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Abstract. In order to overcome human and time resource problems in the task
of ontology design, we propose to combine the LExO approach to learning ex-
pressive ontology axioms from textual definitions with Relational Exploration –
a technique based on the well-known attribute exploration algorithm from FCA
which is used to interactively clarify underspecified logical dependencies. By
forcing particular modeling decisions the exploration of classes and class ex-
tension relationships guarantees completeness with respect to a certain logical
fragment and increases the overall quality of the ontology. Providing an imple-
mentation as well as an example, we demonstrate how ontology learning and
exploration complement each other in a synergetic way.

1 Introduction

In the prospering Semantic Web research field, ontologies – logical domain specifica-
tions useful for automatically drawing conclusions about the described domain – have
taken a central role. Yet, building ontologies is a difficult and time-consuming task, re-
quiring to combine the knowledge of domain experts with the skill and experience of
ontology engineers resulting in a high demand on scarce expert resources. Moreover, the
size of knowledge bases needed in real world applications easily exceeds the modeling
capabilities of any human expert. On the other hand, both quality and expressivity of the
ontologies generated automatically by the state-of-the-art ontology learning systems fail
to meet the expectations of people who argue in favor of powerful, knowledge-intensive
applications based on ontological reasoning.

In order to overcome this bottleneck, it is necessary to thoroughly assist the model-
ing process by providing hybrid semi-automatic methods which (i) intelligently suggest
potentially relevant knowledge elements (complex domain axioms or facts) extracted
from resources such as domain relevant text corpora and (ii) provide guidance during
the knowledge specification process by asking decisive questions in order to clarify still
undefined parts of the knowledge base.

Obviously, those two requirements complement each other. The first one clearly
falls into the area of natural language processing. By using existing methods for knowl-
edge extraction from texts, passages can be identified which indicate the validity of
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certain pieces of knowledge. For the second requirement, strictly logic-based explo-
ration techniques such as the the well-known and well-established attribute exploration
from formal concept analysis (and its variants and extensions) are needed in order to
obtain logically crisp propositions. We believe that integrating these two directions of
knowledge acquisition in one scenario will help overcoming disadvantages of either
approach. The framework proposed in this paper realizes this integration and shows its
potential for practical applications.

In Section 2, we briefly introduce the description logic SHOIN . Section 3,
sketches the field of ontology learning before presenting LExO as one method for ac-
quiring DL axioms from texts. Section 4 gives the necessary background for Relational
Exploration (RE), a technique used for interactive knowledge specification based on
FCA. In Section 5, we describe in detail how LExO and RE (possibly assisted by other
ontology learning components) can be synergetically combined in the process of ontol-
ogy engineering and evaluation. Implementation details as well as an example are given
in Section 6. Finally, Section 7 concludes and gives an outlook to future research.

2 Preliminaries

Here, we will very briefly introduce the description logicSHOIN . ASHOIN knowl-
edge base (KB, also: ontology) is based on sets NR (role names) C (atomic concepts)
and I (individuals). The set of SHOIN roles is R = NR ∪ {R− | R ∈ NR}. In the follow-
ing, we leave this vocabulary implicit and assume that A, B are atomic concepts, a, b,
i are individuals, and R, S are roles. Those can be used to define concept descriptions
employing the constructors from the upper part of Table 1. We use C, D to denote con-
cept descriptions. Moreover, a SHOIN KB consists of two finite sets of axioms that
are referred to as TBox and ABox. The possible axiom types for each are displayed in
the lower part of Table 1.

Note that we do not explicitly consider concept or role equivalence ≡, since it can
be modeled via mutual concept or role inclusions. We adhere to the common model-
theoretic semantics for SHOIN with general concept inclusion axioms (GCIs): an
interpretation I consists of a set ∆ called domain together with a function ·I mapping
individual names to elements of ∆, class names to subsets of ∆, and role names to subsets
of ∆ × ∆. This function is inductively extended to roles and concept descriptions and
finally used to decide whether the interpretation satisfies given axioms (see Table 1).
SHOIN serves as the theoretical basis for the web ontology language OWL DL as

defined in [1]. OWL DL constitutes a standardized knowledge representation language
well established in the Semantic Web domain. It is a fragment of first order predicate
logic with the advantage of being decidable and even the availability of optimized rea-
soners for it.

3 Lexical and Logical Knowledge Acquisition

Ontology generation from natural language text, or lexical resources – most commonly
referred to as “ontology learning” – is a relatively new field of research which aims to
support the tedious task of knowledge acquisition by automatic means.



Name Syntax Semantics
inverse role R− {(x, y) | (y, x) ∈ RI}
top > ∆

bottom ⊥ ∅

nominal {i} {iI}
negation ¬C ∆ \CI

conjunction C u D CI ∩ DI

disjunction C t D CI ∪ DI

universal restriction ∀R.C {x | (x, y) ∈ RI implies y ∈ CI}
existential restriction ∃R.C {x | for some y ∈ ∆, (x, y) ∈ RI, y ∈ CI}
(unqualified) number ≤ n R {x | #{y ∈ ∆ | (x, y) ∈ RI} ≤ n}
restriction ≥ n R {x | #{y ∈ ∆ | (x, y) ∈ RI} ≥ n}
role inclusion S v R S I ⊆ RI TBox
transitivity Trans(S ) S I is transitive TBox
general concept inclusion C v D CI ⊆ DI TBox
concept assertion C(a) aI ∈ CI ABox
role assertion R(a, b) (aI, bI) ∈ RI ABox

Table 1. Role/concept constructors and axiom types in SHOIN . Semantics refers to an inter-
pretation I with domain ∆. As usual, we require to restrict number restrictions to simple roles,
i.e. (roughly speaking and omitting further technical details) roles that do not include roles which
are declared to be transitive.

However, many of today’s ontology learning approaches build upon methods and
ideas which were developed by (computational) linguists long before ontologies be-
came a popular means of knowledge representation. Ontology learning techniques
based, e.g., on lexico-syntactic patterns [2], or Harris’ distributional hypothesis [3]
draw from previous advances in lexical acquisition, and terminology research which
have been to a major extent focusing on the extraction of lexical relations. However,
there is a tacit agreement in the ontology learning community that there exists a certain
correspondence between lexical relations (e.g. hyponymy, synonymy), and ontological
axioms (e.g. subsumption, equivalence). This assumption which is not only prevalent
in ontology learning, but also influences manual ontology engineering1 led to a kind of
“lexical”, i.e., lexically inspired ontology generation implemented in frameworks such
as OntoLearn [4], OntoLT [5] or Text2Onto [6].

One may argue that due to the differences between lexical semantics, and the model-
theoretic semantics of description logics (see also [7]), this type of approach will always
yield at best light-weight, semi-formal ontologies without precisely defined semantics,
being grounded in natural language more than in logics. On the other hand, lexical ap-
proaches to ontology generation offer a lot of advantages: They can benefit from large
amounts of lexical resources such as machine-readable dictionaries, encyclopedias, and
all kinds of web documents that are available in abundance on the web. The resulting
ontologies are usually close to the human way of modeling, since they provide lexi-
calizations of classes, individuals and properties, thus being easily comprehensible and

1 In fact, if one tries to explain the semantics of subsumption to a non-logician, one often resorts
to “clue phrases” similar to lexico-syntactic patterns which themselves reflect lexical relations.



reusable. Finally, most of these approaches are very flexible with respect to the degree
of user interaction, and relatively easy to combine with other, complementary or sup-
porting ontology learning methods.

Besides those lexical methods, a second direction of ontology learning has received
more and more attention during the last couple of years. Approaches based on Inductive
Logic Programming (ILP) [8, 9] and Formal Concept Analysis (FCA) [10] have been
developed in the logics community, for some reason widely unappreciated by lexical
ontology learning research. Although there are a few approaches aiming to reconcile
the two worlds by using either FCA [11, 12] or ILP [13] for lexical ontology acqui-
sition, none of them has been designed specifically for the refinement of OWL DL
ontologies or knowledge bases. Common to all those approaches is their idea to ac-
quire knowledge based on presented domain entities and their properties. However, this
type of logical ontology generation is often less efficient than lexical approaches, and
requires a relatively large amount of manually acquired knowledge (e.g. ABox state-
ments for taxonomy induction). The resulting ontologies lack the traceability of a nat-
ural language grounding, and meaningful labels for complex class descriptions. Their
expressivity is typically restricted to some variant of ALC. On the other hand, those
approaches have several advantages. Since they are based on already structured, formal
data, they naturally come with a precisely defined, formal set-theoretic semantics. Thus
being on “safe logical grounds”, it is guaranteed that the acquired knowledge is also
logically consistent.

Despite their respective advantages, both lexical and logical approaches to auto-
matic (or semi-automatic) ontology engineering have failed to meet all the expectations
of people arguing in favor of knowledge-intensive, reasoning-based applications, e.g.,
in domains such as bio-informatics or medicine. In particular, expressivity and quality
of the resulting axiomatizations are often insufficient for practical use. In order to meet
these fundamental requirements, a few lexical approaches towards learning more ex-
pressive ontologies, i.e. ontologies featuring the expressiveness of OWL DL, have been
proposed recently [7, 14]. But these approaches have to face a lot of challenges which
need to be overcome in order to make them useable in practice. Obviously, the more
expressive learned (or manually engineered) ontologies become, the more important
it will be to provide automatic support for quality assurance, since the difficulty of a
purely manual revision rises with the growing complexity of the ontology. On the other
hand, applications relying on reasoning over complex ontologies make it necessary to
consider a larger variety of qualitative aspects which must be taken into account as an
ontology is being learned or constructed, including logical consistency, and complete-
ness. Notwithstanding, there exist only very few frameworks aiming at a tight integra-
tion of methods for ontology learning and evaluation. Although, e.g., Haase et al. [15]
propose a way to deal with logical inconsistencies in lexically generated ontologies the
problem of modeling completeness has been largely neglected up to now.

In this paper, we therefore present an approach to ontology acquisition which effec-
tively combines the strengths of the two complementary directions of research while at
the same time compensating for many of their respective disadvantages. It relies upon
Relational Exploration, an FCA-based approach to systematic, logical refinement (cf.
Section 4), and the automatic generation of formal class descriptions by means of natu-



ral language processing techniques which is described in the remainder of this Section.

LExO2 (Learning EXpressive Ontologies) [7] is an approach towards the automatic
generation of ontologies featuring the expressiveness of OWL DL. The core of LExO
is a syntactic transformation of definitory natural language sentences into description
logic axioms. Given a natural language definition of a class, LExO starts by analyz-
ing the syntactic structure of the input sentence. The resulting dependency tree is then
transformed into a set of OWL axioms by means of manually engineered transforma-
tion rules. Possible input resources for LExO include all kinds of definitory sentences,
i.e. universal statements about concepts, that can be found in online glossaries such as
Wikipedia3, comments in the ontology, or simply given by a domain expert.

In order to exemplify the approach, we assume that we would like to refine the
description of the class Reviewer the semantics of which could be informally described
as follows: A reviewer is a person who reviews a paper that has been submitted to a
conference or workshop.4 We will come back to this example in Section 6.

A minimum set of rules for translating this sentence into a DL class description
is given by Table 2 (for a more complete listing of possible transformation rules and
further explanations see [7]).

Rule Natural Language Syntax OWL Axioms
Disjunction X: NP0 or NP1 X ≡ (NP0 t NP1)
Copula X: NP0 VBE NP1 NP0 ≡ NP1

Relative Clause X: NP0 C(rel) VP0 X ≡ (NP0 u VP0)
Verb with Prep. Compl. X: V0 Prep0 NP(pcomp-n)0 X ≡ ∃V0_Prep0.NP0

Table 2. Transformation Rules for Reviewer

Depending on the concrete set of translation rules and modeling preferences of the
user, a translation of this sentence into OWL DL could then yield the following axioms:

reviewer
≡ a_person_who_reviews_a_paper_that_has_been_submitted_to_a_conference_or_workshop
a_person_who_reviews_a_paper_that_has_been_submitted_to_a_conference_or_workshop
≡ a_person u reviews_a_paper_that_has_been_submitted_to_a_conference_or_workshop
reviews_a_paper_that_has_been_submitted_to_a_conference_or_workshop
≡ ∃reviews.a_paper_that_has_been_submitted_to_a_conference_or_workshop
a_paper_that_has_been_submitted_to_a_conference_or_workshop
≡ a_paper u has_been_submitted_to_a_conference_or_workshop
has_been_submitted_to_a_conference_or_workshop
≡ ∃has_been_submitted_to.a_conference_or_workshop
a_conference_or_workshop ≡ (a_conference t workshop)

2 http://ontoware.org/projects/lexo/
3 http://en.wikipedia.org
4 Depending on the intended meaning of Reviewer other, broader definitions (e.g. covering re-

views of journal articles, or research projects) might be more adequate, but we wanted to keep
the example as simple as possible.



Obviously, the above set of axioms can be normalized, and turned into a semanti-
cally equivalent, unfolded, representation:

Reviewer ≡ Person u ∃review.
(
Paper u ∃submitted_to.(Conference tWorkshop)

)
While such a compact class description might be easier to grasp at first glance (at

least for ontology engineers being familiar with logics), the first axiomatization obvi-
ously conveys a lot of additional information to the human reader. The fact that each
part of the overall class description (e.g. Conference tWorkshop) is associated with an
equivalent atomic class (e.g. a_conference_or_workshop) makes completely transpar-
ent how this axiomatization was constructed, and at the same time provides the user
with an intuitive explanation of the semantics of each class description. Further advan-
tages of the extended axiomatization are discussed in Section 5.

4 Relational Exploration

In order to sketch relational exploration (RE, introduced in [16] and thoroughly treated
in [10]), we first need to briefly recall some basic notions from FCA (see [17] for further
reference).

A (formal) context K is a triple (G,M, I) with an arbitrary set G (called objects), an
arbitrary set M (called attributes), and a relation I ⊆ G ×M (called incidence relation).
We read gIm as: “object g has attribute m.” Furthermore, let gI := {m | gIm}. An
implication on an arbitrary set M is written A→ B with A, B ⊆ M. It holds in a formal
context K = (G,M, I), if for all g ∈ G we have that A ⊆ gI implies B ⊆ gI . We then
write K |= A→ B. A set I of implications entails A→ B if A→ B holds in all contexts
wherein all implications from I hold.

An implication set I will be called non-redundant, if for any (A→B) ∈ I we have
that I \ {A→ B} does not entail A→ B. I will be called complete w.r.t. a context K, if
every implication A→ B holding in K is entailed by I. I will be called an implication
base of K if it is non-redundant and complete. Since implication entailment is known
to be decidable in linear time [18], the implication base allows fast handling of an
implicational theory. The classical attribute exploration algorithm [19, 20] provides a
method for efficiently determining an implicational base of a formal context that is only
implicitly known by an expert.

The technique of RE extends this algorithm to a DL setting: Given an interpretation
I on a domain ∆ and a set M of SHOIN concept descriptions, the corresponding I-
context is defined by KI(M) := (∆,M, I) with δIC :⇔ δ ∈ CI. Then it can be easily
shown, that implications inKI coincide with certain axioms w.r.t. their validity in I: for
C,D ⊆ M, the implication C→D holds in KI if and only if I satisfies the DL axiom�
C v
�
D.Hence it is possible to explore DL axioms (more precisely: general concept

inclusion axioms, short: GCIs) with this technique. In an interview-like process, a do-
main expert has to judge whether a proposed GCI is valid in the domain (formally: the
interpretation I) he is describing and in the negative case provide a counterexample.5

Since OWL DL [1] – the standard language for representing ontologies – is based on

5 This will be further elaborated and demonstrated in the subsequent sections.



description logics, the RE method easily carries over to any kind of ontologies specified
in that language.

Especially when working in an OWL or DL setting, the open world assumption
is omnipresent; most of the known objects will not be completely specified, i.e., for
certain classes it might be unknown whether the considered individual is an instance.
Hence, it is essential for exploration methods to be capable of dealing with this kind of
information. Lately, there has been significant work on applying FCA results on partial
information (e.g. described in [21, 20]) to the ontology refinement setting. An according
approach (briefly sketched in [10]) has been fully theoretically elaborated and imple-
mented as described in [22]. It allows to use partly specified objects as counterexamples
for hypothetical implications. We decided to follow this approach, hence the implemen-
tation presented in the remainder of this paper allows for handling partial contexts.

The advantage of RE is that the obtained results are logically crisp and naturally
consistent. Moreover, the acquired information is complete with respect to certain well-
defined logic fragments of OWL DL.6 Yet, one major shortcoming of RE is the follow-
ing: due to the aimed-at completeness, the number of asked questions (and therefore,
the runtime and the workload for the expert) grows rapidly with the number of involved
concepts and roles which threatens to exceed the ontology designers resources.

In order to counter this we propose a combination of two strategies: firstly, we use
an OWL DL reasoner to determine whether the answer to a question posed by the explo-
ration algorithm can be deduced from a previously given background knowledge ontol-
ogy. Secondly we use lexical ontology learning to determine a relatively small number
of relevant classes to focus on. Both points will be elaborated in the next section.

5 An Integrated Approach to Ontology Refinement

In the sequel, we will describe how LExO and RE can be synergetically combined
by giving a comprehensive description of the integrated algorithm. En route, we will
briefly mention how other lexical ontology learning techniques could be beneficially
used within that process. In addition to the LExO and RE component, an OWL DL
reasoner will be applied in order to draw conclusions that are already implicitly present,
i.e. entailed by the actual knowledge base making an intervention of the user obsolete.

Creation of new Definitions and Mappings. We start with an OWL DL ontology
KB to be refined with respect to a (new or already contained) class C, for which a
natural language definition is provided by some textual resource. This textual definition
is then analyzed by LExO yielding a set KB’ of OWL DL axioms as described in
Section 3. Most likely, some (or even most) of the named classes those axioms refer
to will not be present in KB. Therefore, at least the primitive classes amongst those –
i.e. those classes not stated to be equivalent to a complex class description7 – should be
linked to KB. There are several ways for doing that. If textual definitions are available,
LExO could be employed “recursively”, i.e., it might be applied to the definitions of the
classes in question in order to obtain other classes that can be linked toKBmore easily.

6 Which fragment precisely depends on which variant of RE is used.
7 These are the classes occurring explicitly in the normal form (cf. Section 3).



In any case, ontology mappings between KB and KB’ could be either added manually
or established by one or several of the well-known mapping tools like FOAM8 [23]. So
let Map be a (possibly empty) set of respective mapping axioms.

Selection of Relevant Classes. In the next step, we stipulate the focus of the sub-
sequent exploration, by selecting the named classes from KB ∪ KB′ whose logical
dependencies shall be further clarified. A natural default choice for this would be the
set of all named classes from KB’, as we might suppose the (remaining) classes from
KB to be modeled in a sufficiently precise way – an assumption that might be disproved
later on. However, it might be reasonable to include some of the classes from KB as
well. Knowledge extraction methods that determine the relevance of terms (like those
offered by Text2Onto [6]) could be employed for an automatic selection or to generate
reasonable suggestions. In any case, let C denote the set of selected attributes.

After this selection of relevant named classes, a basic fact from FCA allows to
further restrict C: put into DL notation, it assures the dispensability of a class C ∈ C
whenever there is a set D = {D1, . . . ,Dn} ⊆ C \ {C} such that C ≡ D1 u . . .uDn follows
from all knowledge KBΣ := KB ∪ KB′ ∪ Map stated so far.9 It takes just a little
consideration that this is the case iff

KBΣ |=
� {

D
∣∣∣ D ∈ C \ {C}, KBΣ |= C v D

}
v C,

such that the elimination of redundant classes from C requires just O(|C|2) reasoner
calls in the worst case. Let C′ denote the result of this reduction process.

Exploration. Now we start RE as described in Section 4 on the concept set C′. A
work flow diagram of the procedure is displayed in Figure 1. For every hypothetical DL
axiom C1 u . . . uCn v D1 u . . . u Dm brought up by the exploration algorithm:

– Employ the reasoner to check whether this GCI is a consequence of KBΣ . If so,
confirm the implication and continue the exploration with the next hypothesis.

– Employ the reasoner to query for all individuals γ with C1 u . . . u Cn u ¬Di(γ) for
an i from 1, . . . ,m, i.e., for instances of the class which characterizes the property
for being a material counterexample10 for the hypothetical GCI. Let Γ be the set of
individuals retrieved this way. If Γ , ∅, select one γ ∈ Γ and check for every C ∈
C whether C(γ) or ¬C(γ). Then the counterexample together with the information
about the attributes it provably has or has not is passed to the exploration algorithm.
Optionally the human expert – possibly assisted by lexical knowledge retrieval tools
– might be asked to complete the assertions for γ in order to get a more specific
description for it. In any case, after providing γ, the exploration will proceed with the
next hypothesis.

8 http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/
9 In FCA terms this can be conceived as a kind of a-priori attribute reduction. Note that this

process is nondeterministic. In case two classes happen to be equiextensional, we nondeter-
ministically remove one of them.

10 Material counterexamples are objects for which is known which part of the conclusion they
violate. The exploration algorithm (even the one dealing with partial knowledge) can only
make use of this kind of counterexamples.



Fig. 1. Relational Exploration process (the gear wheels indicate ontology management activities
including reasoning and updates, whereas the thinker icon marks user involvement).

– If the DL axiom in question can be neither automatically proved nor declined (the
latter meaning Γ = ∅), the human will be asked for the ultimate decision whether
the axiom is satisfied in the described domain I or not. Again, ontology learning
tools could support him by suggesting answers endowed with a probability, or simply
scanning a corpus for potential hints and presenting selected passages.

The exploration terminates after finitely many steps, yet it may also be stopped by
the user beforehand. In the latter case, the internal order of the classes from the set C′
is relevant since it determines the order of the posed questions. Hence, it is beneficial
to sort those classes w.r.t. their relevance, possibly based on textual information. After
the exploration cycle being finished, we have obtained a refined knowledge base KBΣ
containing the (possibly new) class C endowed with its definition (as extracted from the
textual definition) and its interrelationships with concepts from the original knowledge
base. Additionally, the “semantic neighborhood” of C has been made logically explicit
by interactive exploration. In fact, any subsumption between conjunctions of classes
from C can be decided (i.e. proven or disproven) based on the refined knowledge base.
This also shows the advantage of introducing atomic classes for the complex concept
descriptions occurring in the LExO output as demonstrated in Section 3: although RE
as applied in this case11 deals only with conjunctions on atomic classes, we introduce
more expressivity “through the back-door” by having complex definitions for those
named classes in our ontological background ready to be exploited by the reasoner.

The synergies provided by the presented combination are manifold: Firstly, the
classes contained in the definitions provided by LExO provide a reasonable small to
medium size “exploration scope” being crucial for a reasonable application of the RE
technique. Secondly, we can use textual information for generating ontological informa-
tion (a source not accessible to purely logical approaches) yet being able to interactively
11 Actually, RE provides means for exploring GCIs in whole ALE with bounded role depth,

however we restrict to conjunctions on atomic classes in this example.



clarify logical dependencies that have been left open by the text. The latter is done in a
guided way ensuring completeness.

Overall, the proposed framework provides means for interactively integrating
learned or manually acquired axiomatizations into an existing ontology, while at the
same time facilitating their evaluation and refinement.

6 Implementation and Example

In order to prove the feasibility of a synthesis of ontology learning and RE as described
in Section 5, we implemented a prototypical application named RELExO. Both sources
and binaries of RELExO are available for public use and can be downloaded from
its homepage12 which has been set up to provide further information with respect to
our experiments on ontology learning and relational exploration. RELExO relies upon
KAON213 as an ontology management back-end and features a simple graphical user
interface. Its architecture is depicted by Figure 2.

Fig. 2. RELExO Architecture

LExO, possibly complemented by other ontology learning components, generates or
extends the initial set of axioms KB (mappings can be added by FOAM, if necessary),
and initializes the partial context K by suggesting a set of attributes C to the user. The
actual refinement process is handled by a RE component which manages the partial
context K and the implication set I. Both are updated based on answers obtained from
the “expert team” constituted by the KAON2 reasoner, an optional ontology learning
component as well as the human knowledge engineer.

We now illustrate the integrated ontology refinement process which has been elab-
orated on in Section 5 by means of a real-world example. The complete material nec-
essary for reproducing this example, i.e. ontologies and screenshots, is contained in the
RELExO distribution.
12 http://relexo.ontoware.org
13 http://kaon2.semanticweb.org



The SWRC (Semantic Web for Research Communities)14 [24] ontology is a well-
known ontology modeling the domain of Semantic Web research. Version 0.7 contains
71 classes, e.g., for different types of persons, publication, and events, 48 object prop-
erties, 46 datatype properties, and an overall number of 672 axioms. Its expressiveness
is slightly beyond OWL DLP featuring subsumption, properties, and a few disjointness
axioms. The ontology serves as a basis for semantic annotation in the AIFB web portal15

which manages information about more than 2,000 persons, projects, and publications.
For the purpose of our experiment, we exported all instance data stored in the AIFB
portal into one single OWL file (more than 3 Megabytes in RDF syntax), and merged
it with the corresponding TBox, i.e. the latest version of SWRC. After minor syntac-
tic corrections (removing non XML-compliant characters), we obtained a considerably
large ontology. Debugging with RaDON16 revealed two inconsistencies caused by con-
flicting range specifications of data properties which could be fixed without difficulty.

Subsequently (in order to keep the example simple and rule out a few trivial ques-
tions that would otherwise come up in the exploration phase), we added axioms stating
the disjointness of the SWRC top-level concepts Person, Event, and Publication – obvi-
ously true axioms yet not present in the current version of this ontology. Those axioms
could also have been generated automatically by techniques for learning disjointness
from [14]. However, adding these axioms turned the ontology inconsistent again as
some individuals were inferred to instantiate both Person and Publication. The rea-
son for this inconsistency was an incorrect use of the editor relationship in SWRC.
Although its domain was restricted to Person (“editor_of ”), the property was appar-
ently conceived to have “has_editor” semantics by most of the annotators. We fixed
this inconsistency by changing the definition of editor accordingly. Another problem
became apparent after we had already started the exploration of the resulting ontology
with RELExO. An individual (in our opinion) belonging to the class ResearchPaper
was proposed as a counterexample, but could not be classified as a such. A closer look
at both individual and ontology showed that it was assigned to the class InProceedings
which was declared disjoint from ResearchPaper, the latter actually being empty. Since
we found that this modeling decision is not justified by the associated comments in the
ontology, we simply removed the disjointness axiom.

To demonstrate the RELExO approach, we assume that we would like to add a new
class Reviewer to the SWRC ontology. Part of a change request could be a natural lan-
guage description of this class such as “a reviewer is a person who reviews a paper that
has been submitted to a conference or workshop” (cf. Section 3). Given this definitory
sentence, LExO automatically suggests an axiomatization of Reviewer to the user who
can correct or remove some of the generated axioms before they are added to the on-
tology. Applying FOAM for suggesting mappings between the newly introduced class
names and those already present in SWRC, we find Paper to be equivalent to Research-
Paper and add a corresponding equivalence axiom to the extended ontology. Likewise,
we find Person, Conference and Workshop already present in the original ontology.

14 http://ontoware.org/projects/swrc/
15 http://www.aifb.uni-karlsruhe.de
16 http://radon.ontoware.org



In the next step, the set of “relevant” classes has to be selected. As mentioned in
Section 5, it is reasonable to choose those atomic classes present in the definition of Re-
viewer. We decided to add two more classes denoting undergraduate and PhD students
and (introducing abbreviations for overly long concept names from KB’) we set:

C′ := {⊥,CoW,Conference, SubCoW,Person,PhDStudent,
ResearchPaper,RevPSubCoW,Undergraduate,Workshop}.

Based on this set of classes, the RE algorithm is started. The first hypothetical DL
axiom, the exploration comes up with is > v ⊥. Naturally, this hypothesis cannot be
deduced from the ontology. Hence, following the description in Section 5, KAON2 will
query the knowledge base for instances of > u ¬⊥ which is equivalent to >. Hence
all ABox individuals are retrieved. Choosing one of the retrieved individuals, in our
case id1289instance, we find it to be an instance of ResearchPaper and (since in our
example,we chose the option to give the expert the opportunity to enhance the coun-
terexample specification) add the information that it is an instance of SubCoW.

Fig. 3. Dialog for displaying the hypothetical axiom CoW u SubCoW v ⊥.

In a similar way, the next hypothesis posed – > v ResearchPaper u SubCoW – is
handled. Clearly, not every ABox individual is a research paper witnessed by the coun-
terexample id1303instance being a journal article and hence neither a research paper
(according to the underlying ontology) nor submitted to a conference or workshop.

However, the subsequent hypothesis CoW v ⊥ can neither be proved nor disproved
by KAON2 using the information actually present in the ontology – since it does not
contain any individuals being a conference or workshop. Therefore, the human expert
will be asked for the final decision. Obviously, this hypothesis has to be denied and
a counterexample for it is just any conference, so we enter ICFCA_2008 and specify



it as instance of Conference.17 Note that due to the capability of dealing with partial
information, the expert may leave open whether this individual belongs to the other
considered classes. However, we employ the reasoner in order to determine all class-
memberships deducible from the present information. In our case, it can be inferred that
ICFCA_2008 is also an instance of CoW and definitely no instance of ResearchPaper.

Consequently, the next question CoW v Conference comes up and has to be denied
as well by entering the workshop instance OntoLex_2007.

Fig. 4. Specifying a counterexample. Every (non-)class-membership deducible from the knowl-
edge base is automatically entered leaving just the open questions to the expert. RELExO can be
configured to automatically display the web page associated with an individual’s URI.

Equally, the hypothesis SubCoW v ResearchPaper cannot be decided based on the
present knowledge and is thus passed to the expert. In fact, this is the first “design
decision” to make depending on the intended scope of the ontology. A look into the
SWRC taxonomy reveals that there is a class Poster to denote posters presented at
conferences. Indeed, any submitted poster would be a counterexample for the presented
hypothesis, so we add iMapping_Poster_SWUI_2006 to the knowledge base.

The next hypothesis brought up is CoWuSubCoW v ⊥ being an integrity constraint
saying that nothing being a conference or workshop can be submitted (to a conference
or workshop). Figure 3 shows how it is presented to the user. Here, we encounter an-
other design decision. Although it might be reasonable to say that a workshop (actually:
a workshop proposal) has been submitted to a conference, we stick to the intended se-
mantics of the term Workshop as a kind of event which cannot be submitted and hence
confirm the validity of the presented hypothesis.

The hypothesis Person v ⊥, coming up next, is refuted by the reasoner retrieving
an individual who is a PhD student at the institute AIFB. Figure 4 shows the dialog
wherein the user is presented the stored information about this individual and is asked
to add the missing facts.

17 This information already qualifies ICFCA_2008 as a counterexample for the presented hypoth-
esis. RELExO checks for every alleged counterexample whether it is indeed a such and rejects
the input otherwise.



In this way, the exploration continues. During the process, some individuals are
added and the following new axioms are confirmed:

– SubCoW u Person v ⊥ (a person cannot be submitted)
– ResearchPaper v SubCoW (every research paper has been submitted to a conference

or workshop)18

– RevPSubCoW v Person (everybody reviewing a submitted paper is a person)
– Person u PhDStudent u Undergraduate v ⊥ (PhD students are disjoint with under-

graduates)19

– RevPSubCoW u Undergraduate u Person v ⊥ (actually a “policy decision”: under-
graduates are not allowed to review papers)

Fig. 5. Partial formal context result-
ing from the exploration.

The formal context with the examples ac-
quired during the exploration is displayed by
Figure 5. It is automatically exported to the na-
tive ConExp20 format and stored as a CEX file.

We end up with a refined SWRC ontology
containing the new class Reviewer fully inte-
grated into the existing ontology. Any subsump-
tion between conjunctions of the specified inter-
esting classes can be directly decided based on
this refined SWRC ontology. This can be nicely
demonstrated by starting RELExO again with
the refined ontology: it terminates without ever
asking the human expert for a decision, showing
that all upcoming questions can be answered by
the reasoner alone.

7 Conclusion and Outlook

In this paper, we have sketched a way to com-
bine complementary approaches to ontological
knowledge acquisition: the more intensional ap-
proach of distilling conceptual information from
textual resources, and the extensional method
of extracting hypothetical domain axioms based
on given entities. We have instantiated this ap-
proach by designing and implementing a frame-
work that integrates the LExO ontology learn-
ing application, a Relational Exploration com-

ponent, and the KAON2 reasoner. To the best of our knowledge, RELExO is the first
publicly available implementation of an exploration-based ontology refinement ap-
proach. It is open source and supports the standard ontology language OWL. In an
18 We regard this justified by the existence of a class Unpublished disjoint to ResearchPaper.
19 Another modeling flaw: this axiom should have been present in SWRC.
20 http://conexp.sourceforge.net



example using the well-known SWRC ontology we have demonstrated the feasibility
of our approach, and its applicability to real-world ontology engineering tasks.

Altogether, we are confident that the proposed framework will considerably allevi-
ate the task of designing comprehensive and complex, yet logically consistent ontolo-
gies for knowledge-intensive applications. The number of design decisions to be made
by the human user is minimized by the usage of textual resources and the employ-
ment of a reasoning back-end. Relational exploration provides guidance, ensuring that
neither redundant information will be asked for nor important information is simply for-
gotten in the modeling process, and supports on-the-fly ontology evaluation: as in our
example (where we were well-nigh inevitably confronted with design flaws in the used
ontology), present modeling errors in the ontology are often indicated by “surprising”
or counterintuitive questions asked by the algorithm. Hence from the methodological
point of view, a cyclic ontology engineering process with intertwined exploration and
manual refinement (or debugging) phases seems a promising strategy.

After all, human intervention will always remain indispensable, especially for com-
plex knowledge modeling tasks. Notwithstanding, the workload to ontology engineers
and domain experts can be drastically decreased by intelligently integrated components
for semi-automatic ontology engineering. By facilitating the acquisition of expressive
OWL ontologies, we hope to foster the development of more sophisticated, reasoning-
based applications, and help to put semantic technologies into practice.

Pursuing this promising goal, we identify several central issues for future research.
Firstly, we are planning to incorporate the just recently proposed technique of role ex-
ploration from [25]. In order to achieve an even tighter lexico-logical integration, the
implementation of RELExO could be further extended by an additional (automatic)
expert which uses ontology learning techniques, and online resources for confirming
hypotheses, or suggesting counterexamples. Additional ontology learning components
could be used to complement the LExO-generated axiomatizations by other modeling
primitives (e.g. disjointness axioms), or to sort the attributes, i.e. class descriptions, with
respect to the current domain or the user’s interests. Finally, we will integrate RELExO
into an ontology engineering environment such as the NeOn Toolkit21, and improve its
usability by adding a natural language generation component for translating hypotheses,
i.e. logical implications, into natural language questions. In the end, we are confident
that further extensive evaluations in real world application scenarios will demonstrate
the advantages of our combined, lexico-logical approach.
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