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ABSTRACT
Instance matching is an important step in data integration
where the goal is to find instance representations referring
to the same entity. In this paper, we propose an efficient ap-
proach to learn attributes, similarity functions, and thresh-
olds, called instance-matching rules, for finding matches.
Existing rule-based approaches calculate similarity of each
attribute separately, and identify an instance pair as a match
if each of the similarities is high enough. They may fail to
identify matching instance pairs if there are errors occur in a
single attribute. Besides, these approach cannot effectively
learn the rules without the fine-tuning of parameters. At
mean while, these approaches are also expensive in learning,
because they learn the best rule from a large number of can-
didates whose number depends on the number of attributes,
similarity functions, and especially training examples. In
this paper, we address these three problems. We measure
two instances as a whole by calculating the average similar-
ity of a set of attributes to balance the errors in single one.
The approach we proposed in this paper is almost free of
parameters, which can easily estimate the value of the pa-
rameters from the training data and require not fine-tuning
of them. We then propose an efficient algorithm to learn
the instance-matching rules from a significantly smaller set
of candidates whose size only depends on the number of at-
tributes and similarity functions. The experiments on both
real and synthetic datasets show that our solution greatly
improves the effectiveness as well as the efficiency by up to
87% reduction of learning time. Moreover, the approach is
also effective in the way that it can achieve stable results
when the parameters are set with a large range of different
values.

1. INTRODUCTION
Structured data is abundantly available in enterprises and

also largely increasing in the Web setting. Generally speak-
ing, it can be conceived as structured descriptions of real-
world entities. A popular standard for making such descrip-
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tions available on the Web is RDF. It is a graph-structured
data model that can be flexibly used to compose entity de-
scriptions as sets of 〈subject, predicate, object〉 triples, or in
other words, edges of an RDF data graph. Every triple cap-
tures either (1) an entity’s attribute value, (2) its type, (3)
or a relation between an entity and another. In the last few
years, large number of structured data (formerly stored in
relational and XML databases) have been converted to RDF
and published on the Web. Prominent examples include
DBpedia1 (the structured data counterpart of Wikipedia),
as well as entity descriptions embedded in Web pages in the
form of microformats2 and RDFa3. The semantics captured
by this data have been exploited in various tasks such as Web
search: RDFa and mircoformats are used by Google and Ya-
hoo! to provide rich snippets 4 for Web search results, which
are based on structured descriptions of the entities embed-
ded in the results.

One main problem towards the effective usage of struc-
tured data is integration. Besides schema matching, the
other main problem in this regard is to resolve differences
in the data representation of the same real-world object.
It is called instance matching (also known as entity resolu-
tion, entity co-reference, or record linkage), which is about
finding instances (e.g. Publication) that refer to the same
object [1, 2, 3].

State-of-the-art approaches employ instance-matching
rules to find instances that are the same. For example,
n3 and n4 in Tbl. 1 may form a match, if we consider a
instance-matching rule ”two publications are identified as
the same if they have similar Title and similar Authors”.
Typical approaches for learning instance-matching rules in-
volve selecting a set of attributes, and for each attribute
determining the best similarity function (e.g. Jaccard, Co-
sine, QGram etc. [4]) and threshold. For example, the rule
above can be specified as ”two publications are the same, if
the Jaccard similarity of Title is greater than 0.8 and the
Cosine similarity of Author is greater than 0.4”. We call
this type of rules attribute-threshold instance-matching rule
(aIR), because it is satisfied only when the similarity of each
attribute is higher than the threshold separately.

However there are three problems of aIR-based ap-
proaches. First, aIR-based approaches may fail to identify
matching instance pairs if there are errors that occur in a sin-

1http://dbpedia.org
2http://microformats.org/
3http://www.w3.org/TR/xhtml-rdfa-primer/
4http://www.google.com/webmasters/tools/
richsnippets



gle attribute leading to the similarity being incorrectly low.
Second, these approach cannot effectively learn the correct
rules without fine-tuning of various parameters. And finally,
the learning cost is expensive because these methods are de-
signed to search a large number of candidates for the best
rule. The number of the candidates is decided by the num-
ber of attributes, similarity functions, and especially train-
ing examples. While more training data may lead to higher
effectiveness of the learned rules, it also result in much more
learning time.

In this paper, we propose an efficient approach of learning
instance-matching rules to solve these three problems. To
deal with the errors in attributes, we observe that although
there may be errors in a single attribute, it is unlikely that
the errors happens on every attribute. Therefore, we con-
sider the similarity of two instances as the average similarity
of a set of attributes. The two instances are considered as
the same only when the average similarity is greater than
the threshold. For example, instances n3 and n4 in Tbl. 1
are identified as a match, if we consider a instance-matching
rule ”two publications are the same, if the average of the
Jaccard similarity of Title and the Cosine similarity of
Author is greater than 0.6”. We call this type of instance-
matching rule as mapping-threshold instance-matching rule
(mIR). Besides, the approach we proposed in this paper is
almost free of parameters, which can easily estimate the
value of the parameters from the training data and require
not fine-tuning of them. Finally, we propose an efficient al-
gorithm to learn instance-matching rules, which search the
best mIR from a significantly smaller set of candidates. The
number of candidates depends only on the number of at-
tributes and similarity functions, while it is irrelevant to the
number of training examples.

We observe that the average similarities of matches (and
non-matches), that are calculated according to different at-
tributes and similarity functions, subject to different prob-
ability distributions. We propose to calculate the matching
and non-matching certainties, as the certainties to assign an
instance pair to either a match or a non-match, from the
cumulative probability of (dis)similarities of (non-)matches.
Then a pair of instances will be considered as the same if
its certainty to be a match is greater than that to be a non-
match. Then the decision boundary can be calculated as the
only one threshold, such that when a pair of instances has
similarity that is greater than the threshold, its matching
certainty is always greater than the non-matching certainty.
Since there is only one mIR candidate for a specific com-
bination of attributes and similarity functions (because we
calculate only one threshold for the candidate), the num-
ber of mIR candidates is only relevant to the number of at-
tributes and similarity functions. Based on this observation,
we further propose an efficient algorithm that searches the
best rule from all mIR candidates, and an efficient algorithm
to execute the mIR.

Comparing to the state-of-the-art aIR learning ap-
proaches, our solution greatly improves the effectiveness as
well as efficiency by up to 87% reduction of learning time.
Moreover, the approach is also effective in the way that it
can achieve stable results when the parameters are set with
a large range of different values.

We organize the paper as follows. We formally define the
problem of learning mapping-threshold instance-matching
rule in Section 2. The algorithm for rule learning and execu-

tion are provided in Section 3 and Section 4 respectively. We
present experiments in Section 5, related works in Section
6, and conclusions in Section 7.

2. INSTANCE MATCHING
We consider the kinds of data where instances are cap-

tured as sets of attribute values.

Definition 1 (Data). The data N [a1, a2, · · · ] com-
prises a set of instances. Each instance n ∈ N is repre-
sented by a set {a1, a2, · · · } of attributes. The value of an
attribute a of the instance n is denoted by n[a].

The problem tackled in this work is instance matching.
Given a set of instances N , the goal is to assign a mapping
(n, n′) ∈ N ×N to one of the two classes M+ and M−. The
class M+ contains all the mappings that refer to the same
real-world entities (matches), and the class M− contains all
the mappings that refer to different entities (non-matches).

2.1 Attribute-thresholded Instance Matching
Let {g1, g2, · · · } be a set of similarity functions such that

0 ≤ g(n[a], n′[a]) ≤ 1. A higher score indicates a higher
similarity between n[a] and n′[a]. For the convenience of
expression, we loosely use g(a) to denote an association of
a similarity function g with an attribute a. For example,
we use Jaccard(Title) to denote the similarity of attribute
Title that is calculated by Jaccard similarity function.

Existing aIR-based approaches are designed according to
attribute monotonicity, which requires that ”any pair of
matching records have a higher similarity value than a non-
matching pair on at least one attribute” [5]. If an instance
matching problem is attribute monotonic, these approaches
are then able to learn attribute-threshold instance-matching
rule (aIR) to correctly identify all the matching instances.

Definition 2 (Attr.-thresh. Inst.-Match. Rule).
Given a set {a1, a2, · · · , ad} of attributes, and a set
{g1, g2, · · · , gd} of similarity functions, let gi(ai) ≥ θi de-
note a similarity function predicate where 0 ≤ θi ≤ 1. For
any two instances n and n′, the similarity function predicate
returns true if gi(n[ai], n

′[ai]) ≥ θi. An attribute-threshold
instance matching rule is a conjunction of similarity
function predicates as

∧d
i=1 gi(ai) ≥ θi. A pair of instances

n and n′ are considered as a match if they satisfy all the
similarity function predicates in the rule.

Example 1. Suppose an aIR Jaccard(Title) ≥ 0.80 ∧
Cosine(Author) ≥ 0.40 that is designed for the data in
Tbl. 1. Because Jaccard(n3[Title], n4[Title]) = 1.00 >
0.80 and Cosine(n3[Authors], n4[Authros]) = 0.43 > 0.40,
the instance pair (n3, n4) is identified as a match.

Table 2: Similarities calculated according to
Jaccard(Title), Cosine(Authors), and rule function

f = Jaccard(Title)+Cosine(Authors)
2

for the data in Tbl.1.

Mapping (Non-)Matching Jaccard(Title) Cosine(Authors) f 1− f
(n1, n2) M+ 0.28 1.00 0.64 0.36

(n3, n4) M+ 1.00 0.43 0.72 0.28

(n5, n6) M− 0.33 0.50 0.42 0.58

(n6, n7) M− 0.20 0 0.1 0.90



Table 1: A sample of publications taken from a real bibliographic database; correct mappings are (n1, n2) and
(n3, n4).

ID Title Authors Venue Year
n1 Environmental information systems Oliver Guenther SIGMOD 1997
n2 Environment Information Systems - Guest Edi-

tor’s Foreword
Oliver Guenther SIGMOD Record 1997

n3 Toward autonomic computing with DB2 universal
database

S. S. Lightstone, G. M. Lohman, D. C. Zilio SIGMOD Record 2002

n4 Toward autonomic computing with DB2 universal
database

Sam Lightstone, Guy Lohman, Danny Zilio ACM SIGMOD Record 2002

n5 An Overview of Data Warehousing and OLAP
Technology

Surajit Chaudhuri, Umeshwar Dayal SIGMOD Record 1997

n6 Data Warehousing and OLAP for Decision Sup-
port (Tutorial)

S. Chaudhuri, U. Dayal SIGMOD Conference 1997

n7 Tracing the lineage of view data in a warehousing
environment

Y. Cui, J. Widom, J. L. Wiener TODS 2000

Existing approaches for learning aIR involve determining
a set of attribute, and for each attribute the best similarity
function and threshold [5, 1, 2, 6]. Comparing to the general
machine learning techniques (e.g. SVM and decision tree [5,
6]), aIR can be more efficiently executed resulting from less
calculation of similarity function predicates. Especially, it
does not have to test all the similarity function predicates,
if any one of the predicates in the rule return false.

• aIR approaches is sensitive to errors in at-
tributes. Even if most attributes are the same, an
aIR might still fails to identify a matching instance
pair, due to a variety of errors (e.g. spelling errors,
missing values etc.) that occur in a single attribute
result in one of the similarity function predicate incor-
rectly returns false.

• aIR approaches depends on fine-tuning of pa-
rameters. Existing approaches requires fine-tuning
of various parameters. For example, the method por-
posed by Chaudhuri et al. [5] needs the number of sim-
ilarity function predicates and the number of rules to
learn as parameters. And the approach proposed by
Jiannan et al. [6] requires experts to manually select
attributes, and for some of the attributes the similarity
functions and thresholds, so that it can learn similar-
ity functions and thresholds for the other attributes.
Without the fine-tuning of such parameters, these ap-
proaches cannot learn effective rules.

• The cost for learning aIR is expensive: Existing
approaches [5, 6] are designed to search a large num-
ber of candidates for the best rule. The number of the
candidates is decided by the number of attributes, sim-
ilarity functions, and especially training examples (see
details in Appendix A). While more training data re-
sults in higher quality of the learned rules, it also leads
to much more time for learning. Even though var-
ious methods being proposed to boost efficiency (e.g.
greedy algorithm [5] or removing candidates composed
of redundant thresholds and similarity functions [6]
etc.), the cost for learning is still expensive.

Example 2. Consider an aIR Jaccard(Title) ≥ θ1 ∧
Cosine(Authors) ≥ θ2 for the data in Tbl. 1. As the similar-
ities that are shown in Tbl 2, θ1 and θ2 must be set with small
values that are not greater than 0.28 and 0.43 respectively, if

the mIR can identify both matches (n1, n2) and (n3, n4) that
are with spelling errors in Title and Authors respectively.
However, the aIR designed in this way is incorrect, because
it is unavoidable to assign the non-matching instance pair
(n5, n6) to the class of match. In this circumstance, it is
impossible to define an aIR that can correctly distinguish all
matches and non-matches.

Due to these drawbacks, aIR learning may not yield to
good results in terms of both effectiveness and efficiency. In
this paper, we adopt a different form of instance-matching
rule that performs better when there are errors in attributes,
and can be efficiently learned by an approach that is almost
free of parameters.

2.2 Mapping-threshold Instance Matching
Instead of exploiting attribute monotonicity, we take use

of the mapping monotonicity to solve the instance matching
problem. We say an instance matching problem is mono-
tonic if, for any matches (n1, n

′
1) and non-matches (n2, n

′
2),

there exist a set of attributes such that the average similarity
of these attributes of (n1, n

′
1) is greater than that of (n2, n

′
2).

We observe that this mapping monotonicity exists more gen-
erally, because even though errors might occasionally occur
in a single attribute, it is unlikely that they occur in every
attribute of a match. Based on the mapping monotonicity,
we formally define the mapping-threshold instance-matching
rule (mIR) as follows:

Definition 3 (Map.-thresh. Inst- Match. Rule).
Given a set {a1, a2, · · · , ad} of attributes and correspond-
ingly a set {g1, g2, · · · , gd} of similarity functions, an rule
function f : N ×N → [0, 1] calculates the similarity of two
instances as the average similarity of all the attributes, i.e.

f(n, n′) =
∑d

i=1 gi(n[ai],n
′[ai])

d
, n, n′ ∈ N . Given a threshold

θ, an mapping-threshold instance-matching rule (mIR) is
defined as a tuple λ(f, θ), such that two instance n ∈ N and
n′ ∈ N are considered as a match if f(n, n′) ≥ θ, where
0 ≤ θ ≤ 1.

Example 3. Consider the average similarities that
are calculated according to the rule function f =
Jaccard(Title)+Cosine(Authors)

2
in Tbl. 2. Since both match-

ing instance pairs (n1, n2) and (n3, n4) have greater sim-
ilarities than the non-matching instance pairs (n5, n6) and
(n6, n7), we can correctly identify all matches using the mIR
Jaccard(Title)+Cosine(Authors)

2
≥ 0.6.



2.3 mIR Learning Problem
Consider a set of mappings M as training examples, which

are composed of positive examples M+ ⊆M+, i.e. instance
pairs that are known to be correct, and negative examples
M− ⊆ M−, i.e. instance pairs that are known to be in-
correct. Obviously there is M = M+ ∪M−. Let Ψ be a
set of mIRs that are learned from M , and let MΨ ⊆ M
be the instance pairs in M that satisfies any of the mIR in
Ψ. Ideally we hope MΨ is exactly equal to M+. However,
in reality, MΨ may not only contain non-matching instance
pairs, but also miss matching instance pairs that are failed
to be identified by Ψ. To evaluate the quality of Ψ, we
consider a general objective function Q(Ψ,M+,M−). The
less false positives, i.e. the less non-matching instance pairs
that are included in MΨ, the higher Q(Ψ,M+,M−); the less
false negatives, i.e. the less matching instance pairs that are
failed to be identified by Ψ, the higher Q(Ψ,M+,M−). For
example, F-measure is used as an general objective function
2pr
p+r

, where p = |MΨ∩M+|
|MΨ|

is precision and r = |MΨ∩M+|
M+ is

recall.
Now we formalize the problem of learning mIR for effective

instance matching problem as follows:

Definition 4 (mIR-learning problem). Given a set
of positive examples M+ and a set of negative examples
M−, the goal in the mIR learning problem is to learn Ψ,
a set of mIRs, to maximize a pre-defined objective function
Q(Ψ,M+,M−).

3. ALGORITHM FOR LEARNING MIR
In this section, we describe an efficient algorithm for learn-

ing a set of mIR. We first introduce an approach for the
restricted version of the problem in which, only one mIR is
learned. For a given rule function, we propose to calculate
the matching and non-matching certainties, as the certain-
ties to assign an instance pair to either a match or a non-
match, from the cumulative probability of (dis)similarities
of (non-)matches (Section 3.1). A pair of instances would be
classified to matches when its matching certainty is greater
than the non-matching certainty. Based on the estimation
of (non-)matching certainty (Section 3.2), we learn the only
threshold as the decision boundary, that if the similarity of
an instance pair is greater than the threshold, its matching
certainty is always greater than the non-matching certainty
(Section 3.3). We then introduce the method for fast evalu-
ation of the quality of a mIR candidate (Section 3.4), based
on which an hill-climbing algorithm is proposed to learn the
best mIR from a significantly smaller set candidates com-
pared to the number of candidates in existing aIR-based
approaches (Section 3.5). Finally we describe an approx-
imation algorithm to learn a set of mIRs which maximize
the pre-defined objective function (Section 3.6). The algo-
rithm for the restricted version that learns the best mIR is
one of our main contributions in this paper.

3.1 Certainty for Instance Matching
Let f be a rule function, henceforth, we refer the similarity

of a pair of instances (n, n′) as the value of the rule function
x = f(n, n′), and the dissimilarity as y = 1− f(n, n′). Ob-
viously, there is 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and x + y = 1. For
a pair of instances, the higher similarity x, the more likely
it is assigned to M+; and the higher dissimilarity y, the

more likely it is assigned to M−. However, even though the
similarity (or dissimilarity) serves as evidences of how sim-
ilar (or dissimilar) of two instances, we are still not certain
to make a decision that how similar is similar. For exam-
ples, given a dataset with seldom errors, most matches may
have very high similarity around 1. Therefore, when there
are two instances with similarity 0.7, we may have low cer-
tainty to infer them as a match. On the other hand, given
a dataset with various errors, we can have every high cer-
tainty to classify the instance pair as a match, because we
know most matches in the dataset have similarity that are
less than 0.7.

We exploit positive and negative examples to calculate
the certainty of assigning a pair of instances to either M+

or M−. Intuitively, for an unlabeled instance pair with simi-
larity value x (or dissimilarity value y), the more positive (or
negative) examples we have observed that have similarities
(or dissimilarities) less than x (or y), the more certainty we
have to assign it to M+ (or M−). For example, when two
instances have similarity value 0, there should be the lowest
certainty to assign them to M+, because no (or few) pos-
itive examples have similarities that are less than or equal
to 0. On the other hand, when they have similarity 1, the
certainty of assigning it to M+ is the highest because all
positive examples have similarities that are not greater than
1.

Definition 5 (Matching Certainty). Let
X = {x|0 ≤ x ≤ 1} be a random variable of similari-
ties calculated by a rule function f . The matching certainty
is the certainty of assigning an instance pair with similarity
x to M+, which is calculated from the cumulative distribu-
tion function (CDF) of X as F (x,M+) = Pr(X ≤ x,M+),
i.e. the cumulative probability of a pair of instances belongs
to M+, and has similarity that is less than or equal to x.

Obviously, the higher value of x, the higher F (x,M+), and
hence the higher matching certainty. The value of F (x,M+)
can also be viewed as the probability of a pair of instance is
a matche, and has similarity that does not exceed x. Then
if the similarity of an instance pair exceeds x, we can derive
that the matching certainty of the instance pair should be
also greater than F (x,M+).

Similarly, we can define the non-matching certainty as fol-
lows:

Definition 6 (Non-matching Certainty). Let Y =
{y|0 ≤ y ≤ 1} be a random variable of dissimilarities calcu-
lated by 1−f . The non-matching certainty is the certainty of
assigning an instance pair with dissimilarity y to M−, which
is calculated from the CDF of Y as F (y,M−) = Pr(Y ≤
y,M−), i.e. the cumulative probability of a pair of instances
belongs to M−, and has similarity that is less than or equal
to y.

We can classify a pair of instances to either M+ or M−

by comparing the (non-)matching certainties. The mapping
is classified to M+ if the matching certainty is greater than
the non-matching certainty, otherwise it is classified to M−.

Example 4. We calculate the matching and non-
matching certainty for an instance pair with similarity 0.7
(and dissimilarity 0.3), according to training examples that
are listed in Tab 2. Because only the positive example



(n1, n2) among all four examples has similarity lower than
0.7, the matching certainty is 0.25. Similarly, because none
of negative examples has dissimilarity lower than 0.3, the
non-matching certainty is 0. As a result, we classify the in-
stance pair to M+ because the matching certainty is greater
than the non-matching certainty.

3.2 Estimate (Non-)Matching Certainty
In this section, we describe the approach to estimate

matching certainty F (x,M+) and non-matching certainty
F (y,M−). Since these two types of certainty can be esti-
mated in the very similar way, we focus on introducing the
estimation of matching certainty.

Let q(x,M+) be the density distribution function of
F (x,M+) and q(M+) be the prior probability of the class
M+, we can rewrite F (x,M+) as follows:

F (x ∩M+) =

∫ x

0

q(t,M+)dt

=

∫ x

0

q(t|M+)q(M+)dt

= q(M+)

∫ x

0

q(t|M+)dt

= q(M+)F (x|M+)

(1)

where F (x|M+) is the class-conditional cumulative proba-
bility function (CCF) over similarity. Note that the class
prior q(M+) can often be estimated simply from the frac-
tion of positive examples in the training data. Eq. 1 con-
verts the matching certainty estimation problem to estimate
the CCF F (x|M+). Obviously there are F (0|M+) = 0 and
F (1|M+) = 1

Observation 1. Suppose X = {x|0 ≤ x ≤ 1} be the ran-
dom variable of similarities calculated from matches, X sub-
jects to different CCF if the observed data of X is calculated
according to different rule functions.

Example 5. We sampled positive and negative examples
from a real bibliographic database provided by the bench-
mark [8]. The database has the same schema as the data
in Tbl 1. As illustrated in Fig 1, consider the dissimilar-
ities of negative examples, that are calculated according to

two different rule functions f1 = Jaccard(Title)+Cosine(Authors)
2

and f2 = QGram(Authors), as an example. Different rule
functions refer to different distributions. Compared to the
dissimilarities calculated according f1, those calculated ac-
cording to f2 distribute more widely in the interval [0.9, 1],
as shown in Fig. 1(b) and Fig. 1(d) respectively.

Given a rule function f , we can obtain a set of ob-
served similarities {x1, x2, · · ·xk} on the variable X, which
are calculated from positive examples. Then the value of
F (xi|M+) at the point xi can be simply estimated as fol-
lows:

F (xi|M+) =
|{x|x ≤ xi}|

k
, for x ∈ {x1, x2, · · · xk} (2)

where |{x|x ≤ xi}| is the amount of the observed data that
is less than or equal to xi.

The Eq. 2 can be calculated more efficient by ranking the
observed similarities. When the observed similarities from
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Figure 1: Consider two rule functions f1 =
Jaccard(Title)+Cosine(Authors)

2
and f2 = QGram(Authors).

Figure (a) and (c) show the histograms for similar-
ities of positive examples calculated according to f1

and f2 respectively. And Fig. (b) and (d) show the
histograms for dissimilarities of negative examples
calculated according to f1 and f2 respectively.

.

X are sorted in an ascending order, and let Oi is the rank
number of xi, the value of F (xi|M+) is estimated as follows:

F (xi|M+) =
Oi
k

(3)

we are then able to estimate F (x|M+) for any unobserved
similarity x in [0, 1] by using Eq. 3. Let xi and xi+1 be two
adjacent observed similarities, for any unobserved similar-
ity xu ∈ [xi, xi+1], F (xu|M+) can be estimated via linear
interpolation as follows:

F (xu|M+) = F (xi|M+)+
(F (xi+1|M+)− F (xi|M+))(xu − xi)

xi+1 − xi
(4)

We call the CCF estimation by Eq. 4 as interCCF. The
time complexity of interCCF is O(log k), where k is the num-
ber of training examples (see analysis in Appendix C). We
observe that when there are a number of training examples
available, the interCCF can reach high accuracy. Otherwise,
because the real CCF usually does not simply follow a lin-
ear function, this estimation by the linear interpolation may
largely deviate from the true value.

As a solution, we can also fit F (x|M+) to the known
cumulative probability distribution functions. Because the
range of similarity is [0, 1], we only consider the cumulative
distributions that are defined on the same interval, such as
Beta distribution, power-law distribution. Among all these
distributions, we find power-law distribution is the most
suitable for the instance matching problem in experiments,
which is generally defined as follows:

F (x|M+) = axb, x ∈ [0, 1] (5)



Where a and b are two parameters that need to be esti-
mated from the training data. Since there is F (1|M+) = 1,
we can directly figure out a = 1 by substituting x = 1
into Eq. (5). Then provided with the observed similarity

set {x1, x2, · · · , xk}, we can estimate b =
∑k

1 xiF (xi|M+)∑k
1 x

2
i

via

the least square method, where F (xi|M+) is calculated by
Eq. (3). We call the CCF estimation by Eq. 5 as powerCCF.
The time complexity of powerCCF is O(k), where k is the
number of training examples (see analysis in Appendix C).

3.3 Learn Threshold
Given a rule function f and an unlabeled instance pair

(n, n′) with similarity x and dissimilarity y = 1− x, we can
now classify (n, n′) using a instance-matching decision rule
that is defined based on the comparison of the matching
certainty F (x,M+) and the non-matching certainty F (1 −
x,M−), as follows:

(n, n′) ∈

{
M+ if F (x,M+) ≥ F (1− x,M−)

M− else
(6)

This decision rule indicates that, if the matching certainty
is greater than the non-matching certainty, (n, n′) is assigned
to M+, and vice versa. By substituting Eq. (1) into for-
mula (6), the previous decision rule can finally be stated via
CCF as follows:

(n, n′) ∈

{
M+ if F (x|M+)

F (1−x|M−)
≥ q(M−)

q(M+)

M− else
(7)

Where the ratio F (x|M+)

F (1−x|M−)
can be calculated by either

interCCF or powerCCF, and the prior ratio q(M−)

q(M+)
is re-

quired as a parameter, which can be simply estimated from
the fractions of the training examples in each of the classes.
In experiments, we will show that our technique can achieve
high quality of the result without fine-tuning of this parame-
ter, even if the prior ratio is set with a large range of different
values.

However, the cost of executing the decision rule in Eq. 7 is

still expensive, since the ratio F (x|M+)

F (1−x|M−)
has to be repeat-

edly calculated for every unlabeled instance pair. A simpler
manner to make a decision according to Eq. 7 is to figure
out the decision boundary θ, i.e. the threshold, so that any
instance pair that has similarity greater than θ must be as-
signed to M+. In the example of Fig. 2, it corresponds to
finding the value of x shown by the vertical dotted line.

Proposition 1. The threshold θ is calculated as the so-
lution of the equation as follows:

F (x|M+)

F (1− x|M−)
=
q(M−)

q(M+)
(8)

Proof. The ratio F (x|M+)

F (1−x|M−)
is a monotonically increas-

ing function, since F (x|M+) and F (1−x|M−) are monoton-
ically increasing and monotonically decreasing respectively.
Therefore, as the solution of Eq.8, θ must be the decision
boundary for Eq. 7, since for any similarity value x ≥ θ there

must be F (x|M+)

F (1−x|M−)
≥ q(M−)

q(M+)
, and vice versa.

Alg. 1 shows the algorithm to find the threshold. Since it
is difficult to directly calculate the solution of Eq. (8), Alg. 1
searches an approximate solution θ̄ that satisfies |θ− θ̄| < ε,
where θ is supposed to be the exact solution of Eq. (8) and
ε is the difference restriction that restrict the difference be-
tween the exact and the approximate solutions. In reality,
we can set a relative small value of the difference restric-
tion to guarantee that instance matching result will not be
affected by it. For example, when the difference restric-
tion is set to 0.001, an approximate threshold θ̄ = θ± 0.001
may result in the same instance-matching result as the exact
threshold θ.

We apply a recursive binary search algorithm to find the
approximate threshold θ̄. The algorithm returns if the ap-
proximate threshold equals to the exact threshold, or the
difference between them is less than the pre-defined dif-
ference restriction ε (line 2). The complexity of Alg. 1
is O(log 1

ε
log k) for interCCF and O(log 1

ε
) for powerCCF,

where k is the number of training examples (see analysis in
Appendix C).

Algorithm 1: Learn Threshold

Input: lower bound xl, upper bound xu, difference ε,
estimated distribution F (x|M+) and
F (1− x|M−)

Result: Estimated threshold θ̄
1 θ̄ := (xl+xu)

2
;

2 if F (θ̄|M+)

F (1−θ̄|M−)
= q(M−)

q(M+)
or xu − xl < ε then

3 return θ̄ ;

4 else if F (θ̄|M+)

F (1−θ̄|M−)
> q(M−)

q(M+)
then

5 xu := θ̄;

6 else
7 xl := θ̄;

8 return

LearnThreshold(xl, xu, ε, F (x|M+), F (1− x|M−));

3.4 Evaluate mIR Candidate
For a given rule function f , we can now generate a mIR

candidate λ(f, θ) by combining f with the learned thresh-
old θ. As discussed, mIR candidates can be directly evalu-
ated by a pre-defined objective function, e.g. the F-measure.
Then the best-evaluated mIR can be selected as the result.
However, since it is required to enumerate all the training
examples to calculate the matches, the cost of executing the
objective function is expensive. In this section, we introduce
the method for fast evaluation of the mIR candidate.

From the view of probability, the calculated mIR candi-
date can be evaluated by the probability of identifying the
true positives. The higher this probability is, the better the
mIR candidate is evaluated.

Since all the instance pairs with similarities in the interval
[θ, 1] are considered as matches, the probability of identify-
ing the true positives is the joint probability of a instance
pair (n, n′) being a match and the similarity x of (n, n′) is
in the interval [θ, 1], as follows:

Pr(θ ≤ x ≤ 1,M+) = F (1,M+)− F (θ,M+) (9)

Then if substitute Eq. 1 into Eq. 9, the probability to
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Figure 2: PowerCCF estimation for matching cer-
tainty F (x|M+) (red line) and non-matching cer-
tainty F (1 − x|M−) (blue line), where x is similar-
ity. Fig.(a) and (b) illustrate the certainty distribu-

tions that refer to f1 = Jaccard(Title)+Cosine(Authors)
2

and
f2 = QGram(Authors) respectively.

identify true positives can be expressed as:

Pr(θ ≤ x ≤ 1,M+) = q(M+)(1− F (θ|M+)) (10)

Considering the prior q(M+) is the same for all mIRs, a
mIR is evaluated as follows:

Proposition 2. The quality of a given mIR λ(f, θ) is
evaluated by Q̄(λ) = 1 − F (θ|M+). The higher Q̄(λ), the
higher quality of λ(f, θ).

The time complexity of mIR evaluation is O(ln k) for the
interCCF and is O(1) for the powerCCF, where k is the
number of training examples (see analysis in Appendix C).

Example 6. Taking rule function f1 =
Jaccard(Title)+Cosine(Authors)

2
for a example. Suppose we have

already estimated F1(x|M+) = x9.17 and F1(y|M−) = y9.99

by powerCCF, where x is the value of similarity and y
is the value of dissimilarity. Note y = 1 − x, we can
rewrite F1(y|M−) as F1(1 − x|M−) = (1 − x)9.99. The
curves of F (x|M+) and F1(1 − x|M−) are illustrated in

Fig. 2(a). Then suppose the prior ratio q(M−)

q(M+)
= 2000,

we can calculate the threshold θ = 0.6744 ± 0.0001 by
Alg. 1 with a difference restriction ε = 0.0001. Finally
we get a mIR λ1(f1, 0.6744), whose quality is evaluated as
Q̄(λ1) = 1− F (0.6744|M+) = 1− 0.67449.17 = 0.9730.

Similarly, for the rule function f2 = QGram(Authors),
we have F2(x|M+) = x9.91 and F2(1−x|M−) = (1−x)5.76,
which are plotted in Fig. 2(b). Then we can learn the corre-
sponding mIR as λ2(f2, 0.8129), whose quality is evaluated
as Q̄(λ2) = 1− F2(0.8129|M+) = 1− 0.81299.91 = 0.8717.

By comparing Q̄(λ1) and Q̄(λ2), λ1 is selected as the mIR
with better quality.

3.5 Learn Single mIR
In this section, we introduce the algorithm to learn only

one mIR, which searches the best one from a significantly
smaller set of mIR candidates compared with existing aIR-
based approaches. More specifically, let l, m and k be the
number of attributes, similarity functions, and training ex-
amples respectively, the total number of mIR candidates is
ml in our work, while the total number of aIR candidates
is (m ·k)l in state-of-the-art aIR-based approaches [5, 6](see

details in Appendix A and Appendix B). For example, as-
suming an instance-matching problem with 4 attributes, 20
similarity, and 200 training examples, there would be 204

mIR candidates in our method, but 4, 0004 aIR candidates
in current aIR-based approaches.

A brute-effort algorithm is to enumerate all candidates
and then select the one that maximizes the evaluation score.
However even for the relative small size of candidates, this
approach is still expensive. As shown in algorithm 2 we pro-
pose a hill-climbing algorithm to search the best mIR candi-
date, which mainly consists of two steps: mIR initialization
and mIR optimization.

Step 1-mIR initialization: The algorithm starts from
the mIR with the rule function that is composed of all at-
tributes and for each attribute, the best-performed simi-
larity function. Given two rule functions fi = gi(a) and
fj = gj(a), if Q̄(λ(fi, θi)) is greater than Q̄(λ(fj , θj)), then
the similarity function gi is said to perform better than gj on
attribute a. For each attribute ai, Alg. 2 (line 1-13) sort all
similarity functions, that are stored in Gi, in the descending
order, the best one at first and the worst one at last. The
array I is used as an index to record the current selection
of similarity function for each attribute. For example, when
I[2] = 3, we bind attribute a2 with the third similarity func-
tion in G2

5. Then the function ConstructRulefunction can
construct a rule function by combining the attributes with
the selected similarity function according to I(Alg. 3). At
beginning, all the values in I are initialized with 1, so that
we can select the best-performed similarity function for each
attribute to initialize mIR. Considering a mIR may not in-
clude all attributes, we add a null to the end of Gi to allow
the attribute ai being ignored when it is combined with sim-
ilarity function null.

Example 7. Considering two similarity functions g1 =
Jaccard and g2 = Cosine, and two attributes a1 = Title

and a2 = Authors. After sorting similarity functions for
each attribute, we have G1 = {Jaccard, Cosine, null} and
G2 = {Cosine, Jaccard, null}, which means Jaccard per-
forms the best on Title, and Cosine performs the best on
Authors. In the mIR initialization step, we have I = {1, 1}
such that the top similarity functions in G1 and G2 are com-
bined with attributes a1 and a2 respectively. In this way, we

get the initial rule function f = Jaccard(Title)+Cosine(Authors)
2

.
Moreover, attribute a2 is ignored if we set I = {2, 3}, since

a2 is combined with null, the third similarity function in G2.
In this way, we get a rule function f ′ = Cosine(Title) by
combining the second similarity function in G1 with a1.

step 2-mIR optimization: We adopt a hill-climbing
algorithm to search the best mIR. Intuitively, starting from
the initial mIR, we adjust the similarity function for each at-
tribute for achieving a higher evaluation score Q̄. We chose
one attribute ai in each iteration (iteration in line 15-27),
and construct different rule functions by associating ai with
each of the similarity functions inGi (iteration in line 18-27).
We then evaluate the mIR candidate that is created accord-
ing to each rule function (line 19-23), and finally record the
one that achieves better evaluation score Q̄ (line 24-27). The
iteration (iteration in line 15-27) terminates if the evaluation
score cannot be improved any more.

5Note we use 1 as the index of the first element in an arraly.



Example 8. Assuming in Step 1, we have I =
{1, 1}, G1 = {Jaccard, Cosine, null} and G2 =
{Cosine, Jaccard, null} for attribute a1 = Title and a2 =
Authors respectively. In the first iteration we choose the at-
tribute a1 and change the value of the first element in index
I to I = {2, 1} and I = {3, 1} to construct two rule functions

f = Cosine(Title)+Cosine(Authors)
2

and f ′ = Cosine(Authors).
We then create the mIR candidates according to f and f ′,
and select the one that is better evaluated. In the next iter-
ation, we will select the other attribute a2, and repeat above
process again. This process will continue until the evaluation
score cannot be improved any more.

The time complexity of Alg. 2 is O(tlm log 1
ε

log k) for in-
terCCF, and O(tlmk) for powerCCF, where t, l, m, and k
are the number of iteration, attributes, similarity functions,
and training examples respectively, and ε is the difference re-
striction for threshold learning (see analysis in Appendix C).

Algorithm 2: Learn single mIR

Input: difference ε, a set A of attributes, a set G of
similarity functions

Result: best mIR λbest
1 G = {∅, ∅, · · · };
2 for i := 1 to |A| do
3 Gi := ∅;
4 Gi := Gi ∪G;
5 Sort(Gi);
6 Gi := Gi ∪ {null};
7 G[i] := Gi;

8 I := {1, 1, · · · };
9 f := ConstructRuleFunction(A,G, I);

10 Estimate F (x|M+) and F (1− x|M−);

11 θ := LearnThreshold(0, 1, ε, F (x|M+), F (1− x|M−));

12 Qbest := 1− F (θ|M+);
13 λbest := λ(f, θ);
14 improved := true;
15 while improved = true do
16 improved := false;
17 for i := 1 to |A| do
18 for j := 1 to |G|+ 1 do
19 I[i] := I[i] + 1;
20 f := ConstructRuleFunction(A,G, I);

21 Estimate F (x|M+) and F (1− x|M−);

22 θ := LearnThreshold(0, 1, ε, F (x|M+)

, F (1− x|M−));

23 Q̄ := 1− F (θ|M+);

24 if Q̄ > Qbest then
25 λbest := λ(f, θ);

26 Qbest := Q̄;
27 improved := true;

28 return λbest;

3.6 Learn a Set of mIRs
Since one mIR may not cover all the positive examples,

more mIR have to be used to maximize the objective func-
tion score. As discussed in previous research[5], the problem
to learn a set of mIRs which maximize the objective function

Algorithm 3: Construct Rule Function

Input: difference ε, a set A of attributes, a set G of
similarity functions, Index I

Result: best mIR λbest
1 N := 0;
2 for i := 1 to |A| do
3 ai := A[i];
4 Gi := G[i];
5 gi := Gi[I[i]];
6 if gi 6= null then
7 N := N + 1;

8 return f :=
∑|A|

i:=0 gi(ai)

N
;

is NP-hard. To deal with this problem, we apply the simi-
lar greedy algorithm as previous solution[5]. The algorithm
greedily select the best mIR each time, remove the positive
and negative examples that are identified by the learned
mIR, and then repeat this procedure on the remain exam-
ples until the objective function score cannot be improved
anymore.

4. ALGORITHM FOR EXECUTING MIR
As discussed before, aIR can be efficiently executed mainly

because it involves less similarity calculations. It does not
have to test all the similarity function predicates, if any
one of the predicates in the rule return false. Compared
to aIR, since we calculate the similarity of two instances in
a mIR as the average similarity of a set of attributes, the
mIR may not be efficiently executed if all the corresponding
similarities have to be calculated. However, we observe that
some similarity calculations in mIR are unnecessary, since
it is possible to make a decision only based on a part of
similarities.

Let λ :
∑d

i=1 gi(ai)

d
≥ θ be a mIR that involves d similarity

functions, and assume we have already finished computing
j (j < d) similarity functions for a pair of instances (n, n′).
The original mIR can be rewrite as follows:

λ :

j∑
i=1

gi(ai) +

d∑
i=j+1

gi(ai) ≥ dθ (11)

where sumc =
∑j
i=1 gi(ai) is the sum of similarities that

have already been computed, sumu =
∑d
i=j+1 gi(ai) is the

sum of similarities that have not been calculated, and dθ is
the threshold for the sum of all similarities. We observed
that it is possible to make a decision only based on sumc in
two circumstances:

1. If sumc ≥ dθ, (n, n′) is classified to M+. Obviously,
if we know the mIR has already been satisfied, it is not
necessary to calculated sumu any more (line 4-5 of Alg.4).

2. If sumc + d − j < dθ, (n, n′) is classified to M−. As-
suming each of the similarity function in sumu can achieve
the highest value of 1, the maximal value of sumu is d− j.
We can then estimate that the maximal sum of similarities
for (n, n′) is sumc + d− j. Based on this estimation, we can
directly classify (n, n′) to M− when sumc+d−j is less than
the threshold dθ (line 6-7 of Alg.4).



Algorithm 4: Executing mIR

Input: mIR λ =
∑d

i=1 gi(ai)

d
≥ θ, instance pairs (n, n′)

Result: whether (n, n′) satisfies the mIR
1 sum := 0;
2 for j:=1 to d do
3 sum+ = gj(n[ai], n

′[aj ]);
4 if sum ≥ dθ then
5 return true;

6 if sum+ d− j < dθ then
7 return false;

8 return sum ≥ dθ;

5. EXPERIMENTAL EVALUATION
To study the proposed solution, we employ a recent in-

stance matching benchmark [8] that captures data from
enterprise databases as well as synthetic data Restaurant.
Compared against the state-of-the-art approaches SiFi [6]
and SVM [9], our approach greatly improves efficiency by
up to 87% reduction of time as well as result quality.

5.1 Dataset and Matching Task
We now briefly describe the datasets which cover the

restaurant, bibliography and products domains. Tabel 3
provides an overview of the datasets.

Table 3: For each dataset pair: number of instances,
all matches M+, and all non-matches M−.

Task
Datasets Mapping Candidates

Dataset1 Dataset2 M+ M−

Rest 864 112 5,270
AB 1,081 1,092 1,097 7,040
AD 2,616 2,294 2,224 3,140

Restaurant(Rest). The restaurant dataset is avail-
able at OAEI 20106. We manually removed the attribute
telephone from the dataset because the dataset with it is
too easy for instance matching task to be useful for compar-
ing algorithms.

ACM-DBLP (AD). These datasets in the bench-
mark [8] include well-structured bibliographic data from
DBLP and the ACM digital library. This one is manually
created and thus, is of higher quality among all datasets.
As a result, the matching task represented by this is of low
difficulty.

Abt-Buy (AB). This matching task in the benchmark [8]
is performed between instances of the product dataset from
http://abt.com and http://buy.com. This dataset con-
tains the most noises in the attribute values. Therefore, the
matching task for this is the most difficult.

We adopt a preprocessing step, named blocking [4], to
select candidate instance pairs that are most likely to be the
same, as shown in Tbl 3. In the experiments, we classify
these candidates to either M+ of M−, and compare the
efficiency and effectiveness among different approaches.

5.2 Experimental Setting
System. In the experiments, we select two baseline meth-

ods, SiFi [6] and SVM (using LIBSVM libarary [9]). Sifi is a

6http://oaei.ontologymatching.org/2010

recent aIR learning approach that learns similarity functions
and thresholds from positive and negative examples. It re-
quires attributes to be manually set for each rule. Also, it
requires the similarity functions and thresholds to be man-
ually set for some attributes so that they can be learned for
other attributes. SVM requires features as similarities of all
attributes calculated by all similarity functions. We compare
these approaches against our solutions using interCCF and
powerCCF, called interMIR and powerMIR respectively.

Similarity. We selected 20 similarity functions in
the experiments provided by an open-source Java package
SimMetrics7. In case there is null value when comparing
two values, we suppose the similarity is 0.

All experiments were run on a computer with one 2.4GHz
Intel Core 2 Duo CPU, using 4GB of main memory, running
Linux with kernel version 2.6.18.

5.3 Efficiency
We first compare against baseline approaches in term of

efficiency. Table 4 shows the training and testing time for
all four approaches, which use all the mapping candidates
as training and testing data. We can see that powerMIR and
interMIR run the fast in the training process. For exam-
ple, on dataset AB, powerMIR requires only 59 seconds for
training, which is only 13% of the time of SiFi and half of
the time of SVM. interMIR is slightly outperform powerMIR

because it is more efficient in CCF estimation (see time com-
plexity analysis in Appendix C). The cost of SiFi is the most
expensive in training because of the large number of aIR
candidates. Even though SiFi proposed to eliminate can-
didates with redundant similarity functions and thresholds,
the process of removing redundancy itself is still expensive
in reality.

In the testing process, SVM is clearly the worst comparing
to other methods. For example, powerMIR only spends 5
seconds on the task of AD, while SVM costs 78 seconds. As a
general model, SVM spends most the time on similarity calcu-
lations, since it require similarities of all attributes that are
calculated by all similarity functions as features. Especially,
because we avoid unnecessary similarity calculations in mIR
execution, our approaches can achieve same testing time as
the aIR approach SiFi.

Table 4: Performance of training and testing in sec-
onds.

Rest AD AB
train test train test train test

powerMIR 37 3 55 4 59 8
interMIR 36 3 50 4 57 8

SiFi 54 4 342 4 518 9
SVM 59 60 85 78 109 103

We further vary the proportion of training data and plot
the total running time of different methods in Fig. 3. The
running time of our techniques increase the slowest when
the size of the training data increases, mainly resulting from
the number of mIR candidates is irrelevant to the number of
training examples. However, since the number of candidates
in SiFi increases fast with the increase of training examples,
the time of SiFi increases the fastest.

5.4 Effectiveness
7http://www.dcs.shef.ac.uk/~sam/simmetrics.html
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Figure 3: Comparison for the total running time with different proportion of training data.
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Figure 4: Evaluation result for different labeling effort

Table 5 shows the results of effectiveness based on the
average of F-measure in 10 runs. For each run, we randomly
select 30% of the mapping candidates as training data and
use the remained as testing data. Our techniques achieve
the best result on all the tasks. Note because we remove
the attribute Telephone from Rest, this task becomes more
difficult resulting in the worse result of SiFi compared to
the result reported in the original paper. We also compare
our solutions with SiFi(auto), in which SiFi automatically
learn the rules without manual tuning of parameters, such as
the pre-defined attributes and similarity functions. We can
see that its results becomes much worse than our approaches
as well as SiFi with fine-tuning of parameters.

Table 5: Effectiveness of instance matching in terms
of F-measure.

Rest AD AB
powerMIR 93.16 97.47 41.69
interMIR 90.33 97.21 40.87

SiFi 88.92 96.20 37.52
SiFi(auto) 70.55 95.32 33.49

SVM 90.28 97.30 28.78

We further compare the F-measure against the baselines
provided with different labeling effort, as shown in Fig. 4.
The proportion of labeling effort varies between 10% and
50% in Rest, and between 1% and 25% in AD and AB. For AD,
all the approaches can soon achieve stable results for small
size (2%) of training data. And in Rest and AB, powerMIR
is managed to maintain high quality of results for all dif-
ferent labeling efforts, while SVM performs the worst given
small size of training data. We also observe that, interMIR
is worse than powerMIR when it is provided with less training
data. As discussed before, it is because interCCF leverages
linear interpolation, which may deviate form the true values
if the real CCF does not follow a linear function. However,
when there are more training data available, this estima-

tion becomes more accurate leading to interMIR achieving
almost the same result as powerMIR. Therefore, we can di-
rectly apply interMIR when we are not clear about the data
distribution, but have large amount of training data avail-
able.

5.5 Parameter Sensitiveness
We now analyze the parameters. Throughout the paper,

we have two parameters: the prior ratio q(M−)

q(M+)
for thresh-

old learning according to Eq. (8); and ε as the difference
restriction between the approximate and the real threshold
in Alg. 1. We show that our approach can achieve stable
result without fine-tuning of these parameters.

Figure 5 shows the result for different values of prior ratio.
The results are stable when the prior ratio is set between 47
and 24,000 for Rest (the real prior ratio is 47), between 1
and 64 for AD (the real prior ratio is 1.4), and between 6 and
160 for AB (the real prior ratio is 6.4). Basically, a higher
prior ratio determines a higher threshold. Therefore, a mIR
with higher threshold may result in higher precision but less
identified matches. However, since we keep adding the best
evaluated mIR into the rules until the objective score cannot
be improved, a higher prior ratio may result in a larger set
of higher-precision mIRs. In this way, a matching instance
pair that is fail to be identified by one mIR can be identified
by another instead. Therefore, we can achieve stable results
when prior ratio is set with values that are higher than the
real one.

Figure 6 shows the results for different values of ε. In-
tuitively, the smaller ε, the higher accuracy. However, in
reality there are no differences between the results leading
from the real threshold and the approximated threshold with
ε less than 0.01 for all the matching tasks.

6. RELATED WORK
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Figure 6: Influence of ε

Instance matching (also know as entity resolution, entity
co-reference, or record linkage), is about finding instances
that refer to the same object. A high quality of instance
matching result require the fine tunning of parameters se-
lection, which are usually achieved with the help of machine
learning techniques. Here, we provide a broader overview of
machine-learning-based solutions for the instance matching
problem.

Instance matching can be formulated as a standard classi-
fication task, where instance pairs are classified to either
matches or non-matches. There are supervised learning
techniques, which use decision trees [10, 11], Bayes decision
rule [12] or SVM [13] to train classifier from the provided
training examples. Among these techniques, SVM is known
as the most effective approach.

There are also semi-supervised techniques based on proba-
bilistic graphical models. It has been shown that many exist-
ing instance matching approaches can be specified in terms
of Markov Logic formulas and reformulated as a Markov
Logic learning problem [14]. However, this involves learning
both the structure (formulas) and their weights. The cur-
rent solution [14] still requires the logic for matching to be
manually specified as Markov Logic formulas.

In contrast to those general machine-learning techniques,
rule-based approaches are designed for specific instance
matching problems. The instance-matching rules have ad-
vantages that they are explainable, and can be efficiently
executed resulting from less similarity calculations. Existing
rule-based approaches usually involve four subtasks to deter-
mine (1) (combinations of) attributes [15, 16, 17, 18, 5, 6],
and for each of them, (2) the value representation function
(e.g. selecting only the most important words in the values
of Title and using only the first 3 tokens of each word) [11,
15, 16, 17, 18, 5], (3) the similarity functions [5, 6] and (4)
the similarity thresholds [10, 11, 5, 6]. Recently Chaudhuri
et al. [5] propose an algorithm for these four tasks based on
a given set of positive and negative examples. Jiannan et
al. [6] further improve the learning efficiency by eliminating

rule candidates that are composed of redundant similarity
functions and redundant thresholds. In this paper, we focus
on task (1) (2) and (4).

7. CONCLUSION
For the problem of instance matching, we proposed an

(almost) parameter-free and efficient approach to learn
instance-matching rules by estimating matching and non-
matching certainties. Comparing to state-of-the-art instance
matching approaches, our solution greatly improves the ef-
ficiency (up to 87% reduction of time). At the same time,
it is also effective, that when compared against SVM, that
is currently known as the most effective approach for in-
stance matching, we gain comparable or even better quality
result in term of F-measure. Moreover, the approach can
also achieve stable result when the parameters are set with
a large range of different values. As future work, we aim to
learn the weights of attributes, and the value representation
functions for instance-matching rules.
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APPENDIX
A. NUMBER OF AIR CANDIDATES

For aIR-based approaches, the threshold for an attribute
is learned from the similarities of all training examples that
are calculated by all similarity functions. Assuming there
are m similarity functions, and k training examples, there
would be m · k different threshold candidates, which form
m · k similarity function predicates for each attribute.

aIR candidates can be generated as conjunctions of sim-
ilarity function predicates of all attributes. For examples,
assume there are two attributes a1 and a2, and for each at-
tribute there are m ·k similarity function predicates. We can
generate aIR candidates by first selecting one of the similar-
ity function predicate of a1, and then creating a conjunctions
with each of the similarity function predicates of a2. In this
way, we can generate (m · k)2 different aIR candidates. In
general, assume there are l attributes, the total number of

aIR candidates is (m · k)l.

B. NUMBER OF MIR CANDIDATES
For our technique, the number of mIR candidates equals

to the number of rule functions, because for each rule func-
tion we construct only one mIR candidate.

A rule function involves two different elements: (1) a set
of similarity functions, and (2) a set of attributes. For ex-
amples, if we consider a set {g1, g2} of two similarity func-
tions, and a set {a1, a2, a3} of three attributes, then we get
a total of 23 rule functions by combing each attribute with

every similarity functions, such as f1 = g1(a1)+g1(a2)+g1(a3)
3

.
In general, assume there are l attributes and m similarity
functions, the number of rule functions is lm, which is the
same with the number of mIR candidates.

C. TIME COMPLEXITY ANALYSIS
Assume there are l attributes, m similarity functions, and

k training examples, we analyze the time complexity of our
approach as follows:

CCF estimation: Because interCCF only require the
observed similarities being sorted, the time complexity of
interCCF is equal to the time complexity of sorting, which
is O(log k). And because powerCCF require enumerating
all train examples to estimate the parameters, its time com-
plexity is O(K).

CCF value calculation: When calculate the value of
CCF for a unobserved similarity, interCCF require a binary
search to find the nearest observed data for interpolation.
Therefore, the time complexity of CCF value calculation for
interCCf equals to the time complexity of binary search, as
O(log k). For powerCCF, because CCF is directly calculated
according to Eq. 5, the time complexity is O(1).

Learning threshold: Given a difference restriction ε,
Alg. 1 actually search the approximate threshold from max-
imal 1

ε
different values. The number of comparisons required

by Alg. 1 is log 1
ε
. Noting the ratio F (θ̄|M+)

F (1−θ̄|M−)
is calculated

in each comparison, we also take the complexity of CCF
value calculation into account. Therefore, the overall com-
plexity of learning threshold is O(log 1

ε
log k) for interCCF

and O(log 1
ε
) for powerCCF.

mIR Evaluation: Since the evaluation score of a mIR
is calculated as Q̄ = 1 − F (θ|M+), the time complexity of
mIR evaluation equals to the time complexity of CCF value
calculation.

Learn single mIR: For each iteration of Alg. 2, we evalu-
ate different mIR candidates that are created by keep chang-
ing similarity functions for every attribute. Then there are
total lm mIR candidates to be evaluated in each iteration.
Such iteration will continue t times until the terminate con-
dition is satisfied. So the overall number of mIR candidates
that are examined is tlm. Because for each mIR we exe-
cute CCF estimation, threshold learning, and mIR evalua-
tion sequentially, the time complexity for this process is de-
termined by the highest time complexity of each step, which
is O(log 1

ε
log k) for interCCF and O(k) for powerCCF. In

sum, the overall time complexity of learning single mIR is
O(tlm log 1

ε
log k) for interCCF and O(tlmk) for powerCCF.


