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ABSTRACT

In this paper we describe an infrastructure for query ansgever
distributed ontologies on the Semantic Web. This infrastme ad-
dresses (i) the coordination of multiple nodes using metealaout
the provided resources managed in a decentralized registryii)
the mediation between heterogeneous ontologies via aegsipe
mapping formalism along with corresponding reasoningrélgms
for query answering. Our approach is based on a virtual iateg
tion that exhibits a semantics as if all ontologies weregraged
locally. Practically, the distributed ontologies stillside on the
remote peers, and only the parts relevant for answering ukeyq
need to be retrieved to the local node. Experimental evialst
with the implementation in KAONp2p show that the approach is
very promising, as the performance of query answering isress
tially dominated by the size of the data, and only slightfieeted
by the degree of distribution and heterogeneity.

1. INTRODUCTION

The realization of real-life applications in the SemantieiVe-
quires the ability to deal with heterogeneous ontologiagrfrented
and distributed over multiple autonomous nodes. In receats/
much progress has been made in providing efficient and dealab
reasoning support over expressive ontologies: We now havena
ber of reasoners such as RacetPRellet [19], KAONZ that allow
to handle ontologies with reasonable size and complexitgw-H
ever, these reasoners typically assume centralized anddckeet-
tings, where a number of known ontologies are integratechin o
local node. We argue that a decentralized infrastructutiehbee-
flects the spirit of the open Semantic Web, where ontologieslia-
tributed over a number of autonomous nodes. When dealirtg wit
such decentralized infrastructures, we need to considemer
of arising challenges that are currently not addressed fitrale
ized reasoners. The first fundamental challenge is the twafon
of autonomous nodes, i.e. the ability to manage the orgtoizaf
the interaction between nodes. In the case of completelyalared
architectures, one node has complete control over all atbdes,
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whereas in completely decentralized architectures tisene icen-
tral control and all nodes act autonomously. A particuldmyor-
tant coordination task is that of discovering and seleatasgurces
relevant for answering queries as well as routing of regueésow
do you find the right nodes that are able to answer a given guery
decentralized system in a scalable manner without any alersd
servers or hierarchy?

Related to the problem of autonomy is that of heterogen@iby:
enable interoperability between nodes in large distrithiriéorma-
tion systems based on heterogeneous ontologies, it iss@ge®
specify how the ontologies residing at a particular nodesspond
to ontologies residing at another nodes. It is also necgssdor-
mally define the notion of a mapping between ontologies.

Finally, we need reasoning algorithms that can efficiendgld
with ontologies distributed over multiple nodes, takingiaccount
the semantics of the mappings between the individual ogieto
For efficiency reasons it is important to devise methodsdbatot
require the integration of ontologies in a single node, bat bnly
retrieve the information relevant for the particular redsg task.

In this paper we propose an infrastructure, in which we aidre
these challenges in an integrated manner to realize quewean
ing over heterogeneous OWL DL ontologies distributed oval-m
tiple nodes. This infrastructure builds on, extends andgrates
a number of prior techniques we have developed in the context
of distributed metadata management and reasoning. In ¢oder
deal with the coordination the nodes we rely on metadatatabou
nodes and their provided resources to support their intzetipn
and coordination. In our approach, nodes advertise demarp
of their resources and can thus establish acquaintanchsothier
nodes. Each node maintains the metadata about availableces
in its own local registry in a completely decentralized memi\c-
quainted nodes can then share data and coordinate theadtite.
To be able to integrate heterogeneous ontologies, we peopos
expressive mapping formalism in which mappings are express
as correspondences between queries over source and tatgjet o
gies. An important aspect of this mapping formalism is thebes
not rely on the notion of a global ontology, as known in cleakin-
tegration systems based on LAV or GAV (Local-As-View, Glbba
As-View). Instead, mappings can be formulated in any dioact
between arbitrary nodes. We have implemented the reasaming
frastructure in KAONp2p, extending the OWL reasoner KAON2.

The paper is organized as follows: In Section 2 we discuss sev
eral dimensions of related work. In Section 3 we present a gen
eral overview of the KAONp2p infrastructure. In the subsatu
sections we discuss the aspects of metadata and resowectsel
(Section 4), the mapping formalism and the algorithms fagrgu
answering (Section 5). In Section 6 we present evaluatisult®e
We conclude with an outlook to future work in Section 7.

2. RELATED WORK



There are several threads of research work that are retatad t
work: (1) The use of semantics and metadata and corresgpndin
registries for the coordination and organization of distted infor-
mation systems, (2) representation of mappings for onyointe-
gration, and (3) approaches to distributed reasoning.

The use of metadata for addressing coordination problerss ha
a history in different communities. In the past, there hagerb
various proposals for modeling metadata of ontologies. otuf
nately, none of them has been accepted as a standard, some prc
posals, such as Dublin Core, were too general, others ware li
ited in applicability. [14] has proposed an ontology metdetogy
(OMO) for a distributed ontology registry. The focus of treg+
istry is on locating, re-using and evolving existing ontpts rather
than supporting particular reasoning tasks. Semantieseptation
of resources have further been successfully applied tonargalis-
tributed systems witeemantic overlay networkin these semantic
overlay networks, links are created according to semaelation-
ships between the nodes. The neighborhood thus mirrorsngiema
relationships between the peers. For example, Gridvinei$¢p
the semantic overlay for managing and mapping data and atetad
schemas, on top of a physical layer consisting of a strudtBieer-
to-Peer overlay network called P-Grid. A similar approactaken
in our infrastructure, where nodes maintain a registry wittta-
data about acquainted nodes, which is used to select r¢levdas
and ontologies for answering a given query.

The task ofontology integratiorusing mappings is very related
to that of data integration in databases. In [13] the autitooduces
a general framework for data integration and comparesiegist
approaches to data integration (GAV, LAV) along this frarogw
The work on data integration has been extended and re-dpplie
ontology integration in [3]. Here the authors follow the sdial
distinction between LAV and GAV approaches and outline guer
answering algorithms for these specific settings. In cehtathis
work, query answering in our ontology integration systenmas
bound to these restricted forms of mappings. Further, ia ohé-
gration the languages to describe the sources and targetgpir
cally very restricted (e.g. express the schemas as plaitiaes).

With respect to query processing over distributed dataetisea
large amount of related work in the area of Peer-to-Peebedats,
such as [20], [2], [5]. However, most of the work in Peer-&eP

databases assumes that queries can be answered by simply for

warding the query to other nodes and aggregate the answers af
terwards. Such an approach is not sufficient for distribuded
tologies. Consider the simple example of two knowledge dase
K, = {Student T Person} and Ko = {Student(paul)}.
Evaluating the quer@)(z) := Person(z) against eithekK; or K>

will return no result; only the combination of the knowledufef;

and K> will return the desired result. In description logics termi
nology, Peer-to-Peer databases only allow to deal withibiiged
A-Boxes. On the other hand, reasoners for distributed gtsnT
logics such as Drago [18] currently provides no support fam-h
dling assertional knowledge at all.

3. OVERVIEW OF KAONP2P

In this section, we present a brief overview of KAONp2@ghe
general architecture of a single KAONp2p node interactirith w
remote nodes is shown in Figure 1. In the following, we discus
the individual components of the system architecture.

The Local Repositoryof a node contains the ontologies it pro-
vides to the network along with mappings that relate hetmegus
ontologies available in the network. It is important to nttat

3The system is freely available for download http://
kaonp2p. ont owar e. or g/ .
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Figure 1: Overview of KAONp2p Architecture

mappings are first-class objects in the system that can bedha
with other nodes.

TheQuery Manageis the component responsible for answering
queries against the available ontologies in the networkguesies
we consider conjunctive queries over OWL DL ontologies. The
query process can be divided into two steps:

1. Resource selectionThe goal of the resource selection is to
identify resources in the network that are relevant to answe
a particular user query. This process is governed by selec-
tion algorithm that matches the subject of the query against
resource descriptions stored in thtetadata Registry The
Metadata Registry maintains metadata about resourcds avai
able (i.e. peers, ontologies, and mappings), which may be
accessible either locally or remotely in the network. The re
sources are described using the metadata ontology degcribe
in Section 4. The result of the selection process is a "virtua
ontology” that logically integrates relevant ontologiesda
mappings required to mediate between the heterogeneous on-
tologies in the network, represented using the mapping for-
malism described in Section 5.

. Query answering. In the second step, the query is evalu-
ated against the virtual ontology within tfiReasoning En-
gine In our implementation, we rely on KAON2 as a rea-
soner. The reasoning algorithms of KAON2 do not require
the integrated ontologies to be materialized locally,éadt
the distributed ontologies still reside on the remote serve
and only relevant parts need to be retrieved to the local.node
The details of this process will be explained in Section 5.

The Peer-to-Peer network sub-laygrrovides communication
services for the data exchange with remote nodes, i.e. feapro
gate advertisement messages and to realize the accessdterem
ontologies. In the implementation of KAONp2p, we rely on an
RMI-based implementation, however, other communicatiang
cols would be possible as well.

By means of theKAONp2p user interface and APlisers can
pose queries, receive answers to queries and control tHeygon
ration of the system. While in the user interface queriesigae
are formulated in a visual manner, they are passed to the &Pl a
conjunctive queries in SPARQL.

4. METADATA FOR DISTRIBUTED ON-
TOLOGIES

In this section we present a brief overview of our ontology fo
the representation of metadata about nodes in the networkhan
resources they provide, i.e. the ontologies. We also shawthe
task of resource selection is realized using this metadataany.
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Figure 2: Overview of the P-OMV Ontology

In this approach, the nodes advertise descriptions of tasgurces
and can thus establish acquaintances with other nodes.aftgd
nodes can then share data and coordinate their interaction.

4.1 Ontology and Peer Metadata

For the description of ontology metadata we rely on OMV, the
Ontology Metadata Vocabulary [10]. In the following we piae
an overview of the main properties of the OMV ontology with a
focus on the properties relevant for the problem of resodiseov-
ery and selection. For a complete reference and the congiete
ogy we refer the reader tit t p: / / onv. ont owar e. or g/ . We
model various types of metadata of ontologies, which we ¢zst ¢
sify asDescriptive metadataProvenance metadat@out the cre-
ation processPependency metadataanaging relationships with
other ontologies such as compatibility, aBthatistical metadata
e.g. about the size of the ontology in terms of ontology elasie
axioms etc.

Descriptive metadata the most important type of metadata for
the discovery and selection of ontologies. Descriptiveatiata re-
lates to the domain modeled in the ontology in form of keywsord
topic classifications, textual descriptions of the ontglagntents
etc. It includes thename by which the ontology is known, the
| anguage, itst ype (e.g. top-leve| core task domain andap-
plication ontology, and thesubj ect : The subject of an ontology
provides a classification in terms of the domain. The subigct
expressed as a classification against established topirtines,
such as the general purpose topic hierarchy DM®Zthe domain
specific ACM topic hierarchyfor the computer science domain.

Besides the ontology themselves, the second importaniness
to describe are the nodes managing and providing thesariafor
tional resources, which we caleersin our metadata ontology. The
extensions required to model metadata of peers are realzead
extension to the OMV ontology, called P-OMV. Figure 2 shows a
overview of the P-OMV ontology. The metadata required to de-
scribe peers include descriptive information about theptem-
selves, their relationship with other peers, as well asrmédion
about the resources they provide:

Each peer carries a unique IDI(D) to be identified. Depend-
ing on the underlying communication infrastructure of tieéwork
sublayer, different addressing schemes may be appliecurlime
plementation of KAONp2p, we simply use IP addresses. In ad-
dition to the unique identifier, each peer carriesaare for iden-
tification, which is primarily used for human interpretatioThe
experti seis an abstract description of the peer in terms of some
topic ontology. Depending on the application scenario,etkger-
tise of the peer can be the subjects of the ontologies thateabe
provides, or a more generic description of expertise.

*http://dnoz. org/
Shttp://ww. acm org/ cl ass/

The propertyacquai nt edW t h describes the acquaintances
of a peer with other peers. The Peer-to-Peer network then
consists of local peers, each with a set of acquaintances,
which define the Peer-to-Peer network topology. The prgpert
provi desOnt ol ogy describes the relationship between the
peer and the ontologies provided by the peer. It is essefatial
locating relevant information resources in the network.

The propertypr ovi desMappi ng: is used to describe which
mappings between ontologies a peer provides. Mappings are
used to describe the correspondences between differesibgigs
provided by the peers. The propertigsur ceOnt ol ogy and
t ar get Ont ol ogy specify the ontologies that are being mapped.
In general, mappings need not be symmetric, a distinctitmden
mapping source and target is therefore required. The proper
mappi nglLanguage is used to indicate the language that is used
to express the mapping. In KAONp2p we rely on the formalism
for ontology mappings presented in Section 5, which can be ex
pressed in SWRL. However, other languages may be used for the
representation of ontology mappings.

4.2 Discovery and Selection of Resources

In our approach to resource discovery and selection we fol-
low the successful approach of expertise-based peer iseig8j,
which have already been applied in the Peer-to-Peer syddms
ster [7] and Oyster [16]. In this approach, peers advertie# te-
source descriptions according to the metadata ontologyemét-
work to form acquaintances. Communication autonomy insplie
that peers are fully autonomous in choosing their acquadets
Moreover, we assume there is no global control in the form of a
global registry to manage acquaintances. Acquaintaneesan-
aged in a decentralized manner, i.e. by the individual psargu
its metadata registry. For the selection of resources wer tifee
options: (1) a manual selection, where the user can choeseth
sources relevant to his query, (2) a trivial selection tihatudes
all resources known in the registry, and (3) an automatest8eh
of resources based on matching the subject of a query ancthe e
pertise according to their semantic similarity, which ssnas an
indicator for relevance. A subject is an abstraction of agiguery
expressed in a set of terms from the metadata ontology. Tihe su
ject can be seen as a complement to an expertise descrigsidn,
specifies the required expertise to answer the query. Weorely
the notion of a similarity function as defined in [4]. The diaity
function determines the semantic similarity between aesitind
an expertise description. As such, an increasing valueaeis in-
creasing similarity and relevance. The resource seleatgorithm
returns a ranked set of resources, where the rank value & txu
the similarity value provided by the similarity functionofFexam-
ple, to answer a query about the subjecbatabasesthe resource
selection might identify a peer who provides an ontologiesua
the subject of the ACM topic information Systems / Database
Managemenas relevant. For the details of the selection process,
we refer the reader to [9]. In addition to the selected omfiels,
available mappings are identified that relate the heteemenre-
mote ontologies to the target ontology against which thegise
expressed. The relevant resources are integrated in tiiahim-
tology, which will be used in the second step of query angvgeri
described in the following Section.

5. MAPPINGS AND QUERY ANSWERING
OVER DISTRIBUTED ONTOLOGIES
To enable interoperability between nodes in large disteithin-
formation systems based on heterogeneous ontologiesnéds

essary to specify how the data residing at a particular nade c
responds to data residing at another node. This is formalhed



using the notion of a mapping. There are three lines of work co
nected to the problem of mapping: (1) identifying corresfentes
between heterogeneous data sources, (2) representirgdbres-
spondences in an appropriate mapping formalism, and (Bgusi
the mappings for a given integration task. We here focus en th
latter two important problems once the correspondenceseest
data sources are known: those of representing the mappsigs u
ing an appropriate formalism and using them for the task efyu
answering over heterogeneous data sources.

We follow the general framework of [13] to formalize the rooti
of a mapping system for OWL DL ontologies, where mappings are
expressed as correspondences between conjunctive Jueviss
ontologies. The components of this mapping system are treeso
ontology, the target ontology, and the mapping between them

DEFINITION1 (OWL DL MAPPING SYSTEM). An
OWL DL mapping systeotvS is a triple (S, 7, M), where

e Sisthesource OWL DL ontology7 is thetarget OWL DL
ontology,

e M is the mapping betwee$i and 7, i.e. a set of assertions
qs ~ qr, Wheregs and gr are conjunctive queries ove?
and 7, respectively, with the same set of distinguished vari-
ablesx, and~ € {C,J,=}.

An assertionys C gr is called asoundmapping, requiring that
gs is contained byyr w.r.t. S U 7; an assertiongs 3 gr is called
a completemapping, requiring thagr is contained bygs w.r.t.
S U T; and an assertiorys = gr is called anexactmapping,
requiring it to be sound and complete.

Let us discuss the expressiveness in terms of the ontolagy la
guage, the query language and the assertions. The exgressiv
ness of conjunctive queries corresponds to that of the kvewn
select-project-join queries in relational databases. Hpaal ap-
proaches to specify mappings are thebal-as-view(GAV) ap-

The first class of mappings captures the mappings that can be
directly expressed in OWL DL. This is the casejifandq; are of
the form P;(x) and P:(x), whereP, and P; are DL predicates: If
gs andg. are of the formPs(x) and P;(z) and Ps, P; are DL con-
cepts, the mapping corresponds to the equivalent concelpsiaon
axiom. Ifgs andg; are of the formPs(x1, z2) andP:(x1, z2), with
P, and P; are abstract or concrete roles, the mapping corresponds
to the equivalent role inclusion axiom.

The second class of mappings captures the so-célledafe
Mappings. Let us consider a sound mappigg T ¢’ with the
assertionvx : gr(x,yr) < ¢s(x,ys). In our restriction, we
disallow the use of non-distinguished variables in the qugr,

i.e. restrict the assertions to the fok : gr(x) «— gs(x,ys) ®
and require the querys to be DL-safe, thus limiting the applica-
bility of the rules to known individuals. Thus obtained maqys
correspond to (one or more) DL-safe rules, for which efficidn
gorithms for query answering are known [15].

We now show how to use an OWL DL mapping system for query
answering in amntology integration systernwhose main task is to
provide integrated access to a set of distributed souradagies.
The integration is realized via a mediated target ontoldggugh
which we can query the local ontologies.

DEFINITION 2. For a set of local source ontologies
Si1,...,8n, a target ontology7Z and corresponding mapping
systems\Sy, ..., MS, with MS; = (S;, 7, M;), anontology
integration systenZ S is again a mapping syste(s, 7, M) with

S =Uieqr..ny SiandM = U,y .,y Mi. The main inference
task forZS is to compute answers 6J(x,y) W.rt. SU7 U M,
for Q(x,y) a conjunctive query over .

Please note that because of the absence of a global onttthogyy,
form of ontology integration system can be directly appliedie-
centralized integration: For our set of autonomous nodas) ee-
lying on some local ontology, and a set of mappings thateetzat
local ontology to those of other nodes, an ontology intégnagys-
temZS = (S, 7T, M) can easily be constructed for each individual

proach, where elements of the target are described in tefms o node, whereS consists of the ontologies of the remote node to be

queries over source, and tleeal-as-view(LAV) approach, where
elements of the source are described in terms of queriestawer

integrated,7 is the ontology of the local node, aodl consists of
the individual mappings systems describing the correspoces

get. Our mapping system subsumes the approaches of GAV, LAV. between the local ontology with remote ontologies. Thisstarc-

In fact, it corresponds to the GLAV approach, which is more ex
pressive than GAV and LAV combined.

tion is performed during the resource selection processritbesi
in Section 4.2, which selects the relevant source ontatafiand

In [8] the semantics of the mapping system has been defined bythe required mappings1.

translation into first-order logic. We here only discuss -
itions behind the semantics of the main inference task\ts, i.e.
computing answers for a conjunctive quéyx,y) w.r.t. MS. To
understand the intuition of computing answers, we brieftalie¢he
the semantics of query answering as defined in [13]: An ansiver
a conjunctive querny)(x,y) w.r.t. KB is an assignmer of in-
dividuals to distinguished variables, such théB E Q(x0,y).
Thus, the intuitive reading of this semantics is that an ansoé

a query needs to be entailed by the source ontol®gthe target
ontology 7 and the mappingd. This semantics is equivalent to
the usual model theoretic semantics (e.g. in [3]) based eal bnd
global models, where a query answer must be an answardry
global model.

As query answering within such a mapping system is unde-
cidable in this generality, we have identified classes of pivays
that introduce restrictions required to attain decidapilThese re-
stricted, but still very expressive mappings, can be exagither
directly in OWL DL, or in OWL DL extended with the so-called
DL-safesubset of the Semantic Web Rule Language (SWRL) [15].

®We denote a conjunctive query aéx,y), with x andy sets of
distinguishedandnon-distinguishedariables, respectively.

We now discuss how to compute answers to a conjunctive query
Q(x,y) in an ontology integration systefiS. The algorithm is
based on the correspondence between description logicdisnd
junctive datalog from [11]. Given an OWL DL knowledge base
KB (without nominals) extended with DL-safe rules, a positive
disjunctive datalog progra®D(KB) is produced, which entails
exactly the same set of ground facts/é®, i.e. KB | A if and
only if DD(KB) = A, for A a ground fact. Thus, query answering
in KB is reduced to query answering D (K B), which can be
performed efficiently using the techniques of (disjundtisleduc-
tive databases. Query answering can be performed in time- exp
nential in the size oK B. Furthermore, as shown in [12], the data
complexity of these algorithms (i.e. the complexity asswgrthe
size of the schema is fixed) BP-complete, or even P-complete if
disjunctions are not used.

Based on these results, we are able to perform query answer-
ing in the ontology integration system by converting it iatalis-
junctive datalog program. The source ontology, target logio

"For a complete mappings J gr, the situation is analogous, with
the roles ofgs andqr reversed.

8Please note that these assertions correspond to SWRL rules.



and the mappings are converted into a disjunctive datalog pr
gram, and the original query is answered in the obtainedrprog
DD(SUT UM). By the results from [11, 15], itis easy to see that
the algorithm exactly computes the answet)i,y) in ZS.

From the above definition, one might get the impression that
our algorithm requires that all source and target ontobgirist
be physically integrated into one mapping system in ordearto
swer queries. This is, of course, not the case. More corigréte
computeDD(S U7 U M), it is necessary to physically integrate
the TBox part ofS, 7 and M. Since the TBox are typically much
smaller than the data, this does not pose practical probléxs
cessing actual data sources (i.e. the ABoxes) is then gesemmn
the chosen strategy for evaluating the datalog program.rdo-p
tice, we only need to access the extensions of those predifram
remote nodes that are actually relevant for the datalogranog

6. EVALUATION

In this section we present experimental results for thevawain
of the KAONp2p infrastructure. In this evaluation we focustbe
second part of the query processing, i.e. the actual quemyenng
against a set of relevant resources. Please note that $osetbond
part, the number of nodes will be typically much smaller thiza
number of nodes under consideration for the resource smiect
For evaluation regarding the first step of resource selectioth
several thousands of nodes), we refer to evaluations eghor{7]
and [9].

In our first experiment we have used the Lehigh University
Benchmark (LUBM) [6] to evaluate the performance and scala-
bility in terms of the distribution. We deployed eight phyaly
distributed KAONp2p nodes, each of which holding a differaum-
tomatically generated data set according to the LUBM omjylo
(describing instance data of one university, approxinyad®B of
OWL/RDF data). We selected three typical SPARQL queriesifro
the LUBM benchmark of different complexity:

SELECT ?x WHERE { ?x rdf:type ub: Graduat eStudent }

SELECT ?x ?y WHERE { ?x rdf:type ub: Assi stantProfessor .
?y rdf:type ub: Publication . ?y ub:publicationAuthor ?x}

SELECT ?x ?y ?z WHERE { ?x rdf:type ub: G aduateStudent .
?y rdf:type ub: University . ?z rdf:type ub: Departnent .
?x ub: menberOf ?z . ?z ub:subOrgani zati onOf ?y .

?x ub: under gr aduat eDegr eeFrom ?y }

We then used an additional node to perform the queries aghims
knowledge bases of 1..8 manually selected nodes. Figurevgssh
the results of the execution times for the query answeringe T
main observation is that in this particular scenario, theetfor an-
swering queries increases approximately linearly withrthember
of nodes and thus the size of the data set. The additiona¢eexr
distribution does not incur a performance penalty.

In a second experiment we evaluated the additional costs in-

troduced by the heterogeneity between the nodes. In thisriexp
ment, we deployed two nodes, one with an automatically geeer
LUBM data set, another one with an SWKG@ata set, contain-
ing real life data from the University of Karlsrutle Further, we
defined mappings according to our mapping formalism to eelat
the LUBM ontology with the SWRC ontology in both directions.
We then used an additional node to perform queries agaipst th

node providing the SWRC data set as source ontology, where in

a first case the query is expressed in terms of the same target o

%ht t p: // ww. | ehi gh. edu/ ~zhp2/ 2004/ 0401/ uni v- bench. ow
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tology in a homogeneous setting (SWRC - SWE@nd in a sec-
ond case the query is expressed against a different targ@ogn
(LUBM - SWRC) in a heterogeneous setting. We repeated the ex-
periment queries against the node providing the LUBM datase
source ontology, which we again queried with LUBM as target o
tology (LUBM - LUBM) and SWRC as target ontology (SWRC -
LUBM). Figure 4 shows the results for the query executioreBm
We observe that the time needed for query answering incseadg
slightly for the case where the source and target ontologjiéer
and thus mappings are required. The reason lies in the faictité
mappings are only used in the computation of the datalogramg
which is neglectable compared to the evaluation of the progr
This makes our approach especially applicable for scenari®re
mappings between heterogeneous ontologies are required.
Summarizing, the evaluation results show that in approheh t
performance of query answering is essentially dominatedhby
size of the data, and only slightly affected by the degreeasifidu-
tion and heterogeneity. In fact, it shows a performance cuaige
to a setting where data resides on a single, homogeneous node

7. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced KAONp2p, a Peer-to-Peer sys
tem for query answering over distributed ontologies in déed-
ized networks. This infrastructure addresses (i) the doatihn of

12For SWRC as target ontology we rephrased the three queries

above in terms of SWRC.



multiple nodes using metadata about the provided resounees
aged in a decentralized registry, (ii) the mediation betwetero-
geneous ontologies via an expressive mapping formalismedis w
as corresponding reasoning algorithms for query answering

The query processing follows a two-step process consisting
(1) the selection of relevant resources based on metadatagad
in a metadata registry, (2) query answering against reteran
sources, which are integrated using a virtual ontologycivihbgi-
cally imports relevant ontologies and mappings. This airinte-
gration provides global model semantics as if all ontolsgiere
integrated locally. Practically, the distributed ontaksystill reside
on the remote nodes, and only the parts relevant for ansgvérn
query need to be retrieved to the local node. Our evaluaésnlts
show that the approach is very promising as performance efyqu
answering is essentially dominated by the size of the dathpaly
slightly affected by the degree of distribution and heteragty. In
fact, the performance is comparable to settings where tteerda
sides on a single, homogeneous node.

There are several directions of future work: As we currently
assume that mappings between heterogeneous already exist a
ori, an obvious improvement would be the use of automated map
ping tools for the online discovery of mappings between logiies.
Further, we consider the use of alternative mapping fosma[iL7]
with different characteristics with respect to expressass, do-
main assumptions, and dealing with local inconsistendtazally,
we will investigate other relations between networked logfies,
including modularization and version relationships, fdrieth our
existing reasoning algorithms need to be extended.
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