Reusing these building blocks consideralilyces modelingféort.
Furthermore, they provide precise concept definitions dmndlaaxiomatization.
Thereby, foundational ontologies facilitate the concaptategration of difer-
ent languages and thus ensure interoperability in hetamgeenvironments. As
foundational ontology we use DOLCE (Descriptive Ontologylfinguistic and
Cognitive Engineering) [38]. DOLCE provides the ontologs@jn patterns re-
quired for formalizing policies such as contextualizatéord is available in the
ontology language we use. The DOLCE concepts that are Wyiresed for align-
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ment of our ontology are briefly introduced in Table 2. A detidescription of
DOLCE and its modules is given in [38,17].

Core Ontology: As a second layer we add modules for describifigre and re-
guests in electronic markets. These ontologies are spémifeccertain purpose,
but still domain independent. The first module is @@e Policy OntologyCPO)
formalizing the notion of utility function policies whictsithen used in the sec-
ond module. This module is callgdore Ontology of Bideind introduces gen-
eral communication primitives for expressing the intem$iof participants in the
market.

Domain Ontology: While the first two layers contain domain-independefit o
the-shelf ontologies, the third layer comprises ontoled@ customizing the
framework to specific domains (e.g. an ontology for modetiragucts and their
attributes).

In this paper, we focus on the second level of our ontologméwaork. The Core

Policy Ontology is described in Section 4 and the Core Bigdmntology in Section

5. To illustrate the use of these ontologies we also intredtagments of a domain
ontology for route planning services as a running example.

4 Core Policy Ontology (CPO)

The Core Policy Ontology (CPO) provides primitives for 9pgng goal and util-
ity function policies introduced in Section 3.1. The rentln of this section is
structured as follows: First, we extend the DOLCE groundlagty by modeling
primitives required for representing functions betweednatte values and their
individual valuation by a user (Section 4.1). Secondly,edasn these functions,
we show how the DOLCE ontology module Description & Situati® applied to
model product configurations and policies (Section 4.2addition, we discuss in
this section how configurations are evaluated accordingpe¢cspecified policies.
Finally, Section 4.3 introduces a mechanism to specify asatliate collections of
policies.

Note that although in the following we focus on applying tledigy ontology for
specifying scoring and pricing functions in electronic kes, due to its general-
ity it is not restricted to this domain. In fact, it can be udeda wide range of
multi-attribute decision problems, e.g. to define prefeesnover agent strategies
or penalties in electronic contracts.

12



Function OlO:InformationObject

M G

paY

PatternBasedFunction PiecewiseLinearFunction PointBasedFunction

patternidentifer constitutedBy  constitutedBy
patternParameter1 \L \L

IdentifierValue ParameterValue next Point

patternParameterN )
valuation\,/—l \—\|/ policyValue

DOLCE:Region UtilityValue AttributeValue

JAN \ |

Fig. 1. Modeling value function’

4.1 Valuation Functions

As discussed in Section 3.1, utility function policies axpressed via functiong :

C — R that map configurations € C to a corresponding valuation between O (or
—o0) and 1, where a valuation efo refers to forbidden alternatives and a valuation
of 1 to the optimal alternative [35]. We now show how the fuméatal concepts
formalized in DOLCE can be extended to allow expressingatabn functions.

As depicted in Figure 1, Bunction® is a specialization o®1O:InformationObject
which represents abstract information that exists in time ia realized by some
entity [17]. Currently our framework supports three wayslefining functions:i(
Functionscan be modeled by specifying sets of points that explicitiprattribute
values to valuations. This is particularly relevant for noah attributes. i{) We al-
low to extend these points to piecewise linear value funstiovhich is important
when dealing with continuous attribute values, such aselpanse time of a ser-
vice. (ii) Thirdly, we allow reusing typical function patterns, whiare mapped to
predefined, parameterized valuation rules. Note that sattrmps are not restricted
to piecewise linear functions since all mathematical ojpesgprovided by the rule
language can be used. Thefdrent ways of declarative modeling functions are
discussed next in more detail.
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Fig. 2. Example of a point-based value function

4.1.1 Point-based Functions

As depicted in Figure JRointBasedFunctionare Functionsthat areconstitutedBy
a set ofPoints EachPoint has a propertyolicyValuereferring to anAttribute-
Valueand a propertyaluationthat assigns exactly ondtilityValueto this attribute
value* An AttributeValuds a specialization dDOLCE:Regiorthat defines which
attribute values a certain attribute may adopt, e.g. théate WeatherConsider-
ationin the route planning example requires D®LCE:Region WeatherConsid-
erationValuecontaining the element8yes, “no’}. Similarly, theDOLCE:Region
UtilityValue comprises the range [0] and—co.

In our route planing example introduced in Section 1, a retgremight specify
her preferences with respect to the service prop@reatherConsideratioby a
PointBasedFunctiarwhich isconstitutedBywo instances oPoint with (“yes, 1)
and ('no’, 0.2). Thus, the requester would highly prefer weather infdrometo be
taken into account, but has some small use for routes ccldthout weather in-
formation. Similarly, the preferences for the attribReute Type&alculation can be
defined withPoints(* quickest, 1) and cheapest¢heapest, 0.4). These mappings
are illustrated in Figure 2.

In order to evaluate this function, additional axioms aureed that more closely
define the semantics of the conceptsntBasedFunctioandPointas well as their
relations. Rule (R1) below defines how theluation of a certainpolicyValue x
can be determined based on the specification offhietBasedFunction .fFor
this purpose we iterate over &bintsconstituting the function and compare their
policyValueto the desired attribute value

2 For the reader’s convenience we define DL axioms informayUML class diagrams,
where UML classes correspond to OWL concepts, UML associatio object properties,
UML inheritance to subconcept-relations and UML object®WL individuals [12].

3 Concepts and relations of the ontology are writteitatics. All concepts and relations
imported from other ontologies are labeled with the commesiing namespace. Sometimes
concept names in the text are used in plural to improve traatskty.

4 Note that in case we have dependent attributes and thus esmvplue functions
Vj(X, ..., %) (cf. Section 3.1) eachPoint might have severapolicyValue relations,
i.e. policyValug, ..., policyValug.
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degredf, x, v) « PointBasedFunctioff), constitutedByf, p),
policyValud p, pv), match(x, pv), valuatior(p, v) (RD)

The comparison of attribute values is realized byrietchpredicate. This predi-
cate has to be customizable since the way attributes areareshpdepends on the
domain of interest, i.e. on the concrete attribute. In otdéeeep Rule (R1) appli-
cable for all attributes, we specify this in a separate matchule. For example,
considering the attributé/eatherConsideratigrior matching the attribute values a
simple string matching predicate as provided with the baoikqualsis suficient.
Rule (R2) illustrates this by defining the matching rule foe tattributeWeather-
Consideration

matchx, y) «WeatherConsiderationVal(e),
WeatherConsiderationVal(g, swrlb:equalgx, y) (R2)

Unfortunately, in many cases attribute values have to beribesl in a more com-
plex way beyond simple strings or numbers, e.g. to exprdsslass relations be-
tween attribute values. In such cases it might be requireddel attribute values
as concepts in OWL. Since in our ontology they are modeleddigiduals a meta-
modeling approach is required where a URI can be treatedrasepbas well as
instance® This allows us to specify preferences on a more abstrack d&vbthus
avoids enumerating all possible attribute values.

For example, consider an attributedicatedAttractionthat specifies which types
of attractions along the route can be suggested by a cedaiics. In this case
the corresponding value spalcelicatedAttractionValuenight comprise the alter-
nativesCulturalAttraction HistoricSite Museumand Castlewhich are all related
to each other. In particulaGulturalAttractioncan be seen as a class containing
all other valuesHistoricSite in turn, comprise€astlesbut notMuseumsConse-
guently, a scoring function mapping historic sites to a &itin of Q8 has to assign
the same value to information aboDastlesalong the route (although this might
not be specified explicitly). Such a behavior can be realedefining aPointthat
maps thepolicyValue HistoricSitdo 0.8 and anothePoint that maps everything
else to zero using the concept definitidtiractionr1 —HistoricS ite Similar to the
attributes above we can define a matching rule for the at&ibdicatedAttraction
by replacing the built-in implementing string matching lwé built-in that features
DL subsumption checking between two concepts.

5 Although such an approach is outside of the ontology forsnand part of OWL-Full,
many reasoners such as KAON2 can handle meta-modeling te sxi@nt [40].
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matchx, y) «IndicatedAttractiorix), IndicatedAttractiory),
swrlb:subsumds, y) (R3)

Several other matching variants have been proposed iatliter (e.g. [36,45,8]).
We support these fierent notions of match by providing a flexible framework that
can be customized via declarative matching rules.

4.1.2 Piecewise Linear Functions

In order to support definition dfunctionson continuous properties too, we intro-
ducePiecewiseLinearFunctiores shown in Figure 1. Continuous attribute exhibit
a natural ordering between the attribute values which cantibeed for specify-
ing the function. We therefore extend the previous apprdmcthe propertynext
between twdPointswith adjacent attribute values.

Such adjacerointscan be connected by straight lines forming a piecewiseiinea
value function as depicted in Figure 3.

1
0.8r f
0.6 f
0.4r f
0.2 .

0

Valuation

0 20 40 60 80 100
Response Time in sec.

Fig. 3. Example of a piecewise linear value function

For every line between theoints(xy, y1) and ., y») as well as a giveRolicyValue
X, we calculate the valuatianas follows.

X2—X1

LN (x — xq) + Y1, if X1 < X< X
0, otherwise

This equation is formalized by a predicat(v, X, X1, 1, X2, ¥2). This predicate can
be realized either directly by means of a built-in or by explg the math as well
as the comparison built-in predicates provided by the angliage’

6 Although predicates with arity higher than two cannot be aled with the formalism at
hand directly, many reasoning tools support them. Moredgehniques for reifying higher
arity predicates are well known [26].
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Using this predicate, Rule (R4) defines the valuation of tageattribute value
(as Rule R1 does fdPointBasedFunctionsThe rule makes sure that only adjacent
Pointsare considered in the calculation.

degredf, x, v) «—PiecewiseLinearFunctidif),

/\ (constitutedByf, p;), policyValudpi, pv),
i€(1,2)
valuation(pi, vi)), nex(pa, pz),
cal(v, X, pva, V1, pVa, V) (R4)

As an example, let us assume fhenctionfor the attributeResponse Timef the
route planing service is given byRaecewiselLinearFunctiowith the Points (0, 1)
(10, .8) (30, .3) (60, 0)as depicted in Figure 3. Now, we can easily find out which
valuation va certairpolicyValue Xs assigned to. The predicatal, (v, X, X1, Y1, X2, ¥2)

is true if thepolicyValue xis between two adjace®ints(xy, y1) and ., y,) and
thevaluationequalsv. For instance, for &esponse Timef 20 seccal, evaluates
the straight line connecting the adjacent Po{i®, .8)and(30, .3) which results

in a Valuation vof .675.

4.1.3 Pattern-based Functions

Alternatively, value functions for continuous attributeen be modeled by means
of PatternBasedFunctionshis type refers to functions likep, ,,(X) = p;e,
wherep; andp, represent parameters that can be used to adapt the furiotimu.
ontology, thesd~unctionsare specified through parameterized predicates which
are identified bypatternldentifiersA patternidentifierpoints to aDOLCE:Region
IdentifierValuethat uniquely refers to a specific rule predicate. This e is
denotedpattern A patternParametedefines how a specific parameter of hed-
tern-predicate has to be set. For allowing an arbitrary numbgraodmeters in a
rule, universal quantification over instancespatternParametewould be neces-
sary in the body of the rule. Since this is not expressiblé wiir rule language,
the diferent parameters are modeled as separate properties imtthlegy, viz.
patternParameter]l. ., patternParameterNOf course, this restricts the modeling
approach as the maximal number of parameters has to be fixedabgy design
time. However, we believe that keeping the logic decidalgifies this limitation.

As shown in the example below (Rule (R5)), eguiternis identified by a hard-
coded internal string. This is required to specify, whiclitgra is assigned to a
certain attribute in the ontology. Thus, in order to find otiiet patternpredicate

is applicable, thepatternldentiferspecified in the policy is handed over to the pred-
icate by using the first argument and then it is compared tonteenal identifier. If
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1
0.8
0.6
0.4
0.2

0

Valuation

0 20 40 60 80 100
ResponseTime in sec.

Fig. 4. Example of a pattern-based valuation function

the two strings are identical the predicate is applied towate thevaluationof a
certainpolicyValue

As an example, we again focus on the attridRésponseTimaf the route planning
service. In many scenarios the dependency between confangand prices or
valuations are given by functions. Assume the preferenmeRésponse Timare
given by the exponential functiom, ,,(X) = p.e”* with the patternParameters
p; = 1.03 andp, = —.04 (Figure 4). Rule (R5) formalizes the pattern. The interna
identifier in this example i8d:exp’. The corresponding comparison is done by the
built-in equals which is satisfied if the first argument is the same as thenskco
argument.

pattern(v,id, X, p1,..., Pn) <
String(id), PolicyValugx), Valuation(v),
swrlb:equalgid, “id:exp”), swrib:multiply(t1, po, X),
swrib:pow(ty, “2.70481" t1), swrib:multiply(v, p1, t2) (R5)

SWRL supports a wide range of mathematical built-in pregedcf. [24]) and
thus nearly all functions can be supported. As in our exanmpése functions are
typically parameterized only by a rather small number oépaeters. Therefore, we
believe that there are few practical implications of definime maximal number of
parameters at ontology design time.

Based on the definition of thgatternpredicate we can define tdegreeof a certain
attribute value according toRatternBasedFunctionsing the following rule.

degreéf, x, v) «—PatternBasedFunctidif), patternidentifier( fid),
patternParametdif, p1), ..., patternparametdf, pn),
pattern(v, id, X, p1, ..., pn) (R6)
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DnS:SituationDescription | | PolicyDescription
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-Weight:float(xsd)
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DnS:P OoP:Task DnS:Role

PolicyTask PolicyObject
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Configuration

DOLCE:
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Fig. 5. Policy description framework. To improve the reatigbwe illustrate certain re-
lations by plotting UML classes within other UML classes:€eTtlassPolicyDescription
has aDnS:defineselation and the clas€onfigurationa DnS:settingFosrelation to each
contained class.

Based on the notion dfunctionsintroduced above, we show in the following how
they are used to define and reason about policies.

4.2 Modeling Policies and Configurations

As discussed in Section 3.1, we formalize preferences oeaaswell as pricing
information of a provider in a functional form by means ofip@s. For instance, a
price-conscious user might prefer a cheap service alththeykervice has a rather
slow response time, whereas a time-conscious user mighptany costs for a fast
service. Hence, policies can be seen d&ed@nt views on a certain configuration.
For modeling such views we use and specialize the DOLCE neddescriptions &
Situations (DnS) which provides a basic theory of contdktation [17]. Hence, a
certain configuration can be considered as more or lessatdsilepending on the
scoring policies of a buyer or a configuration can be pricét®dintly depending
on the pricing policies of a seller.

When using DnS with DOLCE, we distinguish between DOL@#&und entities

that form aDnS:Situatioranddescriptive entitiesomposed in ®nS:SituationDescription
i.e. the view in whiclBituationsare interpreted. As depicted in Figure 5, we special-

ize theDnS:SituationDescriptioto aPolicyDescriptiorthat can be used to evalu-

ate concret€onfigurationsvhich are modeled as special kind®tuations This
distinction enables us, for example, to talk about prodastsoles on an abstract
level, i.e. independent from the concrete entities that fha role. For instance, a
certain product configuration can be evaluated in the lifjbitber a pricing policy

of the seller or the preferences of a user depending on tim pioview.

In the following, we describe how su&@onfigurationsandPolicyDescriptionsare
modeled and then show how the evaluation of policies is@adout.
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4.2.1 Configuration

In a first step, we define the ground entities that constiti@a&: SituationIn our
context, suctbnS:Situationseflect multi-attribute real-world objects or activities.
In a concreteDnS:Situatiorthese products have one distinct configuration. Recall
in Section 3.1 we defined the set of configurati@has the cartesian product of
the attributes<C = A; x --- X A,. Hence, as shown in Figure 5, we modin-
figuration as a subclass dDnS:Situationthat exactly defines one configuration
c € C of a product. Since there are varioudteient ways of describing prod-
ucts, a generic approach is used in this work, where conotgéets and activities
are represented by instancesDf®LCE:Endurantand OoP:Activity, respectively.
Attributes of DOLCE:Endurantsand OoP:Activitiesare modeled via théocate-
din property that points to a value range represented byDeCE:Region At-
tributeValue[18]. The following axioms capture this notion by ensurihgtteach
Configurationcomprises at least one multi-attribute object (Axiom (ABXiom
(A2) ensures that eachttributeValuebelongs to exactly onBOLCE:Endurantor
OoP:Activity.

ConfigurationcEDnS:Situationr1 3DnS:definegDOLCE:Endurant

OoP:Activity) 1 ADnS:defines.AttributeValue (A1)
AttributeValueCDnS:Parameteri =; locatedIn .(OoP:ActivityL
DOLCE:Enduran} (A2)

Coming back to our example, a configurable Web service candmelad by a
combination ofDOLCE:Endurantsand OoP:Activities[48]. Hereby, specializa-
tions of OoP:ActivitiescaptureServiceActivitiesike RoutePlanningActivitySpe-
cializations of DOLCE:Endurantsrepresent the objects involved in suctSar-
viceActivity (e.g. inputs and outputs). RoutePlanningActivitynight have sev-
eral DOLCE:Qualitiesthat are located in specializations AftributeValuesuch
as WeatherConsiderationValuéndicatedAttractionValueResponseTimeValuz
AvailabilityValue In addition, theRoutePlanningActivitynvolves aServiceOutput
which specialize® OLCE:Enduran{or more specifically OlO:InformationObject)).
ServiceOutpuis associated to RouteTypeValuthat defines whether the output is
the cheapest or the fastest route.

4.2.2 Policy Description

In a second step, we define views on the ground entities deifin8dction 4.2.1.
This is realized by specializing the descriptive entifasS:RolesDnS:Courses
DnS:ParametersandDnS:SituationDescriptiong\s depicted in Figure 5, policies
are modeled as specialization DhS:SituationDescriptioncalled PolicyDescrip-
tions which have tdnS:definePolicyObjector PolicyTaskepresenting the entity
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on which the policy is defined, e.g. this could be a certaie tyjpgood or a service.
SincePolicyObjectsand Policy Tasksare modeled as specialization DhS:Roles
andOoP:Taskspolicies can be defined on an abstract level without refgro a
concreteDOLCE:Endurantor Activity. For instance, policies can be defined for a
certain service category (specialization@bP:Task such as route planning ser-
vices in general. Then alDoP:Activitiesthat fulfill the task of route planning in
a certainSituationare evaluated according to the policy. Axiom (A3) formall+d
fines aPolicyDescription |t ensures that at least one entity is constrained by means
of the DnS:Parameter AttributeMoreover, eactttributethat is introduced has to
constrain exactly onBolicyObjector PolicyTaskwhich can be realized by means
of theDnS:requisiteForelation (Axiom A4).

PolicyDescriptioncDnS:SitutationDescriptiom dDnS:definegPolicyObject

L PolicyTashk m ADnS:defines.Attribute (A3)
Attribute CDnS:Parameter1 =; DnS:requisiteFor(PolicyObject
LI PolicyTask (A4)

Up to now aPolicyDescriptioncan be used to define constraints on certain prop-
erties of an entity. This is exactly what we consider as Gadicges. A similar
approach is used in [49] for expressing policies such assacaghts. However,
as discussed in Section 3.1, utility function policies gafiee this approach by
addressing the fact that configurations are preferred tgingrdegrees depend-
ing on the concrete attribute values. Therefore,Dm&:Role Preferencis intro-
duced.Preferencexan be assigned to attribute (via theisAssignedTaelation)
to enable modeling additive preference functions. Thusfgpence structures on
attributes are imposed Wdyunctions As discussed in Section 4.Eunctionsare
OIlO:InformationObjectsThey play the role oPreferencesn a PolicyDescription
and define howpolicyValuesare mapped tgaluations That means, a policy defines
which Functionshould be used in which context (i.e. for which attributegsiles
definingFunctions Preferenceslso define the relative importance of the given
tributevia theDnS:Parameter Weigland the DnS:RegioWeightValu€omitted in
Figure 5). ConsequentlPreferencesre formally defined as follows:

PreferencecDnS:Rolen =1 DnS:playedBy.Functiom
=, DnS:requisites.Weight (A5)

As an example, consider the policy that specifies the scduimgtion for the prop-
erty response time of a Web service. To express this we itsta®oP:Taskby

a WebServiceTashkn addition, anAttribute ResponseTimig introduced that rep-
resents a constrainDOS:requisiteFoy that has to be fulfilled byVebServiceTask
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In order to define preferences over all possible attributeegaResponseTimis
DnS:valuedBya AttributeValue ResponseTimeValoemprising the entire value
space (e.g. represented by a subclasB©Of.CE:Temporal-Regign Moreover, a
concepPreference isAssignedTo ResponseTimaeidentifies &atternBasedFunc-
tion or PiecewiseLinearFunctiarnr heseFunctionsmapAttributeValuego Utility-
Valuesas discussed in Section 4.1.2 and 4.1.3.

After presenting howConfigurationsas well asPolicyDescriptionsare modeled,
we introduce the rules for evaluating concr@enfigurationswith respect to given
PolicyDescriptions We show how pricing policies are applied to determine the
price of a configuration or scoring policies to determinewliéngness to pay.

4.2.3 Policy Evaluation

With our approach, policies that defiireferencesio longer lead only to a pure
boolean statement about the conformity dfanfiguration but rather to a degree
of conformity of theConfiguration Therefore, the originaDnS:satisfieselation
between &DnS:Situatiorand DnS:SituationDescriptiors not suficient any more
since additional information about the degree of confoyrhias to be captured.
However, since checking for satisfaction can be interpratethe evaluation of the
Goal policy aspect in thBolicyDescription meeting this requirement can be seen
as a necessary prequisite. That meansGbafigurationdoes not satisfy &olicy
we can assign dltilityValue of —co. This is captured by the following rule which
refines theDnS:satsfieselation. The reader familiar with DOLCE will notice that
Rule (R7) largely corresponds to thempletely-satisfia®lation described in [17].
Since our formalism is not expressive enough to capturerétégion directly, we
provide a workaround that explicitly enumerates the atteb 1...,n and checks
for classification of an appropriate ground entity, thuslenpenting qualified sat-
isfaction (cf. [17]). Note that we assume an oitributeValuefor each attribute.

satisfiesPolicfc, p) « Configuratior{c), PolicyDescriptiorid),
DnS:satisfie&, p), A (Attribute (a),

i€l..,n
DnS:definefp, &), DnS:valuedBga;, av),
DnS:settingFofc, cv;), matchav;, cv)) (R7)

Ontologically, modeling utility function policies regeis putting in relation the
PolicyDescription a concreteConfigurationand anoverallDegreethat represents
the valuation to which the latter satisfies the former. Ferghake of simplicity and
compact representation we use predicates of higher aribeifollowing. How this
could be avoided by introducing @IO:InformationObject Satisfiabilitthat links
ConfigurationandPolicyDescriptionis outlined in [34]. IfsatisfiesPolicygloes not
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hold no further evaluation will be necessary and a valuecofis assigned by Rule
(R8).

overallDegreéc, p, v) « —satisfiesPolic{c, p), assigrv,* — «”) (R8)

In line with the additive utility model defined in Equation)(lve first calculate
the valuation for each independent set of attributes iddiaily and then aggregate
the individual valuations to get the overall degree of a gamfition. The local
utility values can be calculated by Rules (R1), (R4) and (B&)ending on the
type of function used. The valuation derived from thesesgkn be interpreted as
the valuation a single attribute contributes to the overalliation. Note that the
non-additive case is a simplification of this approach, whbe local utility value
corresponds to the overall value.

overallDegreéc, p,d) « /\ (DnS:define&, a;), DnS:definefp, pf),

isAssignedT@f;, ), DnS:valuedBy(gaaVv,),
DnS:settingFofc, cv;), matciav;, cv), DnS:playedBgp f;, f;),
degre€f;, cvi, vi)), sun(v, vy, ..., i) (R9)

Rule (R9) is simplified in a sense that predicates for werghtif attributes accord-
ing to their relative importancg are omitted. However, adding this is straightfor-
ward as shown in [34].

To illustrate this approach, we assume a customer with thrergrpoliciesp based

on the exampl&unctionsdefined in Section 4.1.1 - 4.1.3. We can query the knowl-
edge base to compare tbgerallDegreefor Configuration cwith respect to the
PolicyDescription p As an example, we assumeCanfigurationof a route plan-
ning service, which returns the cheapest route that inslugfermation about his-
torical sites while considering weather information. lRert a response time of 20
sec. is guaranteed. Evaluating the (lockyreepredicates for eacAttributeleads

to a score of 1 for thdttribute WeatherConsideratiof.4 for RouteTypg0.8 for
IndicatedAttractiorand 047 for Response Timeespectively. Provided that ait-
tributesare equally important thi€onfigurationresults in aoverallDegreeof 0.67.

4.3 Policy Aggregation

Up to now we focused on scenarios where only one policy wad bgea sin-
gle buyer or seller. However, since policy-based appraaeiie usually applied
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in large-scale applications, typically more than one potiay be specified in or-
der to regulate a certain decision. For example, a Web sesélection process of

a company might be regulated by several scoring policiesrogifinom different
departments of the company. The information systems depatt for instance,
might prefer a highly secure service, while the managemagttrprioritize cheap
services. Of course, fierent scoring policies lead toftérent valuations as well as
rankings and thus to fierent selections of services. In the remainder of this sec-
tion, we present a method to derive a coherent decision frarh diverse policies.
Therefore, policies are first evaluated and the resultsigftlaluation step are then
aggregated.

In traditional policy languages there are two major opegatbat can be used to
combine policies [35,66]: we can use either a logaad-operator in order to de-
fine a conjunction of policies (i.e. the aggregated policadsnissible if all con-
tained policies are admissible) or a logicatoperator to derive a disjunction of
policies (i.e. the aggregated policy is admissible if astemne contained policy is
admissible).

However, since our policy language results in degrees ddfiddility, this tradi-
tional interpretation of the logical operators cannot bedusn order to define the
semantics of the logical operators for such multi-valueglds, we borrow ideas
from fuzzy logic where the semantics of conjunction anduttisfion is defined via
T-normsandT-conormsIn the following, we use the T-norffrconorm defined by
Zadeh [68] as follows:

T(a,b) = min(a, b) for and-operators (2)
1(a,b) = maxa, b) for or-operators 3)

We use the definitions above to make sure that if one of theipslis evaluated
to —c0, the overall valuation of the conjunction of policies isalsc. In case
of disjunctions only one policy has to be fulfilled and thus take the maximal
valuation.

We next introduce the modeling primitives required for esggmting conjunctions
and disjunctions of policies, as shown in Figure 6. To be ablevaluate a cer-
tain Configurationwith respect to a set of policies, we adapt Rule R9 that it can
be used not only for a singleolicyDescription but also for aPolicyCollection

A PolicyCollectionis defined as ®nS:SituationDescriptiothat has exactly two
memberPolicyrelations pointing taPolicyDescriptions This is formalized using
the following DL axioms:
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DnS:SituationDescription

% \’/—memberPolicy

PolicyCollection Policy Description
——memberPolicy—

ZF

DisjunctivePolicyCollection ConjunctivePolicyCollection

Fig. 6. Policy Collection

PolicyCollectionCDnS:SituationDescriptiom
=1 memberPolicyXPolicyDescriptionL
PolicyCollectionm
=1 memberPolicyZPolicyDescriptionL

PolicyCollection (A6)
memberPolicylEDnS:expands (A7)
memberPolicy2CDnS:expands (A8)

The reason why we restricRolicyCollectiorto exactly twvamemberPolicyrelations

is the fact that SWRL does not support universal quaniidcain the rule body.
Hence, we cannot iterate about an arbitrary numbePadicyDescriptionscon-
tained in the collection (e.g. the first order logic ter#y.memberPolic{x, y)’ is

not expressible in SWRL). However, restrictindgPalicyCollectionto exactly two
memberPolicyrelations is in fact no limitation, since an arbitrary nusnlof Poli-
cyCollectionswith two memberPolicyrelations can be nested which has the same
effect as multiplenemberPolicyrelations within ondolicyCollection

In order to define a relation between the members BblecyCollectionwe intro-
duce the two subclasseskblicyCollection ConjunctivePolicyCollectioandDis-
junctivePolicyCollectionThen, for each of these subclasses a rule is introduced that
calculates th@verallDegreeof the collection based on treverallDegreesf the
elements contained. The following rule does the calcutdiio a ConjunctivePoli-
cyCollectionwhere the individual elements are connected by a logigeirelation
based on the T-norm defined in Equation (2).
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overallDegreéc, p, v) « ConjunctivePolicyCollectiofp),
/\ (memberPolicy(p, pi), overallDegre€c, pi, vi)),
i€{1,2}
min(v, vy, Vo) (R10)

Note that Rule (R10) recursively calculates twerallDegreeof the elements con-
tained in the collection. Rule (R10) will only be used i€anjunctivePolicyCollec-
tion is passed to theverallDegreepredicate. If it refers to a singRolicyDescrip-
tion, Rule (R9) will be applied as before.

Analogously, we can define the Rule (R11) RisjunctivePolicyCollectiong/here
the T-conorm (Equation (3)) is used to calculatedkerallDegree

overallDegreéc, p, v) <« DisjunctivePolicyCollectiofp),
/\ (memberPolicy(p, p;), overallDegreéc, pi, vi)),
i€(1,2)
maxV, Vi, Vo) (R11)

DisjunctivePolicyCollectionandConjunctivePolicyCollectionsan be nested within
each other provided that the leafs of the emerging treetsiieiare always primitive
PolicyDescriptions

5 Core Ontology of Bids

After having introduced a policy ontology for specifyinglyation functions over
multi-attribute objects or activities, we show how suchigek are used for at-
taching price information to goods or services in the foilogv As introduced in
Section 1, a statement that captures such information lisdcabid in economic
literature. For modeling bids we apply the pattern Desmip& Situation again. In
line with the structure of the previous section, we first defiow to specifyrades
in Section 5.1. Trades capture one possible transactioneinmarket and define
exactly the objects and services to be exchanged and theirete configuration.
Based on this definition we introduce the specificatioBifs, which can be seen
as views that select the desired subset of trades (SechrFnally in Section 5.3,
a method for evaluating bids is presented.

26



5.1 Specification of Trades

As defined in [14], a (bilateralyadeis a potential transaction between two parties
b andswhere agenb buys an object or service from agegior a certain amount
of moneyr. We model this by introducing a specl@hS:Situatiorcalled TradeSi-
tuation which extends th€PO:Configuration(/Axiom (A11)). In this context, we
restrict trades to two classes of products: the clasSaddsas specialization of
DnS:Endurantind the clasServiceas specialization dDnS:Activity(Axiom (A9)
and (A10)). Since thesBervicesor Goodsare multi-attributive they have to refer
to aCPO:Configuratiorthat defines the values of theflidirent properties of these
products, as discussed in Section 4.2.1. A ceifeadeSituatiorshould refer to ex-
actly oneCPO:Configuratiorand could specify the corresponding price/hich is
modeled via th®©OLCE:Region PriceValueMoreover, at least onenS:Agenhas
to be part of thelradeSituation/Axiom (A11)). Note that this formalization does
not require to specify both participantd>-ands — of a trade, since this is usually
not needed in the bid evaluation process.

ServiceCDnS:Activityr1 ADnS:definedBy.CPO:Configuration  (A9)
GoodCDnS:Endurant
ADnS:definedBy.CPO:Configuration (A10)
TradeSituatiorEDnS:Situatiorm IDnS:settingFor(ServiceL
Goodr =; DOLCE:part.CPO:Configuratiom
ADnS:settingFor.DnS:Agent (All)
PriceValueCDOLCE:Region (A12)

The lower part of Figure 7 illustrates the specification dradeSituation- called
John’sTrade- by means of an exampl@ohnprovides the route planning service
John’sServicdo a price of $2 per invocation. Moreover, John provides daaer
configurationConfl The specification oConflis omitted in Figure 7, since an
example for modelingonfigurationgs already given in Section 4. Since the price
is explicitly modeled as a property of the service, for eadtitonal configura-
tion John wants to provide, a neWadeSituationnstance has to be introduced.
Therefore, enumeration based approaches are only fedsibkery low number
of configurations’ In order to avoid such enumerations the conce®idfis pre-
sented in the following section.

" In addition, this approach is imprecise from an ontologjuaht of view, since a price is
not an inherent quality of a product that can be observed Ightrdepend on the context
and other factors.
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definesPolic!
[ i \!

Request_Annika : AtomicBid [——DnS:defines—> Requester : Issuer RouteServicePolicy : CPO:PolicyDescription

‘ |
DnS:defines DnS:playedBy

DnS:defines
PriceLimit : Price RoutePlanning : TradingTask
Dns: DnS:defines
‘ requisiteFor
DnS:valuedBy
DnS:sequences
$3:PriceValue ? $2:PriceValue [<—locatedin— John'sService : RouteService Annika : DnS:Agent
=
DnS:settingFor DnS: DOLCE: DnS:
settingFor participateln  settingFor
John'sTrade : TradeSituation John : DnS:Agent Conf1 : CPO:Configuration

DnS:settingFor

‘ DOLCE:properPart 4\

Fig. 7. Example for aradingSituationand AtomicBid The parts of the diagram are suc-
cessively introduced in Sections 5.1-5.3.

5.2 Specification of Bids

Not all trades that are possible in a market are favorablafoagent. According
to Engel et al. [14], a bid expresses the willingness to pigdie in trades. We
thus model a bid aBnS:DescriptiorthatDnS:classifiegxactly thosélradeSitua-
tionsin which thelssuerof a bid is willing to participate. In sucBidDescriptions
Goodsand Servicesof a concretelradeSituatiorplay the role ofTradingObjects
andTradingTaskrespectively. In order to implement matching in the make
has to define what entities can BaS:classifiedBy TradingObjector Trading-
Task e.g. that &RoutePlanningTasks DnS:sequenoely RoutePlanningServices
Moreover, the description defines a Parame@ece that constrains theskradin-
gObjectsand TradingTasksThis Price can be defined explicitly for each service
configuration or implicitly by means d€PO:PolicyDescriptionsin our ontology
we capture this by introducing the concéiomicBidas follows:

AtomicBidCDnS:SituationDescriptiom ADnS:definegTradingObjectu
TradingTask =1 DnS:defines.Pricel
YdefinesPolic{CPO:PolicyDescriptiornm

CPO:PolicyCollection (Al13)
definesPolicyeDnS:expandedBy (Al14)
TradingObjectzCPO:PolicyObject
ADnS:playedBy.DOLCE:Endurant (A15)
TradingTask=CPO:PolicyTask
dDnS:sequences.DOLCE:Perdurant (Al16)
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Price CDnS:Parameteri =; DnS:requisiteFor(T radingOb ject!
TradingT askm YDnS:valuedBy.PriceValue (A17)
IssuercDnS:Rolen 3DnS:playedBy.DnS:Agent (A18)

In addition, aPrice might represent a maximal pricBlaxPrice or a minimal price
(minPrice. As formalized in Axiom (A19) and (A20), we denote &tomicBid
with minimal price agffer and anAtomicBidwith maximal price aRkequestThat
meansOffers classify TradeSituationsvhere the propertyriceValueis above a
certain threshold anBequestslassify TradeSituationsvherePriceValueis below
the threshold.

Offer C AtomicBidr ADnS:defines.MinPrice (A19)
Request AtomicBidn ADnS:defines.MaxPrice (A20)

Some market mechanisms support more complex bid speaiisabeyond the
simple case oAtomicBidg44]. Most prominent in this context are combinatorial
bids that enable expressing superadditive as well as suba&datices for a bundle
of products. Superadditive prices occur in case of compheang products that are
usually used together, such as desktop computers and cermpanitors. For such
products the value of a bundle containing both productspsajly valued higher
by a customer than the sum of the value for the single prod&atsilarly subad-
ditivity describes substitutes where products suit theesporpose, e.g. a laptop
and a desktop computer. In line with [55] we model superadtitby introduc-
ing ANDBIdsand subadditivity by means ofORBids Intuitively, ANDBidsare
bids on several products where one would like to have all efrttor nothing. In
case ofXORBidsexactly one product should be allocated. As formalized ifoAx
(A23) and (A24),ANDBidsand XORBidsare specialization oBundleBidwhich
are allBidsthat consist of exactly two oth&ids(Axiom (A21)). A Bid represents
the superconcept gttomicBidsand BundleBids While ANDBidshave to contain
a Price attached to each bundle (either explicitly or using pofii@oPricescan
be attached t&XORBIds since in this context only thBrices of the AtomicBids
are relevant. Note that since eaBhndleBidhas to contain exactly twBids all
BundleBidshave to terminate solely witAtomicBidsin a consistent knowledge
base (possibly after an arbitrary number of ne®addleBid$. The axioms below
formalize combinatorial bids.

BundleBidcDnS:SituationDescriptiom =, consistsOf.Bid (A21)
consistsOEDnS:expandedBy (A22)
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ANDBIdCBundleBidr =; andRelatedXAtomicBid LI ANDBId
=1 andRelatedZAtomicBid LI ANDBIign
ADnS:defines.Prican YdefinesPolicy.(CPO:PolicyDescription

CPO:PolicyCollectinoh (A23)
XORBIdCBundleBidr =1 xorRelated1.Bid1 =1 xorRelated2.Bid (A24)
Bid =AtomicBidL BundleBid (A25)

The relationsandRelatedland andRelated2as well asxorRelatedland xorRe-
lated2are all modeled as subpropertiesohsistsOfAs done in Section 4.3 for the
conceptPolicyCollection we fix the number oBidsin a BundleBidby explicitly
introducing twoconsistsOfrelations. This technique allows us to avoid universal
guantification in rule bodies which is not supported by oue tanguage. Due to
the fact that bundles can be nested, an arbitrary numb&oofiicBidscan be com-
bined.

A simple AtomicBidis exemplified in the upper part of Figure 7. Annika needs a
service for aroute planning task. Therefore, she insteas#domicBidandDnS:defines
a TradingTaskcalled RoutePlanningHer willingness to pay is specified implic-
itly via her policy RouteServicePolicyThat means th®nS:Parameter Pricas
DnS:valuedBya PriceValuethat has to be calculated with respect to a concrete
TradeSituationThis evaluation of a bid is discussed in Section 5.3.

5.3 Bid evaluation

Bids are DnS:Descriptionghat selecflradeSituationshat fulfill the specified re-
guirements. Requirements are expressedOR#®:PolicyDescriptionsTherefore,
evaluation ofBids can be largely reduced to policy evaluation. Rule (R12)rdete
mines thePriceValue pof a AtomicBid bwith respect to a concreferadeSituation
t using the predicateverallDegreenhich has been introduced in Section 4.2.3.

price(b,t, p) « AtomicBidb), CPO:PolicyDescriptiofd),
definesPolicgb, d), TradeSituatioift), DnS:settingFoft, c),
CPO:.Configuratioifc), overallDegreéc, d, p) (R12)

ForBundleBidsve apply Rule (R12) for eachtomicBidcontained in the bundle. In
case oiXORBIdsnly oneBid in the bundle has to be fulfilled. We thus evaluate the
TradeSituatiorwith each containe8id separately and then determine the price of
the AtomicBidthat is most suitable. Rule (R13) captures this in a recensignner.
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price(b,t, p) «— XORBIdb), xorRelated{b, bl), price(bl, t, p1),
xorRelated®b, b2), price(b2, t, p2), swrlb:maxp, pl, p2) (R13)

For calculating the price of aANDBIid only policies attached to thre@NDBiditself
are considered. This is realized simply by replacing the #&tomicBidb) in Rule
(R12) withANDBIdb).

After introducing the calculation of Bid’s PriceValuewe can define theatisfies-
Bid-relation that determines if a certalinadeSituations acceptable according to a
Bid. For the case wher8ervicesare traded, the following rule checks whether the
right service is provided in thEradeSituatiorand whether the price is in an accept-
able range (which is defined by the policy). For comparinghitaelingTask we use
the built-insubsumesvhich has already been used in Rule (R3). Thereby, we make
sure that the provide8ervicefulfills the same purpose as tBervicesequenced by
the TradingTaskAs already discussed in Section 4.1.1, a meta-modelingpapp

is required wheré&ervicesare seen as concepts as well as individuals.

satisfiesBidb, t) < Bid(b), TradeSituatiofit), DnS:defineg, 0),
TradingTasko), DnS:sequencés, €), DnS:settingFoft, d),
DOLCE:Servic&), typd(e, d), DnS:definef, t, pb),

MaxPriceg(ph), DnS:settingFoft, pt),
swrlb:lessThanOrEqual(pt,pb) (R14)

Rule for Offers and for Bids containingTradingObjectsare defined analogously.
To illustrate this approach, we come back to the example gur€i 7. Here we
are interested if th@radeSituation John’sTradis relevant for Annika’s bid Re-
guestAnnikg. In order to determine the maximal price Annika is willing pay
for the Configuration ConfJprovided by John, we use Rule (R12). Assume the re-
sult of this evaluation step isaxPriceof $3. For checking if John provides the
right service, we assume the following definitidkoutePlanningc OoP:Taskn
¥DnS:sequences.RouteServisece John provides exactly this type of service for
$2, thesubsumegpredicate as well as tHessThanOrEquapredicate evaluate to
true and thelradeSituatiorsatisfies thaid. Note that if John defines the service
price also via policies, the evaluation leads to a more cermpptimization prob-
lem which is beyond the scope of this paper. The interestadereis referred to
[33] for a more detailed discussion.
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6 Proof of Concept

After having introduced an ontology framework for a compagresentation of
multi-attribute as well as configurable bids, we presene laar application of the
framework as proof of concept. We introduce the scenarigypachic Web service
selection in Section 6.1 and in Section 6.2 a prototype thatements our frame-
work in this setting. Finally, in Section 6.3 we evaluate et specification as well
as the bid evaluation using this prototype.

6.1 Service Bus

A service busrchitecture enables dynamic Web service selection andskard-
wiring of Web services within a service-oriented implenaion of a business pro-
cess. Dynamic selection of services is required in servi@nted architectures,
because often at development time of the business proces®titrete Web ser-
vice for a certain task is not known (e.g. the choice mightetelon runtime spe-
cific context). In addition, the set of services availabledocomplishing a certain
task may change frequently. In addition, dynamic selegtimvides a high flex-
ibility of the implementation since switching from one see/to another can be
done automatically during run-time without changing cotleis can lead to more
robust systems and to lower costs, since erroneous and gxpeervices can be
automatically replaced.

Figure 8 exemplifies the architecture of service bus arctite. On the left side,
a company’s business process is visualized as a workflonsks that have to be
accomplished by a Web service, e.g. calculation of a route. dompany further
defines general policies how the business process shoulvéehhese policies
have to contain scoring policies specifying the companyesgrences about Web
service properties. Once a Web service is required witlarbtisiness process (step
D), the following steps have to be carried out:
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(1) Together with the first service request, scoring padidiecluding attribute
weighting information are sent to the service bus and storedknowledge
base. Note that this initialization step only has to happ&edor the initial-
ization of the system. Based on this scoring policy, theiserkius is able to
take over the responsibility of selecting between potéptiaviders, such as
A and B. In this sense a service bus can be seen as a simpli¢ takeave-it
market for Web services. Since the decision for a certavic@might depend
on runtime information, dferent scoring policies might have to be specified
for different contexts (current location, time, etc.).

(2) Once a request from an application arrives, the servitefiost queries a
UDDI registry for suitable providers. Here only a very simphatching of
the service functionality is carried out. This means onby dlddresses of ser-
vices are returned that provide the required functionality

(3) In a next step, fiers from the providers are collected in parallel. TheSers
contain a list of provided configurations together with thieipg policies of
the corresponding provider. The pricing policies are atecesl in the knowl-
edge base of the service bus.

(4) Finally, the service bus queries the knowledge baselfseavice dters and
configurations that fulfill the required functionality. Astiof services ranked
according to the dierence between score and price is returned. Based on the
ranking, the best provider is selected and the respectiwgcsenvoked. In
case this invocation fails, the second best service is chddes is repeated
until the required task is accomplished or no acceptablgceremains.

In the next section we present a prototype that (partiathglements this function-
ality based on the ontology framework introduced above.

6.2 Prototype

Our prototypé consists of two components: (i) A server component provales
repository for Web servicefters and thus implements the Service Bus described
in the previous section. The repository is a DL knowledgestihat can be queried
using the KAONZ2 inference engineKAON2 is chosen because it supports the de-
scription logicSH 7Q as well as DL-safe rules and thus the ontology as well as rule
language required for our bid descriptions. KAON2 has bgamuzed for query
answering [41], which is the required functionality for adaluation. In addition,
due to the lack of a publicly available UDDI repository we adccomponents to
the server that crawl the Web, collect WSDL files and HTML feramd transform
them to dfer descriptions. (ii) The second component is a client theilifates

8 More information about the prototype is available<attp://kasws.sourceforge.
net/> (accessed 17.03.2008).
9 Available at<http://kaon2.semanticweb.org/> (accessed 17.03.2008).
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the specification of Web servicdfers and requests. Since the terminology used
by participants might be fferent, mapping between ontologies can be specified
using the formalism presented in [22]. Generally, the fraoml supports more ex-
pressive service descriptions than discussed in this papeexample, the service
description could include behavioral aspects as presdtekyarwal and Studer

[1].

Coming back to our initial scenario, the prototype allowsr@any A in Figure 8
to specify aRequestind the query for a concrete service. To query the KAON2
repository the query is formalized using SPARQL [67]. It dsnused to derive all
suitableServicesrom the knowledge base ranked according to the scoringipsli
specified by the company. To illustrate this approach, theviing query is used to
find all Serviceghat satisfy a certaiBid b and to rank thes8ervicesaccording to
difference between willingness to pay specified in the requelksthenactual price.

BASE < http;/emo.ontoware.of9.V >

SELECT ?service ?utility

WHERE { b satisfiesBid ?trade .
EVALUATE ?bidPrice= price(b,?trade) .
?trade DnS:settingFor ?price ; ?service .
?service rdfitype Service .
?price rdfitype PriceValue .
EVALUATE ?utility = sub(?bidPrice,?price) }

ORDER BY DESQutility)

Instead of taking care of the business process executielf, itise client tool can
be augmented with a WS-BPEL engine [47]. To enable dynanmdcgeselection
at runtime, Web service queries generated with the clieitdan serve as abstract
goaltask descriptions in a BPEL4WS process. At execution tinesehdescrip-
tions are used to query the repository and the address ofetbeted service is
dynamically assigned to corresponding invoke-statentéatvever, dynamic re-
assignment of ports in BPEL4WS is only feasible if altevegervices have iden-
tical interfaces, i.e. WSDL port types [52]. Scenarios belthis simple case are
currently not covered by our prototype.

6.3 Evaluation

Our work presents a novel approach to express preferenceartiet participants
that relies on the concept of utility function policies. Img section, we discuss
the consequences of such a modeling approach on commuoniediciency and
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bid evaluation complexity. Thus, this section addresseslgnbwvo aspects: First,
in terms of bid specification we are interested whether oactional modeling
approach reduces the storage capacity and therefore iegpommmunication ef-
ficiency in the market. Second, we are interested in the pedoce of the bid
evaluation process. For both aspects we compare the pgumdieged bid specification
with a baseline approach that enumerates all provided oestgd configurations.

To investigate these questions, we have randomly geneVseddservice fers
with a varying number of configurations using a uniform dsttion and stored
them in the repository. For one set dfers prices are defined implicitly via poli-
cies, whereas for the other set price information is exhfiattached to each con-
figuration. Figure 9 shows the number of axioms that are reduio represent
multi-attribute dfers in the market. The number of possible configurations per o
fer is increased from 1 to 400 and the number B¢ published in the repository
from 1 to 500. Already with two configurations the policy-bdsapproach requires
less axioms than the enumeration-based approach for expgethe same infor-
mation. If we further increase the number of configuratioesgfter, the number
of axioms required for the enumeration-based approackeases linearly, which
leads to an overall space complexity@fO||C|) . Because the sé&t of configura-
tions is defined a€ = []; A; (compare Section 3.1), the number of configurations
grows exponentially with the number of attributes. We thesayspace complexity
of O(|O|nA), wheren represents the maximal number of attribute values of an at-
tribute (» = max A;). For the policy-based approach, in contrast, axioms asge
linearly with the number of attributes; |A;| and thus this approach exhibits a loga-
rithmic space complexity with respect to the number of camigions. In addition,
no PriceValueinstance for eacldffesand Configurationinstance has to be intro-
duced. The policy-based approach leads therefore to amlbgpace complexity
of O(|O] + log(|C|)) andO(|O| + n|A]), respectively. Note that this holds only for dis-
crete attributes. Continuous attributes can be specified evore éiciently with
the policy-based approach. A representation using endioeria not possible at
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all. In fact, only a constant number of axioms might be reeplifor continuous
attributes and a space complexity ©f|O|)) can be reached. Therefore, we can
conclude that policy-based bid specification considerahblyroves scalability in
the presence of highly configurable products.

In the second step, we investigate the performance of bid&wan. Therefore, we
send queries to the repository and measure the time thaesdatil we receive the
ranked list of configurations andters. To avoid network delays this simulation is
performed on a single computer. Figure 10 shows the aversgg gnswering time
depending on the number of configurations aftérs. Since the time complexity
of query answering is completely predefined by the ontol@gpguage as well as
the corresponding reasoning algorithms, theoreticallydiierence between the
complexity of the two approaches exists. However, in pcaciome diferences
can be observed.

As depicted in Figure 10, while query answering in case ofneration is ex-
tremely fast for small scenarios (i.e. less than 60 configura), the lookup time
of the PriceValueinstances in the knowledge base increases consideraliiyawit
increasing size of the A-box (indicated by the solid linegigure 10). For exam-
ple, the service selection with 20@ers each referring to 20 configurations can be
done within 194ms, whereas query answering with 208re and 225 configura-
tions requires already 10 sec. If we further increase thepbexity to 800 dfers and
600 configurations the enumeration-based approach takesuies for selecting
the best service. This is clearly too long for service etattt runtime.

In case of policy-based descriptions similar performantaracteristics can be
identified, however, on a lower level (indicated by the daslees in Figure 10).
In small scenarios the policy-based approach is outpeddry the enumeration-
based approach, while for medium and large scenarios theygmdsed approach
performs considerably better. Assuming 2@f&cs each with 20 configurations the
selection can be done in 301ms, whereas in the case off868 and 600 configu-
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rations the selection requires 2 minutes. This is an impraré of over 60% com-
pared to the enumeration-based approach. As a reason fpotescalability of
the enumeration-based approach the exponential incréd3gceValueinstances
can be identified. This exponential explosion can be avoidaty the policy-based
approach. However, in small scenarios the evaluation of®R(R12) and (R13) is
more expensive than looking up the right price in the knogéeblase. As discussed
in [32], this issue can be addressed with intelligent caghigorithms that, e.g., ex-
plicitly store price information of frequently queried daurations. Using such a
strategy, the costly policy evaluations have to be done onbge for the first query.

Although the policy-based approach does provide a coradtiermproved scala-
bility compared to the enumeration-based approach, it tratilhnot be suficient

for dynamic service selection at runtime. Therefore, inl [8® alternative match-
ing variants have been introduced. However, they are orplicgble in scenarios
where the no full ranking of all configurations is requirediavhere preferences
have an additive structure. They utilize a linear prograngiormulation and stan-
dard linear programming solvers. Using such techniquesnaiderably speedup
of the policy-based approach can be realized. For exampie¢hé setting of 800
offers and 600 configurations an improvement of more than 90%eatserved.

7 Conclusion

In this paper, we have provided an ontology framework thptuwr@s multi-attribute
combinatorial requests andfers. In this context, we have presented @ue Pol-
icy Ontologythat realizes the advantages of utility function policesch as pref-
erence modeling and inherent conflict resolution, with aefyudeclarative, Web
compliant and standard-based approach. In addition, wedated theCore On-
tology of Bidsthat uses utility function policies for compact represéaotaof bids
for configurable goods and services. The specification aathiatron mechanism
we have presented is particularly tailored for Web-basedketa by providing flex-
ibility and interoperability in heterogenous environneerih order to exemplify our
approach we have developed a prototype which enables dgrsateiction of Web
services. Since Web technologies facilitate custominatiod personalization of
products, we believe that expressinfess and requests for configurable products
in a compact and interoperable way will be crucial for futomarkets on the Web.

In future, we plan to extend our approach in several direstiéirst, we are going

to investigate how matching offiers and requests can be realized purely based
on policies without explicitly considering each possibkde. Second, we plan to
extend the Core Policy Ontology in a way that pricing and isgppolicies can

be defined on behavioral aspects of services (cf. [1,10]ydTim terms of im-
plementation we plan to enable dynamic service selectigormesimple port re-
assignments.
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