
An ontology for semantic middleware: extending

DAML-S beyond web-services

Daniel Oberle1, Marta Sabou2, and Debbie Richards3

1 Institute for Applied Informatics and Formal Description Methods (AIFB)
University of Karlsruhe

Germany
oberle@aifb.uni-karlsruhe.de

2 Department of Arti�cial Intelligence
Vrije Universiteit Amsterdam

The Netherlands
marta@cs.vu.nl

3 Computing Department
Macquarie University
Sydney, Australia

richards@ics.mq.edu.au

Abstract. Describing software entities using Semantic Web technology
is a growing research area. Our work investigates the semantic description
of software entities that provide an application programmer's interface
(API) to allow reasoning with the descriptions and their interrelation-
ships. We present an ontology for our Application Server for the Seman-
tic Web where it is used to facilitate implementation tasks and semantic
discovery. Building on an emerging standard from the Semantic Web
community, our work includes a number of extensions to DAML-S which
currently allows semantic description of a particular type of software en-
tities, viz. web-services, in order to facilitate their automatic discovery
and integration. We conclude that while some of the parts and many
of the principles embodied in DAML-S provide a good starting point, it
was necessary to replace two of the core DAML-S ontologies with on-
tologies designed for semantic middleware application in order to allow
inter-operation of Semantic Web software modules.

1 Introduction

Describing software entities using Semantic Web technology is a growing research
area. For example, much work has been done on describing a particular type of
software entities, viz. web-services, both on a syntactic level [4] as well as on a
semantic level [3]. This paper investigates the semantic description of software
entities that provide an application programmer's interface (API), so-called soft-
ware modules, in order to allow for module and API discovery, classi�cation of
modules and to facilitate implementation tasks in semantic middleware. We per-
form our work in the context of a particular semantic middleware, namely our
Application Server for the Semantic Web (ASSW) which facilitates plug'n'play



2 D. Oberle, M. Sabou, D. Richards

engineering of software modules and, thus, the development and maintenance of
comprehensive Semantic Web applications [19, 13, 14].

We want to take advantage of established research and align it to our problem
of describing software modules. We have extended DAML-S [3] which is a major
initiative in this area and allows semantic description of web-services, in order to
facilitate their automatic discovery and integration. We adapted principles and
actual parts from DAML-S and extended it for our purposes.

Classical Software Reuse Systems also need to index software modules appro-
priately for eÆcient and precise retrieval. Techniques like faceted classi�cation [6]
represent features of the providers rather than the goals it achieves. Techniques
such as analogical software reuse [18] share a representation of modules that is
based on goals achieved by the software, roles and conditions. Zaremsky and
Wing [22] describe a speci�cation language and matching mechanism for soft-
ware modules. They allow for multiple degrees of matching and they consider
only type information. UPML [7] represents inputs, outputs, preconditions and
e�ects of tasks. However, none of these approaches provides means for semantic
module and API discovery, semantic classi�cation of modules or facilitation of
implementation tasks.

Another body of related work are adaptations of DAML-S to particular do-
mains. For example, [21] come up with a DAML-S ontology for describing web-
services in the bio-informatics domain. [9] describe speech-acts in agent based
web-services. However, none of them actually considers software description at
the application interface level.

The work reported in this paper seeks to �ll both of these identi�ed gaps.
The paper is structured as follows: In section 2 we describe scenarios in which
semantic description can be useful for software modules and we motivate them
within our Application Server for the Semantic Web setting. We extract a set
of requirements for the ontology that will facilitate these descriptions. Section
3 brie
y introduces DAML-S and analyzes the degree to which it corresponds
to our goals. Based on our analyses in sections 2 and 3, we present in section
4 the main contribution of our work: our ontology for semantic middleware
together with a discussion of our design decisions. Finally, section 5 provides
some examples of actual descriptions based on the ontology before we conclude
and present future work in sections 6 and 7.

2 Motivation

In this section we describe a set of tasks in which semantic description can be
useful for software modules and motivate them within our Application Server
for the Semantic Web setting. Finally, we extract requirements for the ontology
that will facilitate these descriptions.

2.1 Application Server for the Semantic Web

Building a complex Semantic Web application typically requires more than a
single software module. Ideally the developer of such a system wants to easily



An ontology for semantic middleware 3

combine di�erent | preferably existing | software modules. So far, however,
such integration had to be done ad-hoc, generating a one-o� endeavour, with
little possibilities for reuse and future extensibility of individual modules or
the overall system. We already presented an infrastructure in [19, 14, 13] that
facilitates reuse of existing modules, e.g. ontology stores, editors, and inference
engines and, thus, the development and maintenance of comprehensive Semantic
Web applications, an infrastructure which we call the Application Server for the
Semantic Web (ASSW). It combines means to coordinate the information 
ow
between modules, to de�ne dependencies, to broadcast events between di�erent
modules and to translate between Semantic Web data formats.

In the terminology of [20], an Application Server for the Semantic Web would
be called a Broker, i.e. transactions from the client application to the software
module are always intermediated and possibly modi�ed by interceptors. Its archi-
tecture basically uses a Microkernel and component approach. The Microkernel
o�ers a minimal functionality of managing, i.e. starting, stopping and initializing
components. Existing software modules have to be made deployable4 in order
to be managed by the Microkernel. Thus, a software module becomes a Compo-
nent. In order to distinguish between components that are of direct interest to
the developer and components providing functionality for the Application Server
itself (e.g. connectors or the registry), we call the �rst Functional Components
and the latter System Components.

Note that, unlike Multi-Agent or Peer-to-Peer systems where a Broker would
have to deal with thousands of agents or peers, only a few components are de-
ployed to a particular Application Server for the Semantic Web. Typically those
that are necessary to build the desired applications. The developer can use the
Component Loader that facilitates the deployment of the required components.
A client application uses surrogate objects for components, similar to stubs in
CORBA, that take care of the communication details. For example an ontology
editor might use surrogate objects for an ontology store and an inference engine
| both would be deployed as functional components in the Application Server.

2.2 Scenarios

In this section we consider a number of scenarios that can be more easily realized
if semantic descriptions of software modules are available. Just the development
of an ontology is bene�cial to gain conceptual agreement between the Application
Server and the developer. For example, the ontology formalizes relationships
between the internal components of the server. Note that the scenarios listed
below are generic for semantic middleware. However, we detail them in our
Application Server for the Semantic Web setting.

Implementation tasks The Application Server itself takes advantage of se-
mantic descriptions within several of its system components. For example,

4 We use the word deployment as the process of registering, possibly initializing and
starting a component to the Microkernel.



4 D. Oberle, M. Sabou, D. Richards

the Component Loader facilitates the deployment process by reading an
ontological description of a component. The descriptions usually express re-
quired libraries and components as properties. Libraries might rely on others,
the same holds for components. By de�ning corresponding properties tran-
sitively, it becomes easy to infer all necessary libraries and components.

Component Discovery Typically, an application developer wants to discover
components implementing a speci�c API5. For example, an ontology editor
might use a speci�c ontology store, however, there might be several of them
deployed in the Application Server. The registry, a system component and
simple ontology store, holds semantic descriptions of all deployed compo-
nents and can be queried accordingly.

API Discovery In another scenario, the developer wants to �nd a certain API
in order to be able to program against it. Preferably, the developer wants to
specify high level details and get a comprehensive list of existing APIs that
perform desired tasks. As there can be several related and overlapping APIs,
the system should recommend the best �tting one. For example, a developer
might want to �nd any component capable of storing ontologies both with
inferencing capabilities and transactions. After discovery, the developer could
investigate the component and start programming against it. This scenario
is especially interesting when several Application Servers are interconnected
and reveal their deployed components to each other.

Classi�cation of software modules The ontology should also facilitate the
classi�cation of new software modules. Mostly, their APIs ful�ll overlapping
tasks, e.g. an ontology store o�ers both inferencing and storing.

Publishing web-services The developer might want to use the functionality
hosted in components as web-services. A web-service connector may publish
components' methods correspondingly. Having semantic descriptions stored
in the registry, it is a simple task to generate appropriate DAML-S descrip-
tions.

2.3 Requirements

After having discussed motivating scenarios for semantic descriptions of software
modules, we are now able to derive requirements for the ontology. The require-
ments serve as the design principles for our ontology which we will present in
the next section.

{ The ontology should contain means to describe syntactic information of soft-
ware modules which is to be used by the middleware itself.

{ The ontology should contain means to give high level descriptions of soft-
ware modules, e.g. the di�erent types of software modules as well as their
characteristics.

5 Note, that there is hard-coded integration of modules by the developer, i.e. she
programs against a known API. We do not aim for automatic integration.



An ontology for semantic middleware 5

{ Software module APIs are to be described both at a syntactic level and
a semantic level for discovery, classi�cation and for publishing methods as
web-services.

{ Semantic descriptions of software modules should be reusable. Easy cou-
pling of syntactic and semantic description is another requirement to be
met. Hence, the ontology should be divided in several sub-ontologies.

{ So far we have presented the need for semantic software module description
only in our context of the Application Server for the Semantic Web. However,
the ontology should be reusable over a wider range of domains.

{ As an ontology is a shared conceptualisation, it should use accepted stan-
dards that have been investigated for a long time and have a sound basis.

3 Evaluating DAML-S - Extracting Design Principles

In order to support the required sharing and reuse, as stated in the last section,
we have taken DAML-S as a starting point for our ontology. By doing so, we
maintain compatibility with the web-service world.

DAML-S is an initiative of the Semantic Web community to facilitate auto-
matic discovery, invocation, composition, interoperation and monitoring of web-
services (WSs) through their semantic description [5]. DAML-S is a DAML+OIL
ontology conceptually divided into three sub-ontologies (cf. Figure 1) for specify-
ing what a service does? (Pro�le), how the service works? (Process) and how the
service is implemented? (Grounding). The existing grounding allows aligning the
semantic speci�cation with implementation details described using WSDL [4],
the industry standard for web-service description. There are several interesting
design principles underlying DAML-S which inspired us in our work:

1. Semantic vs. Syntactic descriptions DAML-S di�erentiates between the se-
mantic and syntactic aspects of the described entity. In DAML-S the Pro�le
and Process ontologies allow for a semantic description of the web-service while
the WSDL description simply encodes the syntactic aspects of the service (such
as the names of the operations and their parameters). The Grounding ontology
provides a mapping between the semantic and the syntactic parts of the de-
scription what allows 
exible associations between them. For example a certain
semantic description can be mapped to several syntactic descriptions if the same
semantic functionality is accessible in di�erent ways. The other way around, a
certain syntactic description can be mapped to di�erent conceptual interpre-
tations depending on the ontology used to disambiguate the meaning of the
syntactic descriptions.

2. Generic vs. Domain knowledge The second principle which underlies the
design of DAML-S is the separation between generic and domain knowledge.
DAML-S o�ers a core set of primitives to specify any type of web-service. These
descriptions can be enriched with domain knowledge speci�ed in a separate do-
main ontology. This modelling choice allows using the core set of primitives
across several domains just by varying the domain knowledge.



6 D. Oberle, M. Sabou, D. Richards

3. Modularity Another feature of DAML-S is the partitioning of the description
over several concepts. The best demonstration for this is the way the di�erent
aspects of a description are partitioned in three concepts. As a result a Service
instance will relate to three instances each of them containing a particular aspect
of the service. These are, as depicted in Figure 1, ServicePro�le, ServiceModel
and ServiceGrounding.

Service

ServiceModelService Profile ServiceGrounding

presents supports

presentedBy
describedBy describes supportedBy

Fig. 1. DAML-S Service Ontology

There are several advantages of this modular modelling:

{ Reuse of descriptions. Because the description is split up over several in-
stances it is easy to reuse certain parts. For example one can reuse the
Pro�le description of a certain service.

{ Flexibility in speci�cation. It is possible to specify only the part that is
relevant for the service (e.g. if it has no implementation one does not need
ServiceModel and ServiceGrounding).

{ Easy to extend. If the concept that describes a certain aspect is not useful
for a certain application domain one can subclass it in a more specialized
description.

Despite all these attractive characteristics DAML-S cannot be fully reused
for describing software module APIs. This is due to the fact that it was especially
designed for web-services descriptions. Therefore,

{ the part of the Pro�le ontology which describes functional characteristics is
too simple for our goal of describing APIs and their methods.

{ WSDL is not appropriate for syntactic speci�cations of APIs because it was
developed for describing network endpoints.

{ the present Grounding was developed for mapping to WSDL, and since we
do not use WSDL we cannot use it either.

The above observations played an important role in the design of our ontol-
ogy. The details of our ontology are given next.

4 The Ontology

4.1 Overview

The conclusion of the previous section is that DAML-S can be a good starting
point for our own ontology. The main diÆculty was in the type of software



An ontology for semantic middleware 7

entities to be described. While DAML-S describes software entities that are
accessible via a web interface, known as web-services, our goal is to describe
software modules, i.e. their APIs as well as other properties. As a result some of
the parts of DAML-S were not reusable, however many of the underlying ideas of
DAML-S proved to be useful in our modelling e�ort. Figure 2 presents the main
ontologies in DAML-S in comparison with the ontologies we have developed.
The following discussion is organised using the design principles in the previous
section.

DAML-S Service

Profile

WSDL

Software Module

IDL GroundingDAML-S Profile’

IDL

Web-services Software Modules

API Description

Implementation

Semantic Web
API Description

Semantic Web
Profiles

Generality

Type of

Software Entiity

D
o

m
a

in
In

te
rm

ed
ia

te
S

em
a

n
tic

S
yn

ta
ctic

D
escrip

tio
n

D
escrip

tio
n

(sub)ontology

property

Domain Ontology

concept

uses ontology

subconcept

Model Grounding

Fig. 2. Ontology overview

1. Semantic vs. Syntactic descriptions We have adopted the separation between
semantic and syntactic descriptions in order to achieve a 
exible mapping. A
number of our ontologies allow semantic description and others are used for
syntactic descriptions. A mapping exists between the description of both aspects.
However, given the di�erent type of entities we want to describe, we modi�ed
some of the DAML-S ontologies as follows:

{ we have kept the DAML-S Pro�le ontology for specifying semantic informa-
tion about the described components. Also we have extended it with a few
concepts for describing APIs at the conceptual level. This was necessary be-
cause the Pro�le ontology's constructs for specifying functional descriptions
were too shallow. These extensions are grouped in a small ontology called
API Description which is described in section 4.2.

{ we did not use the Process ontology since we are not interested in the internal
working of the modules.

{ we de�ned our own language for describing APIs syntactically since WSDL is
designed for specifying network endpoints. We decided to formalize a subset



8 D. Oberle, M. Sabou, D. Richards

of IDL (Interface Description Language, cf. [10]) terms in an ontology and
to use them to describe the syntactic aspects of APIs.

{ as a consequence of the changes above, we could not reuse the existing
DAML-S Grounding, rather we wrote our own Grounding Ontology which
allows mappings between the conceptual description of the APIs (in the
Pro�le) and their syntactic speci�cation (IDL).

2. Generic vs. Domain knowledge Currently our core ontology allows specifying
semantic and syntactic knowledge about APIs in a generic way facilitating its
combination with domain knowledge. For our speci�c goals we have built two
domain ontologies in the area of the Semantic Web. The �rst one speci�es the
type of existent Semantic Web software modules at a very coarse level. The
second one describes the functionality of APIs at a more �ne grained level (i.e. in
terms of methods and their parameters). Naturally, these ontologies can be easily
replaced depending on the application domain, for example bio-informatics.

Our approach can be described in terms of the ONIONS [8] ontology devel-
opment methodology which advises grouping knowledge with di�erent generality
in three separate ontologies. Generic theories contain general truths and their
concepts are used in de�ning Intermediate knowledge which is reusable over sev-
eral domains. From this point of view the DAML-S ontology (and WSDL) is
considered to be at the Intermediate knowledge level. The same is true for our
extensions of DAML-S, as shown in Figure 2. The intermediate knowledge can
be specialized in Domain ontologies as done in DAML-S and our approach.

3. Modularity Modularity enables easy reuse of speci�cations and extensibility of
the ontology. An important issue is the size of the reusable parts. For example,
because a Pro�le instance contains a lot of information, which is often very
speci�c such as the contact information of the providers, it is less likely that this
instance will be reused by any other description (except if it is provided by the
same company). Therefore a coarser granularity (less information per concept)
increases the chance of reusability.

We have reused this principle by making an e�ort to centralize related content
to a certain concept whose instance can be reused at description time. We decided
to group together chunks of information that are most likely to be reused. Also,
we have grouped this information in small ontologies which are used by other
sub-ontologies. We will describe the process of isolating reusable knowledge in
the following section, where we present a short overview of each ontology.

4.2 The sub-ontologies

As mentioned above and depicted in Figure 2, our ontology is made up of several
sub-ontologies which we now discuss. Note that due to the lack of space we only
sketch the ontologies in the �gures and present them in isolation to improve the
readability. We give an overview in the Appendix.



An ontology for semantic middleware 9

Software Module ontology This ontology is similar to the DAML-S Service
ontology: it contains the main concept and the top concept for each type of
description. However, we performed some changes:

{ we have renamed the service:Service concept to SoftwareModule, as such
entities are the focus of our descriptions. Accordingly we have renamed the
ServicePro�le and ServiceGrounding concepts.

{ we have excluded the ServiceModel, since we are not interested in the internal
working of the modules.

{ we have added a SoftwareModuleImplementation concept which groups to-
gether implementation details described in the Implementation ontology.

SoftwareModule-
Grounding

SoftwareModule-
Profile

Software Module

Generic Ontology

DAML-S Profile´ IDL Grounding

SoftwareModule-
Implementation

Implementation

presents

supports
presentedBy implementedBy

implements

supportedBy

SoftwareModule

(sub)ontology

property

concept

uses ontology

subconcept

Fig. 3. The Software Module ontology

The three concepts that describe a SoftwareModule (cf. Figure 3) can be
speci�ed using the corresponding ontologies as described in what follows.

DAML-S Pro�le (extension) We use the DAML-S Pro�le ontology to specify
the particular characteristics of a SoftwareModule such as the contact informa-
tion of the providers and certain parameters. For example an OntologyStore
module would have a service parameter specifying the used representationLan-
guage. Therefore, our Pro�le describes the module as a whole. We found that the
current functional description speci�cation of DAML-S is too shallow: often one
cannot specify inputs and outputs of a web-service since it o�ers complex func-
tionality. Here, we want to describe several functionalities o�ered by a software
module, which correspond to (a set of) methods in the API.

Because of that we have added a new property to Pro�le (cf. Figure 4),
namely hasAPIDescription, which ranges over the APIDescription concept that
groups the information used to describe an API and is separated in a small
ontology (API Description). We did this because we expect that many modules
will be able to reuse such functionality descriptions (much more than the contact
information of the providers)



10 D. Oberle, M. Sabou, D. Richards

Software Module

API Description

Semantic Web Profiles

DAML-S Profile´

Profile

ServiceParameter

service-
Parameter

Actor

contactInfo

name
...

hasAPIDescription

Fig. 4. The DAML-S Pro�le' ontology

API Description The API Description ontology deals with the API of the
module, and as such complements the DAML-S Pro�le for our purposes.

DAML-S Profile´

Semantic Web API Description

IDL Grounding

APIDescription

API Description

hasMethod

Method

Parameter

hasParameter

Thing
hasType

Input Output Precondition Effect

Fig. 5. The API Description ontology

An APIDescription can have multiple hasMethod properties for instances of
type Method as depicted in Figure 5. Furthermore, each instance of Method has
a set of Parameters such as Inputs, Outputs, Preconditions and E�ects. Each
parameter features a hasType property which points to a concept in the domain
ontology.

Implementation This ontology shown in Figure 6 contains implementation
level details of a module. There are two aspects of the implementation:



An ontology for semantic middleware 11

{ CodeDetails describe characteristics of the code, such as the class that im-
plements the code, the required archives or the version of the code. All these
aspects are modelled as properties of the CodeDetails concept. Note that
these characteristics are speci�c for a certain implementation and therefore
not reusable.

{ the signature of the interface. The name of the methods and their parameters
are modelled using the ontology presented next (IDL).

Software Module

IDL Grounding

Component

Functional-
Component

System-
Component

Proxy-
Component

Interface

Operation

Parameter

hasParameter returns

IDL

Code-
Details

Library

requires

. . .

Implementation

OperationType

String

Type + void Type

typeSpecification hasType

parameterIdentifier

operationIdentifier

interfaceIdentifier

hasInterface

Interceptor

requiresLibrary

deployedWith

. . .

. . .

hasCodeDetails

hasOperation

Fig. 6. The Implementation ontology

The main concept, Component (which is a subclass of SoftwareModule-
Implementation) links both to an instance of CodeDetails and to an instance
of Interface (the class which describes the signature of the API).

IDL We have formalized a small subset of the IDL (Interface Description Lan-
guage, cf. [10]) speci�cation into an ontology that allows describing signatures of
interfaces. The Interface concept corresponds to a described interface. It features
a property hasOperation which points to an Operation instance. Like shown in
Figure 6, each Operation can have a set of (input) Parameters of a certain type.
Also each Operation returns an OperationType of a certain type (which can be
also void). Interfaces, Operations and Parameters have identi�ers (which corre-
spond to the names by which they are used in the code).

IDL Grounding The IDL Grounding ontology provides a mapping between the
APIDescription and the Interface description. The mapping is straightforward
(cf. Figure 7): concepts InterfaceGrounding, MethodGrounding, InputGrounding
and OutputGrounding map between respective concepts from the API Descrip-
tion and Implementation sub-ontologies.

We acknowledge the possiblity of redundancy in our approach (given that
both the IDL and the API Description ontologies look similar) but easy reuse



12 D. Oberle, M. Sabou, D. Richards

was a higher design goal in this work. Namely, a certain concept level description
can be grounded to many di�erent interfaces that may look technically di�erent,
i.e. there might be other signatures.

Software Module

API Description

IDL Grounding

Implementation

IDLGrounding

InterfaceGrounding

MethodGrounding

InputGrounding

OutputGrounding

hasInterfaceGrounding

mapsInterface

hasOutputGrounding

hasMethodGrounding

mapsOperation

hasInputGrounding

mapsMethod

mapsAPI

Fig. 7. The Grounding ontology

Domain Ontologies We have built two domain ontologies shown in Figure
8. The �rst one (Semantic Web Pro�le) generically describes Semantic Web
software modules. We have based our ontology on the outcome of an extensive
survey in this domain carried out within the OntoWeb project. The survey [17]
distinguishes several categories of software modules (ontology building modules,
ontology evaluation modules etc.) and for each category proposes a set of charac-
teristics. These characteristics are used as a framework for comparing the actual
modules which are presented.

We transformed this information in a domain ontology as follows. We built
a taxonomy of categories according to the document. Each category is a kind of
damls:Pro�le, therefore we regard them as subclasses of Pro�le. The character-
istics of each category were modelled as properties of the concept denoting the
category and described as sub-properties of the damls:serviceParameter prop-
erty.

For example we have created the OntologyStore category and added prop-
erties such as queryLanguage, representationLanguage suggested by the survey.
We concluded that the serviceParameter construct of DAML-S was very easy
to extend for modelling the information in the survey. Even more the current
ontology can be easily extended with extra knowledge. This will be very helpful
since the survey only o�ers a reduced set of characteristics which can be easily
extended.

The second ontology (Semantic Web API Description) is meant to describe
speci�c functionalities o�ered by di�erent modules. This domain ontology in-
troduces a set of API types and functionalities (methods) which are generally



An ontology for semantic middleware 13

DAML-S Profile´ API Description

OntologyStore

Semantic Web Profiles

QueryEngine

Datatypes

Reification
...

.

.

.

StoreAPI

Semantic Web API Description

QueryAPI

queryLanguage

...
representationLanguage

Store

Retrieve
.

.

.

.

.

.

.

.

.

.

.

.

StoreAndQueryAPI

hasMethod

hasMethod
StoreTriple StoreOntology

Fig. 8. The Domain ontologies

o�ered. For example we have declared a StoreAPI concept which denotes APIs
for storing engines. A StoreAPI provides a Store method (for saving data into
the store) and a Retrieve method for retrieving the data from the store. This is a
generic declaration which can be specialized according to the case. For example,
StoreOntology can be a special Store method which saves a whole ontology in
the store. Similarly, StoreTriple, adds a single RDF [12] statement. The methods
di�er in the type of their inputs, but nevertheless they perform the same action
of adding data to the store. StoreOntology is declared as a subclass of Store with
a restriction that the input can be of type Ontology only.

Note that by combining simple APIs one can create complex ones. For ex-
ample a StoreAndQueryAPI will be obtained by inheriting methods both from
a StoreAPI and a QueryAPI. Further, within a type of API, specializations can
be created by declaring extra methods of specializing the existing ones. We trust
that such an ontology will allow performing a 
exible search over the existing
APIs.

All domain data is a specialization of the API Description ontology, where
APIs are of type APIDescription and their functionalities (such as Store) are of
type Method.

5 Examples

In this section we will demonstrate what descriptions of software modules look
like. We consider three existing OntologyStores that take RDF [12] as their rep-
resentationLanguage. We assume that all of them are deployed to an Application
Server for the Semantic Web as functional components:

{ KAON RDF Main Memory - an OntologyStore that is transient, implement-
ing the RDF API as used in the Karlsruhe Ontology and Semantic Web
Toolsuite (KAON, cf. http://kaon.semanticweb.org and [1]).

{ KAON RDF Server - a store that implements the same API as above, how-
ever, it applies a database system for actual storage.

{ Sesame [2] - a well-known store that implements its own API.



14 D. Oberle, M. Sabou, D. Richards

For the sake of brevity we only want to illustrate two methods for each API.
Note, that we omit fully quali�ed classnames to improve the readability.

KAON RDF API:

void add(Statement statement)

Model find(Resource subject, Resource predicate, RDFNode object)

Sesame API:

int addDataFromUrl(String dataURL, String baseURL)

String[][] evalRqlQuery(String query)

We provide a semantic description for each software module where one store
will be described completely, for the others we will just show how they relate
to the �rst one. We declare KAONRDFMainMemory as a SoftwareModule that
links to three instances containing di�erent aspects of the description.

<softwareModule:SoftwareModule rdf:ID="KAONRDFMainMemory">

<damlservice:presents rdf:resource="#MM_Profile"/>

<damlservice:supports rdf:resource="#KAONRDFAPIGrounding"/>

<softwareModule:implements rdf:resource="#MM_Impl"/>

</softwareModule:softwareModule>

From the pro�le point of view KAONRDFMainMemory is an OntologyStore,
therefore we can describe all the associated properties which we declared in the
Semantic Web Pro�les ontology. The Pro�le also includes contact information
and a pointer to the APIDescription instance.

<swProfiles:OntologyStore rdf:ID="MM_Profile">

<damlservice:presentedBy rdf:resource="#KAONRDFMainMemory"/>

<damlprofile:serviceName>

KAONOntologyStore</damlprofile:serviceName>

<swProfiles:platform rdf:resource="swProfiles#Any"/>

<swProfiles:ontologyLanguage rdf:resource="swProfiles#RDF"/>

<ourdamlprofile:hasAPIDescription rdf:resource="#RDFAPI"/>

</swProfiles:OntologyStore>

Note that all the above information is speci�c to KAONRDFMainMemory.
However, the APIDescription can be reused by other modules as well. In terms
of our domain ontology the RDFAPI is a StoreAndQueryAPI since it o�ers both
adding data and querying the repository. The description of the API is as follows:

<swApis:StoreAndQueryAPI rdf:ID="RDFAPI">

<apiDescr:hasMethod>

<swApis:StoreTriple rdf:ID="RDFAPI_StoreTriple">

<apiDescr:hasParameter>

<apiDescr:Input rdf:ID="StatementForStore">

<apiDescr:hasType

rdf:resource="swProfiles#OntologyStatement"/>



An ontology for semantic middleware 15

</apiDescr:Input>

</apiDescr:hasParameter>

<apiDescr:hasParameter>

<apiDescr:Output rdf:ID="NoOutput">

<apiDescr:hasType

rdf:resource="swProfiles#NoOutput"/>

</apiDescr:Output>

</apiDescr:hasParameter>

</swApis:StoreTriple>

</apiDescr:hasMethod>

<apiDescr:hasMethod>

<swApis:Query rdf:ID="RDFAPI_Query">

...

</swApis:Query>

</apiDescr:hasMethod>

</swApis:StoreAndQueryAPI>

Furthermore, we declare the technical details of the module. It is deployed
within an Application Server for the Semantic Web as FunctionalComponent
and has some code details as well as an API declaration.

<impl:FunctionalComponent rdf:ID="MM_Impl">

<impl:hasCodeDetails>

<impl:CodeDetails rdf:ID="MM_CodeDetails">

<impl:requiresLibrary rdf:resource="#someLibraryDecl"/>

...

</impl:CodeDetails>

</impl:hasCodeDetails>

<impl:hasInterface rdf:resource="#KAONRDFInterface"/>

</impl:FunctionalComponent>

After providing the syntactic description for the API as shown below, the
�nal step would be writing a grounding of RDFAPI to KAONRDFInterface,
called KAONRDFAPIGrounding.

<idl:Interface rdf:ID="KAONRDFInterface">

<idl:interfaceIdentfier>

edu.unika.aifb.rdf.api.model

</idl:interfaceIdentfier>

<idl:hasOperation>

<idl:Operation rdf:ID="addOp">

<idl:operationIdentifier>add</idl:operationIdentifier>

<idl:hasParameter>

<idl:Parameter rdf:ID="statement">

<idl:parameterIdentifier>statement</idl:parameterIdentifier>



16 D. Oberle, M. Sabou, D. Richards

<idl:typeSpecification>

edu.unika.aifb.rdf.api.model.Statement

</idl:typeSpecification>

</idl:Parameter>

</idl:hasParameter>

<idl:returns>

<idl:OperationType rdf:ID="response">

<idl:hasType>void</idl:hasType>

</idl:OperationType">

</idl:returns>

</idl:Operation>

</idl:hasOperation>

<idl:hasOperation>

<idl:Operation rdf:ID="queryOp">

...

</idl:Operation>

</idl:hasOperation>

</idl:Interface>

The de�nition of the KAON RDF Server is very similar. We provide the same
type of descriptions and we can reuse the RDFAPI (the semantic description of
the API), KAONRDFInterface (the syntactic description) and KAONRDFAPI-
Grounding (the grounding between these two aspects).

When describing Sesame we cannot reuse any API related descriptions from
the previous descriptions. We will only present the semantic description and
show the main di�erence that lies in the type of the loading method.

<swApis:StoreAndQueryAPI rdf:ID="SesameAPI">

<apiDescr:hasMethod>

<swApis:LoadOntology rdf:ID="SesameAPI_LoadOntology">

<apiDescr:hasParameter>

<apiDescr:Input rdf:ID="OntologyForLoad">

<apiDescr:hasType

rdf:resource="swProfiles#Ontology"/>

</apiDescr:Input>

</apiDescr:hasParameter>

<apiDescr:hasParameter>

<apiDescr:Output rdf:ID="LoadedStatements">

<apiDescr:hasType

rdf:resource="swProfiles#LoadedStatements"/>

</apiDescr:Output>

</apiDescr:hasParameter>

</swApis:LoadOntology>

</apiDescr:hasMethod>



An ontology for semantic middleware 17

<apiDescr:hasMethod>

<swApis:Query rdf:ID="SesameAPI_Query">

...

</swApis:Query>

</apiDescr:hasMethod>

</swApis:StoreAndQueryAPI>

Note that the number of inputs in the signature of the method can be di�erent
from the number of inputs in the semantic description. In this particular case,
semantically the only parameter is the ontology to be loaded. However, when it
comes to implementation, there are actually two parameters needed to acquire
the ontology.

6 Conclusions

This paper presented a basic set of ontologies for the semantic description of
software modules. The ontologies are written for software modules in general.
However, they can be used in combination with arbitrary domain ontologies.
Here, we have complemented them with domain ontologies speci�c to Semantic
Web software modules in the context of our semantic middleware called Appli-
cation Server for the Semantic Web. By applying semantics, we are able to allow
reasoning with API descriptions and their interrelationships | which, to the
best of our knowledge, hasn't been o�ered before.

We showed that existing work on describing web services (DAML-S, cf. [3])
serves as a good basis for the extension towards an ontology for describing
software modules in general and Semantic Web software modules in particu-
lar. We've adopted the distinction between pro�le and grounding from DAML-S
and developed our own grounding ontology based on the IDL terminology [10].

We designed the ontologies in a way such that a description of a web service
can easily be adapted to a software module description. In addition, reuse of
API descriptions, which may be grounded di�erently, is supported.

7 Future work

The single ontologies presented in this paper have only been sketched. In a next
step we have to de�ne them concisely, in particular our domain ontologies, i.e.
the Semantic Web API Description and Pro�le. IDL remains to be formalized
as well since only its core was conceptualized and presented.

In the future we plan to detail how the semantic matching will take place.
In contrast to simply querying the registry, semantic matching supports the ap-
plication developer with some intelligence in �nding the desired component (cf.
[16]). For example, semantic matching can aid selection of a particular com-
ponent from among a number of similar components even when the capability
description given by the developer is not precise.



18 D. Oberle, M. Sabou, D. Richards

Another task that was not detailed in this paper and remains to be done is
the mapping to a top-level ontology. We plan to use DOLCE [15] and verify our
mapping with the OntoClean [11] methodology. In the more distant future, we
plan to semi-automatically extract ontological descriptions out of the code.

Acknowledgements This work is �nanced byWonderWeb, an EU Information So-
ciety Technologies (IST) funded project (http://wonderweb.semanticweb.org).
Participants are the University of Manchester, the Vrije Universiteit Amster-
dam, LADSEB-CNR, Padova, Italy and the University of Karlsruhe, Germany.

We would like to thank our colleagues, in particular Sudhir Agarwal, Peter
Haase, Ste�en Staab, Rainer Tellmann and Raphael Volz as well as all Wonder-
Web researchers for fruitful discussions that helped to shape this contribution.

References

1. E. Bozsak, M. Ehrig, S. Handschuh, A. Hotho, A. Maedche, B. Motik, D. Oberle,
C. Schmitz, S. Staab, L. Stojanovic, N. Stojanovic, R. Studer, G. Stumme, Y. Sure,
J. Tane, R. Volz, and V. Zacharias. KAON - towards a large scale Semantic
Web. In K. Bauknecht, A. M. Tjoa, and G. Quirchmayr, editors, E-Commerce
and Web Technologies, Third International Conference, EC-Web 2002, Aix-en-
Provence, France, September 2-6, 2002, Proceedings, volume 2455 of Lecture Notes
in Computer Science. Springer, 2002.

2. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic architec-
ture for storing and querying RDF and RDF Schema. In I. Horrocks and J. A.
Hendler, editors, The Semantic Web - ISWC 2002, First International Semantic
Web Conference, Sardinia, Italy, June 9-12, 2002, Proceedings, volume 2342 of
Lecture Notes in Computer Science. Springer, 2002.

3. M. H. Burstein, J. R. Hobbs, O. Lassila, D. Martin, D. V. McDermott, S. A. McIl-
raith, S. Narayanan, M. Paolucci, T. R. Payne, and K. P. Sycara. DAML-S: Web
service description for the Semantic Web. In I. Horrocks and J. A. Hendler, editors,
The Semantic Web - ISWC 2002, First International Semantic Web Conference,
Sardinia, Italy, June 9-12, 2002, Proceedings, volume 2342 of Lecture Notes in
Computer Science, pages 348{363. Springer, 2002.

4. R. Chinnici, M. Gudgin, J.-J. Moreau, and S. Weerawarana. Web services descrip-
tion language (wsdl). Working Draft, Mar 2003. Working Draft.

5. D. S. Coalition. DAML-S: Semantic Markup for Web Services. DAML-S v. 0.9
White Paper, May 2003.

6. R. P. Diaz. Implementing faceted classi�cation for software reuse. Communications
of the ACM, 34(5):88{97, May 1991.

7. D. Fensel, R. Benjamins, E. Motta, and B. J. Wielinga. UPML: A framework for
knowledge system reuse. In T. Dean, editor, Proceedings of the Sixteenth Interna-
tional Joint Conference on Arti�cial Intelligence, IJCAI 99, Stockholm, Sweden,
July 31 - August 6, 1999. 2 Volumes, 1450 pages, pages 16{23. Morgan Kaufmann,
1999.

8. A. Gangemi, G. Steve, and F. Giacomelli. ONIONS: An ontological methodology
for taxonomic knowledge integration. In Proceedings of ECAI-96 Workshop on
Ontological Engineering, Budapest, August 13th., 1996.



An ontology for semantic middleware 19

9. N. Gibbins, S. Harris, and N. Shadbolt. Agent-based semantic web services. In
Proceedings of the Twelfth International World Wide Web Conference WWW12,
20-24 May 2003, Budapest, Hungary, pages 710{171. ACM, 2003.

10. O. M. Group. Idl / language mapping speci�cation - java to idl, Aug 2002. 1.2.
11. N. Guarino and C. A. Welty. Evaluating ontological decisions with ontoclean.

Communications of the ACM, 45(2):61{65, Feb 2002.
12. O. Lassila and R. Swick. Resource description framework (RDF)

model and syntax speci�cation. W3C Recommendation, Feb 1999.
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

13. D. Oberle, S. Staab, R. Studer, and R. Volz. Supporting application development
in the Semantic Web. Technical report, University of Karlsruhe, Institute AIFB,
2003. http://www.aifb.uni-karlsruhe.de/WBS/dob/pubs/ACM.pdf.

14. D. Oberle, R. Volz, B. Motik, and S. Staab. An extensible open software environ-
ment. International Handbooks on Information Systems. Springer, 2003.

15. A. Oltramari, A. Gangemi, N. Guarino, and C. Masolo. Sweetening ontologies with
dolce. In A. G�omez-P�erez and V. R. Benjamins, editors, Knowledge Engineering
and Knowledge Management. Ontologies and the Semantic Web, 13th International
Conference, EKAW 2002, Siguenza, Spain, October 1-4, 2002, Proceedings, volume
2473 of Lecture Notes in Computer Science. Springer, 2002.

16. M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara. Semantic matching of
web services capabilities. In I. Horrocks and J. A. Hendler, editors, The Semantic
Web - ISWC 2002, First International Semantic Web Conference, Sardinia, Italy,
June 9-12, 2002, Proceedings, volume 2342 of Lecture Notes in Computer Science,
pages 333{347. Springer, 2002.

17. A. G. Perez. A survey on ontology tools. OntoWeb Deliverable 1.3, May 2002.
www.ontoweb.org.

18. P.Massonet and A. Lamsweerde. Analogical reuse of requirements frameworks. In
Proceedidngs of the 3rd IEEE International Symposium on Requirements Engineer-
ing (RE 97), pages 26{39, 1997.

19. R. Volz, D. Oberle, S. Staab, and B. Motik. KAON SERVER - a Semantic Web
Management System. In Proceedings of the Twelfth International World Wide Web
Conference WWW12, Alternate Tracks, Practice and Experience, 20-24 May 2003,
Budapest, Hungary, 2003.

20. H. C. Wong and K. Sycara. A taxonomy of middle-agents for the internet. In
Proceedings of the Fourth International Conference on MultiAgent Systems, pages
465 { 466, July 2000.

21. C. Wroe, R. Stevens, C. Goble, A. Roberts, and M. Greenwood. A suite of
DAML+OIL ontologies to describe bioinformatics web services and data. Interna-
tional Journal of Cooperative Information Systems, 12(2):197{224, 2003.

22. A. M. Zaremski and J. M. Wing. Speci�cation matching software components.
ACM Transactions on Software Engineering and Methodology, 1997.



2
0

D
.
O
b
er
le
,
M
.
S
a
b
o
u
,
D
.
R
ic
h
a
rd
s

Software Module
Implementation

SoftwareModule-
Grounding

SoftwareModule-
Profile

Software Module

Generic Ontology

DAML-S Profile´

Profile
hasAPIDescription APIDescription

API Description

hasMethod

Method

Parameter

...

ServiceParameter

service-
Parameter

IDL Grounding

IDLGrounding

InterfaceGrounding

MethodGrounding

InputGrounding

OutputGrounding

Component

Functional-
Component

System-
Component

Proxy-
Component

Interface

Operation

Parameter

hasOperation

returns

IDL

Code-
Details

Library

requires

. . .

Implementation

Generic

Intermediate

Domain

SoftwareModule-
Implementation

(sub)ontology

property

concept

uses ontology

subconcept

Actor

contactInfo

name
...

hasParameter

Thing
hasType

Input Output Precondition Effect

hasInterfaceGrounding

mapsInterface

hasOutputGrounding

hasMethodGrounding

OperationType

String

Type + void Type

typeSpecification hasType

parameterIdentifier

operationIdentifier

interfaceIdentifier

mapsOperation

mapsParameter
hasInputGrounding

mapsReturnType

mapsMethod

mapsInput
mapsOutput

mapsAPI

hasInterface

Interceptor

requiresLibrary

deployedWith

. . .

. . .

hasCodeDetails

presents

supports
presentedBy implementedBy

implements

supportedBy

SoftwareModule

OntologyStore

Semantic Web Profiles

QueryEngine

Datatypes

Reification
...

.

.

.

StoreAPI

Semantic Web API Description

QueryAPI

queryLanguage

...
representationLanguage

Store

Retrieve
.

.

.

.

.

.

.

.

.

.

.

.

StoreAndQueryAPI

hasMethod

hasMethod
StoreTriple StoreOntology


