
A Tool for DILIGENT Argumentation:
Experiences, Requirements and Design

Michael Engler
BT Research and Venturing

Ipswich, UK
michael.engler@bt.com

Denny Vrandečić
AIFB, University of Karlsruhe

Karlsruhe, Germany
vrandecic@aifb.uka.de

York Sure
AIFB, University of Karlsruhe

Karlsruhe, Germany
sure@aifb.uka.de

Abstract

Ontologies are defined as “the formal specification of
a shared conceptualization of a domain of interest” [7].
Unlike most other ontology engineering methodologies, the
DILIGENT methodology aims specifically at the collabora-
tive and distributed building of ontologies, providing a rich
argumentation framework in order to quickly proceed with
building the ontology and tracking all relevant discussions
about the conceptualization.

Based upon first experience with DILIGENT, we de-
signed a tool to support engineers and domain experts to
follow the DILIGENT processes. In this paper we present
the experiences and requirements our work is based on, and
present the resulting design and state of the ongoing imple-
mentation.

1 Introduction

The main value of an ontology comes from its “shared-
ness”: the bigger the group of people that commit to the
shared conceptualization formalized in an ontology, the
more useful the ontology will render itself. Furthermore,
ontologies should be ideally developed by domain experts
with profound knowledge in ontology engineering - alas,
such people are rare or sometimes even non-existent.

Ontology engineering methodologies need to cover the
collaboration between domain experts and ontology engi-
neers. As both are highly sophisticated experts in their own
fields, the communication between them often can become
harder than expected. It is crucial for the success of the
ontology engineering project to follow a methodology that
allows for the easy collaboration among heterogeneous and
geographically distributed groups.

The DILIGENT methodology [16] for the DIstributed,
Loosely-controlled and evolvInG ENineering of oNTologies
fulfills the described requirements. Especially it provides

an argumentation framework [12] that allows to capture and
track the ongoing discussion related to engineering an on-
tology, which has proofed very useful within the case stud-
ies where DILIGENT was applied [9, 2, 3].

In order to follow DILIGENT more easily, we designed
a tool to facilitate the application of the methodology. We
followed [4] for the interaction design. The tool must be
usable by domain experts, who may not have deep back-
ground on ontological issues, and still allow communication
with ontology engineering experts. The tool covers both the
DILIGENT process for evolving ontologies and the DILI-
GENT argumentation framework for discussing changes in
an ontology.

We first take a look at related work in distributed ontol-
ogy engineering (Sect. 2) and offer a short description of
DILIGENT (Sect. 3). Then we write about the previous ex-
periences with tools for DILIGENT, and the personas and
scenarios we created (Sect. 4) and used in order to derive
the tool’s requirements (Sect. 5). Based on this we design
a work model and the DILIGENT tool (Sect. 6), which is
now being implemented (Sect. 7). We end with an outlook
to future work and open research issues (Sect. 8).

2 Related work

In this work we aim at amending existing ontology
editors with the facility to discuss changes in an ontol-
ogy according to [9]; it is not our goal to provide a full-
fledged ontology editor or even ontology engineering en-
vironment [10]. Whereas most ontology editors include
some support for collaborative editing [11], almost none
of them offer to track the changes and discuss them, with
the notable exception of SWOOP1. SWOOP allows to send
changes to other users and to annotate those changes. Our
implementation, which is based on OntoStudio2 progresses

1http://www.mindswap.org/2004/SWOOP/
2http://www.ontoprise.de/content/e3/e43/

index eng.html



from the approach implemented in SWOOP, taking into ac-
count methodological results from the research and evalua-
tion done on DILIGENT.

3 Preliminaries

As the tool design described in this work aims at support-
ing the DILIGENT methodology, in this section we briefly
introduce the parts relevant for our work. As shown in Fig-
ure 1 it comprises five main activities: (1) build, (2) local
adaptation, (3) analysis, (4) revision, and (5) local up-
date. In contrast to known ontology engineering method-
ologies [5, 6, 8, 14] our focus is on distributed ontology
engineering. The process starts with domain experts, users,
knowledge engineers, and ontology engineers who build an
initial ontology.

The build phase aims at creating an initial version of the
ontology quickly, so that the stakeholder can start using the
ontology soon. During the next phase users locally adapt
the ontology according to their own needs, while the on-
tology is in use e.g. to organise knowledge. The analysis
phase requires the ontology control board to evaluate the
changes suggested by the stakeholders. Then the board re-
vises the ontology by deciding, which changes are applied
to the ontology. In the last step the stakeholders update their
local ontologies based upon the revised version of the ontol-
ogy. For a detailed description of DILIGENT, please refer
to [16].

We believe our tool will be most helpful in the build,
analysis, and revision phase. In the build phase it will help
to capture the intention, why a conceptualisation has been
chosen. During analysis phase the tool helps the board
members to understand the different conceptualisations and
argumentations users have brought forward. When the
board actually decides in the revision phase which changes
will be applied to the next version of the ontology our
tool helps to capture the pro and contra arguments regard-
ing certain conceptualisations and helps to reach a decision

Figure 1. DILIGENT overview

through a voting functionality.
The other part of the DILIGENT methodology that our

work is based on is the DILIGENT argumentation frame-
work. Derived from previous work and experiments, the
most effective argument types for ontology engineering de-
cisions where identified, and formalized in an ontology.
Here we give an overview of the relevant terms, as we define
it for our work. Issues are high-level problems that need to
be solved in order to create a useful ontology. An idea is
a possible ontology change operations that resolves an is-
sue. It is not the actual ontology change operation itself –
this will only be implemented when an idea is agreed on,
i.e. in the revision step. Idea sets capture different concep-
tualizations: they occur in the application if the discussion
comes to a point where it is necessary to introduce conflict-
ing ways of modelling parts of the ontology, i.e. the solution
to an issue, and they collect a number of ideas. An argu-
ment supports or disagrees with an idea or idea set, or even
an issue as a whole. With arguments users express opin-
ions about the modelling of the ontology. The following
argument types are introduced by the argumentation frame-
work: Alternative, Counterexample, Example, and Evalua-
tion (i.e. a Justification). For details of the argumentation
framework, please refer to [12].

4 Experiences

We applied distributed ontology engineering and evolu-
tion within several case studies in the SEKT project. The
PROTON ontology3 [13], an upper level ontology, and sev-
eral domain ontologies evolved during the course of the
project. The evolution of all these ontologies involved ge-
ographically distributed partners, scattered around Europe,
which strongly suggested the use of DILIGENT as ontology
engineering process.

While designing these ontologies we found several dif-
ficulties, which heavily influenced the design of the DILI-
GENT tool. In a first attempt to support the ontology engi-
neering a wiki was used to create a space for discussing the
design of the ontology. The use of a wiki allowed easy task
tracking and to trace the discussions of users about ontolog-
ical entities, which proofed extremely valuable.

A problem with the wiki was the lack of ontology visu-
alisation facilities. Users undertook great efforts to circum-
vent this: they created a visualisation in an ontology editor,
took screen shots and posted these pictures in the wiki.

Also the lack of a notification mechanism in the used
wiki software led to the continued use of an existing mail-
ing list for discussing the ontology, rather than the wiki,
because it seemed easier and more efficient to the users.

Based on this experience, we decided to develop a tool

3http://proton.semanticweb.org

2



to support the DILIGENT methodology. To ensure a high-
quality tool design, which captures all important require-
ments from the users point of view we used several meth-
ods for interaction design as suggested in [4]. More specif-
ically we created personas, wrote scenarios, and designed
low-fidelity screen mock-ups (see Figure 2) to test the co-
herence of our interaction design. Afterwards the results
were summarised in a Style Guide [17] describing the ap-
plication design. The main persona used for the application
design describes a domain expert, who is neither skilled in
ontology design nor in computer science. The main sce-
nario we explored concerned Arguing over an ontology in
an online-setting, which focuses on how geographically dis-
tributed users can collaboratively create an ontology. We
also explored more briefly the scenario Arguing over an on-
tology in a meeting, where users started out with a kick-off
meeting, but as time runs out move the discussion into an
online-setting. For more details and further scenarios refer
to [17].

The main design requirements from these scenarios were
the necessity to track tasks, notify users about new tasks,
and handle the sources from which the ontology is derived.
Most important though is a functionality to organise dif-
ferent possible conceptualisations, which can then be dis-
cussed by users with the help of an elaborate discussion
mechanism. A user needs also to be able to express her
opinion very quickly by voting on conceptualisations and
thus, upon reaching consensus, change the ontology.

We have previously experimented with wikis for the on-
tology engineering task, but consider the text interface of a
wiki not to be adequate for the development of an expres-
sive ontology by a novice user. Semantic wikis [15] aim at
the easy population of knowledge bases, but only consider
a very small fragment of current web ontology languages.

5 Requirements

From our above described experiences and the carefully
crafted scenarios, we came up with the following require-
ments for our application.

1. The application needs to support ontology design for
geographically distributed participants.

2. To avoid conflicting changes to the discussion and the
ontology, both need to be propagated to users in near
real-time.

3. The requirements for the ontology need to be traceable
throughout the application.

4. The discussion about the ontology design decisions
needs to be traceable throughout the whole life cycle
of an ontology.

5. In line with the DILIGENT Argumentation model is-
sues, ideas, and elaborations need to be supported as
means for guiding and tracing the discussion.

6. Arguments need to be classifiable according to the
DILIGENT argumentation framework as “Evalua-
tion”, “Alternative”, “Example”, or “Counterexample”
to focus the discussion on relevant arguments.

7. The DILIGENT Argumentation Ontology [12] needs
to be employed to annotate the discussion about the
ontology.

8. For expressing which ontology change operations are
acceptable to team members, a voting mechanism is
required.

9. Users need to be able to track which sources, issues,
ideas, and discussions they have and have not dealt
with.

10. Users need to be notified in an unobtrusive way of new
developments in the discussion and the ontology.

11. The discussed ontology needs to be visualised to allow
users an easier understanding of the ontological enti-
ties they are discussing.

12. Sources, issues, and ideas need to be sortable in a co-
herent way.

13. The application needs to be easy to learn rather than
easy to use to allow none-technical domain experts to
take part in the ontology engineering.

The bottom line is that the application needs to be easier
to use than the alternatively used tools such as a wiki, a
mailing list, or a forum.

6 Work Model and Application Design

This section focuses on the work model and the applica-
tion design. The work model describes in an abstract way
how a user interacts with the software. Afterwards other
important aspects of the application design are discussed.
Generally our thoughts on the design were guided by the re-
quirement for ease of learning (see requirement 13). When-
ever we had to decide between ease of use and ease of
learning, we decided for ease of learning. Furthermore we
looked at how users could learn how to use the application
in the scenario Learning the application (see [17]).

The applications work model roughly consists of the
steps importing sources, raising issues and creating ideas,
review and discussion, and voting. The order of listing the
steps corresponds to the actual order in the workflow, even
though the order is not inherently fixed. All of the described

3



steps are managed by tasks being assigned to participants of
the ontology engineering process.

Before working with the application, the requirements
and relevant sources for the ontology need to be identified.
Sources can be, e.g. competency questions, which define
what kind of questions the knowledge in the ontology is able
to answer. Competency questions and other documents are
referenced in the application by an URI allowing to man-
age them from within the application, and enabling to track
ontological requirements in later stages of the ontology en-
gineering process (see requirement 3).

After the import of the sources, tasks are created and
assigned to the participants. This helps to ensure that all
sources are utilized for the ontology design. From the
sources the users create issues. Issues describe a problem
or piece of knowledge which needs to be taken into account
during the design of the ontology. When a fair set of is-
sues has been created, the users start developing ideas on
how to conceptualise the domain based on the created is-
sues. Every idea is a possible ontology change operation or,
in other words, an ontological modelling primitive, which
is possibly added or changed in the ontology. This means,
users express their ideas by provisionally adding modelling
primitives to the ontology. If ideas are contradicting, the
user needs to create a new idea set. In an idea set a user is
able to remove some modelling primitives and replace them
by other modelling primitives (see requirement 5). These
idea sets allow to visualise different conceptualisations of
the ontology, of which one will be selected to be the agreed
conceptualisation of the domain.

The participants of the ontology engineering process are
then able to exchange arguments about the ideas on how
to design the ontology. The application captures these ar-
guments, which allows to trace the discussion about de-
sign decisions (see requirement 4). In order to ensure an
efficient discussion about how to design the ontology, the
types of the arguments users are allowed to bring forward
are restricted. We only allow the argument types “Evalu-
ation”, “Contrast”, “Example”, and “Counterexample”, as
these were evaluated to be the most effective ones [12].
Every argument is classified by the user (see requirement 6).
The actual decision if modelling primitives are included into
the ontology is determined either by “democratic” voting of
the participants or by the ontology owner, who approves of
an idea or idea set (see requirement 8). The classification
of the users’ arguments is stored by the application in an
Argumentation Ontology as described in [12]. This allows
to integrate the system with automatic ontology learning or
ontology evaluation systems, as they can easily use the for-
malized argumentation framework. It also allows us to pre-
serve the existing discussion and use it as an input for future
revisions of the ontology (see requirement 7).

Ontology development can proceed in parallel with sev-

eral users. This means, users are able to create sources,
tasks, issues, ideas, and arguments simultaneously. This
can lead to conflicts e.g. when two team members reply to
an argument more or less simultaneously not being able to
see the argument of the other team member. This might
create contradicting overlapping arguments. In the applica-
tion we refrain from locking argumentations on issues and
ideas while they are edited by another person because we
expect the argumentation to regulate itself in this respect. It
might turn out though that a locking mechanism is required
to avoid conflicts (see requirement 2).

The order of the events e.g. when sources, tasks, issues,
ideas, and arguments are created, is not strictly set. An issue
may arise rather late in the design process. This implies
that ideas, which are already approved, can be revised if
necessary. If a new issue, idea, or argument is created, all
other team members except for the creator are assigned a
new task to review the new idea or argument on the already
agreed part of the ontology.

After having described above the work model of the ap-
plication, we will continue with describing some other im-
portant parts of the application design. An obvious design
choice is the usage of a server which stores and controls the
ontology and which can be accessed from an internet or in-
tranet connection. The server stores the ontology and prop-
agates changes in the ontology in near real-time to other
users so that the likelihood of the above described conflict-
ing edits is low. Therefore users are required to always have
a network connection to the server to receive updates on the
ontology and the discussion. With the chosen design the
application supports the requirements 1 and 2 regarding ge-
ographical distribution of the application users’ as well as
the avoidance of conflicting changes to the argumentation.

The application design shows a sophisticated notification
mechanism allowing users to follow the discussions while
not logged on to the server. The user has the choice to get
notified by mail (either for each individual task she is as-
signed to or by a daily digest). Another possibility is to be
notified by instant messaging. All notifications are stored
as tasks within the application, so they cannot be lost due
to a communication failure. Whenever appropriate the ap-
plication creates these tasks automatically (e.g. when a new
argument is used). A user can also create new tasks and as-
sign them to himself and other users. Tasks are generally a
way of bringing something to the attention of other users.
The task construct and the way tasks bring changes to the
attention of other participants fulfill the requirements 10
and 9. As we regard the ontology TBox in the application
we expect that the amount of tasks will be rather small, as
TBoxes are generally more stable and smaller than ABox
ontologies, i.e. knowledge bases.

As of now we are not sure how effective voting will be
for gathering consensus. Therefore we are carefully encap-

4



Figure 2. Low-fidelity screen design.

sulating the voting mechanism so that it can be changed eas-
ily in later versions of the tool. At the moment we envision
functionality which allows to set a threshold on how many
of the participants of the ontology engineering process have
to agree to an ontology change operation. In some cases it
might also be desirable to give only the owner of the on-
tology the power to approve or discard ideas. She would
use the voting as an indicator to gather the opinion of the
participants.

According to requirement 11 the application allows to
visualise the initial ontology as well as different idea sets,
i.e. other, contradicting, proposed ways to model parts of
the ontology. The visualisation shows if the participants
voted in favour or against an idea or idea set. When an
issue is selected ideas and idea sets are highlighted so that
they are clearly distinguishable from the surrounding mod-
elling primitives. To compare different idea sets the user can
switch between idea sets and see how they fit into the sur-
rounding modelling primitives. Especially the requirement
for the visualisation of the ontology suggests to use a rich
client to cope with a sophisticated, flexible visualisation.

For organising hundreds or thousands of sources, tasks
and issues we use a hierarchical folder structure. This al-
lows to cluster the different sources according to different
general topics, which need to be dealt with in the ontol-
ogy design. All issues and tasks, which are related to a
source are stored in a folder with the same name (see re-
quirement 12). We expect this to be sufficient because oth-
erwise the structuring of the sources and issues would al-
ready anticipate the design of the ontology. This would be
problematic as this is to be made explicit and discussed by
the users during the design process and not already by sort-
ing sources. Having stated this, it might be useful though to
introduce reference links between sources as well as issues.

Figure 3. EvA screenshot

7 Implementation

After the review of the tool design by potential users, i.e.
case study partners of the SEKT project, an implementa-
tion called EvA – Evolution Annotater is ongoing. It builds
upon OntoStudio, an Eclipse-based ontology engineering
environment. EvA especially uses Eclipses Graphical Edi-
tor Framework GEF for the persistent visualisation of ideas,
and the Argumentation Ontology [12] to safe the discussion
about the ontology.

Figure 2 displays a screen of the low-fidelty prototype
we used in validating the applications design. This proto-
type was shown to a small number of potential users. Their
feedback went straight back into the design. In Figure 3
a screen shot from the on-going implementation is shown.
Both figures show the main window of the application with
views on sources, tasks, ideas, issues, the argumentation
about ideas and issues, as well as the main window for the
manipulation of the ontology.

8 Conclusions and Future Work

We have described the initial need of an ontology en-
gineering environment to support the remote engineering
and maintenance of ontologies, which became apparent dur-
ing the SEKT project. We have shown that off the shelf
tools such as wikis, mailing lists, forums are not sufficient
for ontology engineering mainly due to the lack of visu-
alisation and notification. Furthermore we have designed a
specialised application to address the above described prob-
lems by employing an interaction design process e.g. sug-
gested in [4]. This should improve the usability of the tool
for none-technical experts such as domain experts.

An open issue is the voting mechanism. It is unclear yet

5



in which environment which threshold (e.g. a simple major-
ity, all participants need to agree, etc.) needs to be reached
to accept a conceptualisation. Another open issue is the pos-
sibility to automatically classify arguments of the ontology
engineering process according to the DILIGENT argumen-
tation model. Letting agents take part in the discussion e.g.
for evaluation of the ontology or for suggesting new con-
cept by the use of ontology learning algorithm is yet open
to research.

The design is being implemented right now, and we hope
to test its value in a case study soon. Therefore we look
for further reviews of the design from expert reviewers and
especially the actual application of the tool in real world use
cases.

Acknowledgements

Research reported in this paper was supported by the
IST Programme of the European Community under the
SEKT project, Semantically Enabled Knowledge Tech-
nologies (http://www.sekt-project.com, IST-1-
506826-IP). We want to thank our colleagues for fruitful
discussions and inspirations, especially Christoph Tempich,
H. Sofia Pinto, Núria Casellas-Caralt and Daniel Politze.
This publication only reflects the authors’ views.

References

[1] C. Bussler, J. Davies, D. Fensel, and R. Studer, editors. The
Semantic Web: Research and Applications, volume 3053 of
LNCS, Heraklion, Crete, Greece, May 2004. Springer.

[2] P. Casanovas, N. Casellas, M. Poblet, J.-J. Vallbé, Y. Sure,
and D. Vrandečić. Iuriservice ii ontology development. In
P. Casanovas, P. Noriega, D. Bourcier, and V.R.Benjamins,
editors, XXII World Congress of Philosophy of Law and So-
cial Philosophy - Workshop on Artificial Intelligence and
Law: The regulation of electronic social systems. Law and
the Semantic Web, number B4 in Special Workshop, pages
327–328, Granada, Spain, MAY 2005. International Associ-
ation for Philosophy of Law and Social Philosophy, Univer-
sity of Granada. Artificial Intelligence and Law.

[3] N. Casellas, M. Blázquez, A. Kiryakov, P. Casanovas, and
R. Benjamins. OPJK into PROTON: legal domain ontol-
ogy integration into an upper-level ontology. In R. M. et al.,
editor, OTM Workshops 2005, LNCS 3762, pages 846–855.
Springer-Verlag Berlin Heidelberg, 2005.

[4] A. Cooper and R. M. Reimann. About Face 2.0: The Essen-
tials of Interaction Design. Wiley and Sons, 2003.

[5] A. Gangemi, D. Pisanelli, and G. Steve. Ontology integra-
tion: Experiences with medical terminologies. In N. Guar-
ino, editor, Formal Ontology in Information Systems, pages
163–178, Amsterdam, 1998. IOS Press.

[6] A. Gómez-Pérez, M. Fernández-López, and O. Corcho. On-
tological Engineering. Advanced Information and Knowl-
ege Processing. Springer, 2003.

[7] T. R. Gruber. A translation approach to portable ontology
specifications. Knowledge Acquisition, 5(2):199–220, 1993.

[8] H. S. Pinto and J. P. Martins. A methodology for ontology
integration. In Proceedings of the First International Con-
ference on Knowledge Capture (K-CAP2001), pages 131–
138, New York, 2001. ACM Press.

[9] H. S. Pinto, S. Staab, Y. Sure, and C. Tempich. OntoEdit
empowering SWAP: a case study in supporting DIstributed,
Loosely-controlled and evolvInG Engineering of oNTolo-
gies (DILIGENT). In Bussler et al. [1], pages 16–30.

[10] Y. Sure and J. Angele, editors. Proceedings of the First
International Workshop on Evaluation of Ontology based
Tools (EON 2002), volume 62 of CEUR Workshop Proceed-
ings, Siguenza, Spain, 2002. CEUR-WS Publication, avail-
able at http://CEUR-WS.org/Vol-62/.

[11] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and
D. Wenke. OntoEdit: Collaborative ontology development
for the semantic web. In I. Horrocks and J. A. Hendler, ed-
itors, Proceedings of the First International Semantic Web
Conference: The Semantic Web (ISWC 2002), volume 2342
of Lecture Notes in Computer Science (LNCS), pages 221–
235, Sardinia, Italy, 2002. Springer.

[12] C. Tempich, H. S. Pinto, Y. Sure, and S. Staab. An argu-
mentation ontology for distributed, loosely-controlled and
evolving engineering processes of ontologies (diligent). In
Second European Semantic Web Conference, ESWC 2005,
volume 3532 of LNCS, pages 241–256, 2005.

[13] I. Terziev, A. Kiryakov, and D. Manov. Base upper-level
ontology (bulo) guidance. SEKT deliverable 1.8.1, Ontotext
Lab, Sirma AI EAD (Ltd.), 2004.

[14] M. Uschold and M. King. Towards a methodology for build-
ing ontologies. In Workshop on Basic Ontological Issues
in Knowledge Sharing, held in conjunction with IJCAI-95,
Montreal, Canada, 1995.

[15] M. Völkel, M. Krötzsch, D. Vrandečić, H. Haller, and
R. Studer. Semantic wikipedia. In Proceedings of the 15th
international conference on World Wide Web, WWW 2006,
Edinburgh, Scotland, May 23-26, 2006, MAY 2006.

[16] D. Vrandečić, H. S. Pinto, Y. Sure, and C. Tempich. The
diligent knowledge processes. Journal of Knowledge Man-
agement, 9(5):85–96, Oct 2005.

[17] D. Vrandečić, Y. Sure, C. Tempich, and M. Engler. Sekt
methodology: Initial best practices and lessons learned in
case studies. SEKT formal deliverable 7.2.1, Institute AIFB,
University of Karlsruhe, DEC 2005.

6


