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ABSTRACT
In this paper we describe an infrastructure for query answering over
distributed ontologies on the Semantic Web. This infrastructure ad-
dresses (i) the coordination of multiple nodes using metadata about
the provided resources managed in a decentralized registryand (ii)
the mediation between heterogeneous ontologies via an expressive
mapping formalism along with corresponding reasoning algorithms
for query answering. Our approach is based on a virtual integra-
tion that exhibits a semantics as if all ontologies were integrated
locally. Practically, the distributed ontologies still reside on the
remote peers, and only the parts relevant for answering the query
need to be retrieved to the local node. Experimental evaluations
with the implementation in KAONp2p show that the approach is
very promising, as the performance of query answering is essen-
tially dominated by the size of the data, and only slightly affected
by the degree of distribution and heterogeneity.

1. INTRODUCTION
The realization of real-life applications in the Semantic Web re-

quires the ability to deal with heterogeneous ontologies fragmented
and distributed over multiple autonomous nodes. In recent years
much progress has been made in providing efficient and scalable
reasoning support over expressive ontologies: We now have anum-
ber of reasoners such as RacerPro1, Pellet [19], KAON22 that allow
to handle ontologies with reasonable size and complexity. How-
ever, these reasoners typically assume centralized and closed set-
tings, where a number of known ontologies are integrated in one
local node. We argue that a decentralized infrastructure better re-
flects the spirit of the open Semantic Web, where ontologies are dis-
tributed over a number of autonomous nodes. When dealing with
such decentralized infrastructures, we need to consider a number
of arising challenges that are currently not addressed in central-
ized reasoners. The first fundamental challenge is the coordination
of autonomous nodes, i.e. the ability to manage the organization of
the interaction between nodes. In the case of completely centralized
architectures, one node has complete control over all othernodes,

1http://www.racer-systems.com/
2http://kaon2.semanticweb.org/
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whereas in completely decentralized architectures there is no cen-
tral control and all nodes act autonomously. A particularlyimpor-
tant coordination task is that of discovering and selectingresources
relevant for answering queries as well as routing of requests: How
do you find the right nodes that are able to answer a given queryin a
decentralized system in a scalable manner without any centralized
servers or hierarchy?

Related to the problem of autonomy is that of heterogeneity:To
enable interoperability between nodes in large distributed informa-
tion systems based on heterogeneous ontologies, it is necessary to
specify how the ontologies residing at a particular node correspond
to ontologies residing at another nodes. It is also necessary to for-
mally define the notion of a mapping between ontologies.

Finally, we need reasoning algorithms that can efficiently deal
with ontologies distributed over multiple nodes, taking into account
the semantics of the mappings between the individual ontologies.
For efficiency reasons it is important to devise methods thatdo not
require the integration of ontologies in a single node, but that only
retrieve the information relevant for the particular reasoning task.

In this paper we propose an infrastructure, in which we address
these challenges in an integrated manner to realize query answer-
ing over heterogeneous OWL DL ontologies distributed over mul-
tiple nodes. This infrastructure builds on, extends and integrates
a number of prior techniques we have developed in the context
of distributed metadata management and reasoning. In orderto
deal with the coordination the nodes we rely on metadata about
nodes and their provided resources to support their interoperation
and coordination. In our approach, nodes advertise descriptions
of their resources and can thus establish acquaintances with other
nodes. Each node maintains the metadata about available resources
in its own local registry in a completely decentralized manner. Ac-
quainted nodes can then share data and coordinate their interaction.
To be able to integrate heterogeneous ontologies, we propose an
expressive mapping formalism in which mappings are expressed
as correspondences between queries over source and target ontolo-
gies. An important aspect of this mapping formalism is that it does
not rely on the notion of a global ontology, as known in classical in-
tegration systems based on LAV or GAV (Local-As-View, Global-
As-View). Instead, mappings can be formulated in any direction
between arbitrary nodes. We have implemented the reasoningin-
frastructure in KAONp2p, extending the OWL reasoner KAON2.

The paper is organized as follows: In Section 2 we discuss sev-
eral dimensions of related work. In Section 3 we present a gen-
eral overview of the KAONp2p infrastructure. In the subsequent
sections we discuss the aspects of metadata and resource selection
(Section 4), the mapping formalism and the algorithms for query
answering (Section 5). In Section 6 we present evaluation results.
We conclude with an outlook to future work in Section 7.

2. RELATED WORK



There are several threads of research work that are related to our
work: (1) The use of semantics and metadata and corresponding
registries for the coordination and organization of distributed infor-
mation systems, (2) representation of mappings for ontology inte-
gration, and (3) approaches to distributed reasoning.

The use of metadata for addressing coordination problems has
a history in different communities. In the past, there have been
various proposals for modeling metadata of ontologies. Unfortu-
nately, none of them has been accepted as a standard, some pro-
posals, such as Dublin Core, were too general, others were lim-
ited in applicability. [14] has proposed an ontology meta-ontology
(OMO) for a distributed ontology registry. The focus of the reg-
istry is on locating, re-using and evolving existing ontologies rather
than supporting particular reasoning tasks. Semantic representation
of resources have further been successfully applied to organize dis-
tributed systems withsemantic overlay networks. In these semantic
overlay networks, links are created according to semantic relation-
ships between the nodes. The neighborhood thus mirrors semantic
relationships between the peers. For example, Gridvine [1]uses
the semantic overlay for managing and mapping data and metadata
schemas, on top of a physical layer consisting of a structured Peer-
to-Peer overlay network called P-Grid. A similar approach is taken
in our infrastructure, where nodes maintain a registry withmeta-
data about acquainted nodes, which is used to select relevant nodes
and ontologies for answering a given query.

The task ofontology integrationusing mappings is very related
to that of data integration in databases. In [13] the author introduces
a general framework for data integration and compares existing
approaches to data integration (GAV, LAV) along this framework.
The work on data integration has been extended and re-applied to
ontology integration in [3]. Here the authors follow the classical
distinction between LAV and GAV approaches and outline query
answering algorithms for these specific settings. In contrast to this
work, query answering in our ontology integration system isnot
bound to these restricted forms of mappings. Further, in data inte-
gration the languages to describe the sources and targets are typi-
cally very restricted (e.g. express the schemas as plain relations).

With respect to query processing over distributed data, there is a
large amount of related work in the area of Peer-to-Peer databases,
such as [20], [2], [5]. However, most of the work in Peer-to-Peer
databases assumes that queries can be answered by simply for-
warding the query to other nodes and aggregate the answers af-
terwards. Such an approach is not sufficient for distributedon-
tologies. Consider the simple example of two knowledge bases
K1 = {Student ⊑ Person} and K2 = {Student(paul)}.
Evaluating the queryQ(x) := Person(x) against eitherK1 or K2

will return no result; only the combination of the knowledgeof K1

andK2 will return the desired result. In description logics termi-
nology, Peer-to-Peer databases only allow to deal with distributed
A-Boxes. On the other hand, reasoners for distributed description
logics such as Drago [18] currently provides no support for han-
dling assertional knowledge at all.

3. OVERVIEW OF KAONP2P
In this section, we present a brief overview of KAONp2p3. The

general architecture of a single KAONp2p node interacting with
remote nodes is shown in Figure 1. In the following, we discuss
the individual components of the system architecture.

The Local Repositoryof a node contains the ontologies it pro-
vides to the network along with mappings that relate heterogeneous
ontologies available in the network. It is important to notethat

3The system is freely available for download athttp://
kaonp2p.ontoware.org/.
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Figure 1: Overview of KAONp2p Architecture

mappings are first-class objects in the system that can be shared
with other nodes.

TheQuery Manageris the component responsible for answering
queries against the available ontologies in the network. Asqueries
we consider conjunctive queries over OWL DL ontologies. The
query process can be divided into two steps:

1. Resource selection.The goal of the resource selection is to
identify resources in the network that are relevant to answer
a particular user query. This process is governed by selec-
tion algorithm that matches the subject of the query against
resource descriptions stored in theMetadata Registry. The
Metadata Registry maintains metadata about resources avail-
able (i.e. peers, ontologies, and mappings), which may be
accessible either locally or remotely in the network. The re-
sources are described using the metadata ontology described
in Section 4. The result of the selection process is a ”virtual
ontology” that logically integrates relevant ontologies and
mappings required to mediate between the heterogeneous on-
tologies in the network, represented using the mapping for-
malism described in Section 5.

2. Query answering. In the second step, the query is evalu-
ated against the virtual ontology within theReasoning En-
gine. In our implementation, we rely on KAON2 as a rea-
soner. The reasoning algorithms of KAON2 do not require
the integrated ontologies to be materialized locally, instead
the distributed ontologies still reside on the remote server,
and only relevant parts need to be retrieved to the local node.
The details of this process will be explained in Section 5.

The Peer-to-Peer network sub-layerprovides communication
services for the data exchange with remote nodes, i.e. to propa-
gate advertisement messages and to realize the access to remote
ontologies. In the implementation of KAONp2p, we rely on an
RMI-based implementation, however, other communication proto-
cols would be possible as well.

By means of theKAONp2p user interface and API, users can
pose queries, receive answers to queries and control the configu-
ration of the system. While in the user interface queries queries
are formulated in a visual manner, they are passed to the API as
conjunctive queries in SPARQL.

4. METADATA FOR DISTRIBUTED ON-
TOLOGIES

In this section we present a brief overview of our ontology for
the representation of metadata about nodes in the network and the
resources they provide, i.e. the ontologies. We also show how the
task of resource selection is realized using this metadata ontology.



Figure 2: Overview of the P-OMV Ontology

In this approach, the nodes advertise descriptions of theirresources
and can thus establish acquaintances with other nodes. Acquainted
nodes can then share data and coordinate their interaction.

4.1 Ontology and Peer Metadata
For the description of ontology metadata we rely on OMV, the

Ontology Metadata Vocabulary [10]. In the following we provide
an overview of the main properties of the OMV ontology with a
focus on the properties relevant for the problem of resourcediscov-
ery and selection. For a complete reference and the completeontol-
ogy we refer the reader tohttp://omv.ontoware.org/. We
model various types of metadata of ontologies, which we can clas-
sify asDescriptive metadata, Provenance metadataabout the cre-
ation process,Dependency metadatamanaging relationships with
other ontologies such as compatibility, andStatistical metadata,
e.g. about the size of the ontology in terms of ontology elements,
axioms etc.

Descriptive metadatais the most important type of metadata for
the discovery and selection of ontologies. Descriptive metadata re-
lates to the domain modeled in the ontology in form of keywords,
topic classifications, textual descriptions of the ontology contents
etc. It includes thename by which the ontology is known, the
language, its type (e.g. top-level, core, task, domain, andap-
plication ontology), and thesubject: The subject of an ontology
provides a classification in terms of the domain. The subjectis
expressed as a classification against established topic hierarchies,
such as the general purpose topic hierarchy DMOZ4 or the domain
specific ACM topic hierarchy5 for the computer science domain.

Besides the ontology themselves, the second important resources
to describe are the nodes managing and providing these informa-
tional resources, which we callpeersin our metadata ontology. The
extensions required to model metadata of peers are realizedas an
extension to the OMV ontology, called P-OMV. Figure 2 shows an
overview of the P-OMV ontology. The metadata required to de-
scribe peers include descriptive information about the peers them-
selves, their relationship with other peers, as well as information
about the resources they provide:

Each peer carries a unique ID (UID) to be identified. Depend-
ing on the underlying communication infrastructure of the network
sublayer, different addressing schemes may be applied. In our im-
plementation of KAONp2p, we simply use IP addresses. In ad-
dition to the unique identifier, each peer carries aname for iden-
tification, which is primarily used for human interpretation. The
expertise is an abstract description of the peer in terms of some
topic ontology. Depending on the application scenario, theexper-
tise of the peer can be the subjects of the ontologies that thepeer
provides, or a more generic description of expertise.

4http://dmoz.org/
5http://www.acm.org/class/

The propertyacquaintedWith describes the acquaintances
of a peer with other peers. The Peer-to-Peer network then
consists of local peers, each with a set of acquaintances,
which define the Peer-to-Peer network topology. The property
providesOntology describes the relationship between the
peer and the ontologies provided by the peer. It is essentialfor
locating relevant information resources in the network.

The propertyprovidesMapping: is used to describe which
mappings between ontologies a peer provides. Mappings are
used to describe the correspondences between different ontologies
provided by the peers. The propertiessourceOntology and
targetOntology specify the ontologies that are being mapped.
In general, mappings need not be symmetric, a distinction between
mapping source and target is therefore required. The property
mappingLanguage is used to indicate the language that is used
to express the mapping. In KAONp2p we rely on the formalism
for ontology mappings presented in Section 5, which can be ex-
pressed in SWRL. However, other languages may be used for the
representation of ontology mappings.

4.2 Discovery and Selection of Resources
In our approach to resource discovery and selection we fol-

low the successful approach of expertise-based peer selection [9],
which have already been applied in the Peer-to-Peer systemsBib-
ster [7] and Oyster [16]. In this approach, peers advertise their re-
source descriptions according to the metadata ontology in the net-
work to form acquaintances. Communication autonomy implies
that peers are fully autonomous in choosing their acquaintances.
Moreover, we assume there is no global control in the form of a
global registry to manage acquaintances. Acquaintances are man-
aged in a decentralized manner, i.e. by the individual peer using
its metadata registry. For the selection of resources we offer three
options: (1) a manual selection, where the user can choose the re-
sources relevant to his query, (2) a trivial selection that includes
all resources known in the registry, and (3) an automated selection
of resources based on matching the subject of a query and the ex-
pertise according to their semantic similarity, which serves as an
indicator for relevance. A subject is an abstraction of a given query
expressed in a set of terms from the metadata ontology. The sub-
ject can be seen as a complement to an expertise description,as it
specifies the required expertise to answer the query. We relyon
the notion of a similarity function as defined in [4]. The similarity
function determines the semantic similarity between a subject and
an expertise description. As such, an increasing value indicates in-
creasing similarity and relevance. The resource selectionalgorithm
returns a ranked set of resources, where the rank value is equal to
the similarity value provided by the similarity function. For exam-
ple, to answer a query about the subject ofDatabases, the resource
selection might identify a peer who provides an ontologies about
the subject of the ACM topic isInformation Systems / Database
Managementas relevant. For the details of the selection process,
we refer the reader to [9]. In addition to the selected ontologies,
available mappings are identified that relate the heterogeneous re-
mote ontologies to the target ontology against which the query is
expressed. The relevant resources are integrated in the virtual on-
tology, which will be used in the second step of query answering
described in the following Section.

5. MAPPINGS AND QUERY ANSWERING
OVER DISTRIBUTED ONTOLOGIES

To enable interoperability between nodes in large distributed in-
formation systems based on heterogeneous ontologies, it isnec-
essary to specify how the data residing at a particular node cor-
responds to data residing at another node. This is formally done



using the notion of a mapping. There are three lines of work con-
nected to the problem of mapping: (1) identifying correspondences
between heterogeneous data sources, (2) representing these corre-
spondences in an appropriate mapping formalism, and (3) using
the mappings for a given integration task. We here focus on the
latter two important problems once the correspondences between
data sources are known: those of representing the mappings us-
ing an appropriate formalism and using them for the task of query
answering over heterogeneous data sources.

We follow the general framework of [13] to formalize the notion
of a mapping system for OWL DL ontologies, where mappings are
expressed as correspondences between conjunctive queries6 over
ontologies. The components of this mapping system are the source
ontology, the target ontology, and the mapping between them.

DEFINITION 1 (OWL DL MAPPING SYSTEM). An
OWL DL mapping systemMS is a triple (S ,T ,M), where

• S is thesource OWL DL ontology, T is thetarget OWL DL
ontology,

• M is the mapping betweenS andT , i.e. a set of assertions
qS ; qT , whereqS andqT are conjunctive queries overS
andT , respectively, with the same set of distinguished vari-
ablesx, and; ∈ {⊑,⊒,≡}.

An assertionqS ⊑ qT is called asoundmapping, requiring that
qS is contained byqT w.r.t.S ∪ T ; an assertionqS ⊒ qT is called
a completemapping, requiring thatqT is contained byqS w.r.t.
S ∪ T ; and an assertionqS ≡ qT is called anexactmapping,
requiring it to be sound and complete.

Let us discuss the expressiveness in terms of the ontology lan-
guage, the query language and the assertions. The expressive-
ness of conjunctive queries corresponds to that of the well-known
select-project-join queries in relational databases. Twotypical ap-
proaches to specify mappings are theglobal-as-view(GAV) ap-
proach, where elements of the target are described in terms of
queries over source, and thelocal-as-view(LAV) approach, where
elements of the source are described in terms of queries overtar-
get. Our mapping system subsumes the approaches of GAV, LAV.
In fact, it corresponds to the GLAV approach, which is more ex-
pressive than GAV and LAV combined.

In [8] the semantics of the mapping system has been defined by
translation into first-order logic. We here only discuss theintu-
itions behind the semantics of the main inference task forMS, i.e.
computing answers for a conjunctive queryQ(x,y) w.r.t.MS. To
understand the intuition of computing answers, we briefly recall the
the semantics of query answering as defined in [13]: An answerof
a conjunctive queryQ(x,y) w.r.t. KB is an assignmentθ of in-
dividuals to distinguished variables, such thatKB |= Q(xθ,y).
Thus, the intuitive reading of this semantics is that an answer of
a query needs to be entailed by the source ontologyS , the target
ontologyT and the mappingsM. This semantics is equivalent to
the usual model theoretic semantics (e.g. in [3]) based on local and
global models, where a query answer must be an answer inevery
global model.

As query answering within such a mapping system is unde-
cidable in this generality, we have identified classes of mappings
that introduce restrictions required to attain decidability. These re-
stricted, but still very expressive mappings, can be expressed either
directly in OWL DL, or in OWL DL extended with the so-called
DL-safesubset of the Semantic Web Rule Language (SWRL) [15].

6We denote a conjunctive query asq(x,y), with x andy sets of
distinguishedandnon-distinguishedvariables, respectively.

The first class of mappings captures the mappings that can be
directly expressed in OWL DL. This is the case ifqs andqt are of
the formPs(x) andPt(x), wherePs andPt are DL predicates: If
qs andqt are of the formPs(x) andPt(x) andPs, Pt are DL con-
cepts, the mapping corresponds to the equivalent concept inclusion
axiom. Ifqs andqt are of the formPs(x1, x2) andPt(x1, x2), with
Ps andPt are abstract or concrete roles, the mapping corresponds
to the equivalent role inclusion axiom.

The second class of mappings captures the so-calledDL-safe
Mappings. Let us consider a sound mappingqS ⊑ qT

7 with the
assertion∀x : qT (x,yT ) ← qS(x,yS). In our restriction, we
disallow the use of non-distinguished variables in the query qT ,
i.e. restrict the assertions to the form∀x : qT (x) ← qS(x,yS) 8

and require the queryqS to be DL-safe, thus limiting the applica-
bility of the rules to known individuals. Thus obtained mappings
correspond to (one or more) DL-safe rules, for which efficient al-
gorithms for query answering are known [15].

We now show how to use an OWL DL mapping system for query
answering in anontology integration system, whose main task is to
provide integrated access to a set of distributed source ontologies.
The integration is realized via a mediated target ontology through
which we can query the local ontologies.

DEFINITION 2. For a set of local source ontologies
S1, . . . ,Sn, a target ontologyT and corresponding mapping
systemsMS1, . . . ,MSn withMSi = (Si, T ,Mi), anontology
integration systemIS is again a mapping system(S ,T ,M) with
S =

S

i∈{1...n} Si andM =
S

i∈{1...n}Mi. The main inference
task forIS is to compute answers ofQ(x,y) w.r.t. S ∪ T ∪M,
for Q(x,y) a conjunctive query overT .

Please note that because of the absence of a global ontology,this
form of ontology integration system can be directly appliedto de-
centralized integration: For our set of autonomous nodes, each re-
lying on some local ontology, and a set of mappings that relate the
local ontology to those of other nodes, an ontology integration sys-
temIS = (S ,T ,M) can easily be constructed for each individual
node, whereS consists of the ontologies of the remote node to be
integrated,T is the ontology of the local node, andM consists of
the individual mappings systems describing the correspondences
between the local ontology with remote ontologies. This construc-
tion is performed during the resource selection process described
in Section 4.2, which selects the relevant source ontologies S and
the required mappingsM.

We now discuss how to compute answers to a conjunctive query
Q(x,y) in an ontology integration systemIS. The algorithm is
based on the correspondence between description logics anddis-
junctive datalog from [11]. Given an OWL DL knowledge base
KB (without nominals) extended with DL-safe rules, a positive
disjunctive datalog programDD(KB) is produced, which entails
exactly the same set of ground facts asKB , i.e. KB |= A if and
only if DD(KB) |= A, for A a ground fact. Thus, query answering
in KB is reduced to query answering inDD(KB), which can be
performed efficiently using the techniques of (disjunctive) deduc-
tive databases. Query answering can be performed in time expo-
nential in the size ofKB . Furthermore, as shown in [12], the data
complexity of these algorithms (i.e. the complexity assuming the
size of the schema is fixed) isNP-complete, or even P-complete if
disjunctions are not used.

Based on these results, we are able to perform query answer-
ing in the ontology integration system by converting it intoa dis-
junctive datalog program. The source ontology, target ontology
7For a complete mappingqS ⊒ qT , the situation is analogous, with
the roles ofqS andqT reversed.
8Please note that these assertions correspond to SWRL rules.



and the mappings are converted into a disjunctive datalog pro-
gram, and the original query is answered in the obtained program
DD(S ∪T ∪M). By the results from [11, 15], it is easy to see that
the algorithm exactly computes the answer ofQ(x,y) in IS.

From the above definition, one might get the impression that
our algorithm requires that all source and target ontologies must
be physically integrated into one mapping system in order toan-
swer queries. This is, of course, not the case. More concretely, to
computeDD(S ∪ T ∪M), it is necessary to physically integrate
the TBox part ofS , T andM. Since the TBox are typically much
smaller than the data, this does not pose practical problems. Ac-
cessing actual data sources (i.e. the ABoxes) is then governed by
the chosen strategy for evaluating the datalog program. In prac-
tice, we only need to access the extensions of those predicates from
remote nodes that are actually relevant for the datalog program.

6. EVALUATION
In this section we present experimental results for the evaluation

of the KAONp2p infrastructure. In this evaluation we focus on the
second part of the query processing, i.e. the actual query answering
against a set of relevant resources. Please note that for this second
part, the number of nodes will be typically much smaller thanthe
number of nodes under consideration for the resource selection.
For evaluation regarding the first step of resource selection (with
several thousands of nodes), we refer to evaluations reported in [7]
and [9].

In our first experiment we have used the Lehigh University
Benchmark (LUBM) [6] to evaluate the performance and scala-
bility in terms of the distribution. We deployed eight physically
distributed KAONp2p nodes, each of which holding a different au-
tomatically generated data set according to the LUBM ontology9

(describing instance data of one university, approximately 8MB of
OWL/RDF data). We selected three typical SPARQL queries from
the LUBM benchmark of different complexity:

SELECT ?x WHERE { ?x rdf:type ub:GraduateStudent }

SELECT ?x ?y WHERE { ?x rdf:type ub:AssistantProfessor .
?y rdf:type ub:Publication . ?y ub:publicationAuthor ?x}

SELECT ?x ?y ?z WHERE { ?x rdf:type ub:GraduateStudent .
?y rdf:type ub:University . ?z rdf:type ub:Department .
?x ub:memberOf ?z . ?z ub:subOrganizationOf ?y .
?x ub:undergraduateDegreeFrom ?y }

We then used an additional node to perform the queries against the
knowledge bases of 1..8 manually selected nodes. Figure 3 shows
the results of the execution times for the query answering. The
main observation is that in this particular scenario, the time for an-
swering queries increases approximately linearly with thenumber
of nodes and thus the size of the data set. The additional degree of
distribution does not incur a performance penalty.

In a second experiment we evaluated the additional costs in-
troduced by the heterogeneity between the nodes. In this experi-
ment, we deployed two nodes, one with an automatically generated
LUBM data set, another one with an SWRC10 data set, contain-
ing real life data from the University of Karlsruhe11. Further, we
defined mappings according to our mapping formalism to relate
the LUBM ontology with the SWRC ontology in both directions.
We then used an additional node to perform queries against the
node providing the SWRC data set as source ontology, where in
a first case the query is expressed in terms of the same target on-

9
http://www.lehigh.edu/∼zhp2/2004/0401/univ-bench.owl

10
http://ontoware.org/projects/swrc/

11
http://www.aifb.uni-karlsruhe.de/viewAIFB OWL.owl
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Figure 4: Cost of Mappings between Heterogeneous Ontologies

tology in a homogeneous setting (SWRC - SWRC)12 and in a sec-
ond case the query is expressed against a different target ontology
(LUBM - SWRC) in a heterogeneous setting. We repeated the ex-
periment queries against the node providing the LUBM data set as
source ontology, which we again queried with LUBM as target on-
tology (LUBM - LUBM) and SWRC as target ontology (SWRC -
LUBM). Figure 4 shows the results for the query execution times.
We observe that the time needed for query answering increases only
slightly for the case where the source and target ontologiesdiffer
and thus mappings are required. The reason lies in the fact that the
mappings are only used in the computation of the datalog program,
which is neglectable compared to the evaluation of the program.
This makes our approach especially applicable for scenarios where
mappings between heterogeneous ontologies are required.

Summarizing, the evaluation results show that in approach the
performance of query answering is essentially dominated bythe
size of the data, and only slightly affected by the degree of distribu-
tion and heterogeneity. In fact, it shows a performance comparable
to a setting where data resides on a single, homogeneous node.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have introduced KAONp2p, a Peer-to-Peer sys-

tem for query answering over distributed ontologies in decentral-
ized networks. This infrastructure addresses (i) the coordination of

12For SWRC as target ontology we rephrased the three queries
above in terms of SWRC.



multiple nodes using metadata about the provided resourcesman-
aged in a decentralized registry, (ii) the mediation between hetero-
geneous ontologies via an expressive mapping formalism as well
as corresponding reasoning algorithms for query answering.

The query processing follows a two-step process consistingof:
(1) the selection of relevant resources based on metadata managed
in a metadata registry, (2) query answering against relevant re-
sources, which are integrated using a virtual ontology, which logi-
cally imports relevant ontologies and mappings. This virtual inte-
gration provides global model semantics as if all ontologies were
integrated locally. Practically, the distributed ontologies still reside
on the remote nodes, and only the parts relevant for answering the
query need to be retrieved to the local node. Our evaluation results
show that the approach is very promising as performance of query
answering is essentially dominated by the size of the data, and only
slightly affected by the degree of distribution and heterogeneity. In
fact, the performance is comparable to settings where the data re-
sides on a single, homogeneous node.

There are several directions of future work: As we currently
assume that mappings between heterogeneous already exist apri-
ori, an obvious improvement would be the use of automated map-
ping tools for the online discovery of mappings between ontologies.
Further, we consider the use of alternative mapping formalism [17]
with different characteristics with respect to expressiveness, do-
main assumptions, and dealing with local inconsistencies.Finally,
we will investigate other relations between networked ontologies,
including modularization and version relationships, for which our
existing reasoning algorithms need to be extended.
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