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Abstract—Consumption of (business) processes provided
in form of Web sites have become a part of our daily life
for attending our personal and business needs. In order to
obtain the best solution for a particular task, users often
combine several Web processes. However, the coordination
of the execution of such Web process compositions is com-
pletely manual demanding the user to enter same or logical
dependent data multiple times. We argue that a part of such
coordination effort could be automatized by swapping out
the uncreative coordination tasks to the Web browser. Our
solution allows users to compose Web processes as generic
solutions and execute the compositions with appropriate
parameters every time they need to perform a concrete
task, thus relieving them from a lot of manual coordination
effort. We show how such Web process compositions can
be formalized, obtained and executed inside a common Web
browser with automatic flow of data among different parties
despite heterogeneous data.

I. INTRODUCTION

Most of the interesting (business) processes need to
interact with the user multiple times during their execution,
e.g. for obtaining inputs, providing outputs or resolving
non-determinism in order to proceed with further exe-
cution. In order to interact with the user elements for
displaying information as well as elements for receiving
user input are needed. In the Web, such multi-step, multi-
interactive, non-deterministic processes are implemented
as Web sites, while single step, deterministic utility pro-
cedures are often offered as Web services. Web sites build
the much larger part of the Web than the atomic Web
services1. Web sites offer processes, while Web services
mainly offer simple utility procedures, e.g. for conversion
of formats, currencies or querying a database etc. In the
rest of the paper, we use the term Web Processes for RPC
based Web services, RESTful Web services, Web sites etc.

End users use Web sites for accomplishing their simple
day to day tasks as well as complex business needs. Users
often need more than one Web process to accomplish a
task at hand because of reasons like (1) users wish to
compare the outcomes of different Web processes and
select the best one, and (2) complex tasks that can not be
performed completely with one Web process or (3) when
a process needs inputs that a user obtains as outputs of
other processes, to name a few.

1around 30,000 publicly available WSDLs according to seekda [1] vs.
a few billion Web sites even without considering dynamic Web sites.

Example Scenario: Consider Mary who is a secretary
and needs to arrange travel for her boss very often. Every
time, she is supposed to plan a trip for her boss, she needs
to search and book the most suitable flight, hotel and rental
car. For doing so she uses a bunch of Web sites. For flight
booking sites, she need to enter date and time considering
the timetable of her boss multiple times, check the flight
availability and compare the prices etc. Furthermore, she
needs to check the availability of the hotels that are not
too far away both from the location of the meeting her
boss want to attend as well as the airport. Especially, in
case the meeting location is far from hotel, she needs to
find a rental car of appropriate class for reasonable price
and availability in the duration of the stay of her boss.

Currently, users have to coordinate the execution of var-
ious Web sites manually, e.g. by manually entering same
(or logical dependent) data in different forms multiple
times, trying out different input values, aggregate results
of various Web processes. Considering that many tasks
that the users accomplish with the help of multiple Web
processes need to performed again and again (e.g. travel
booking as described in Example I), supporting a user with
automatic techniques in coordinating the Web processes
can save a lot of human effort.

In the recent years, many techniques have been de-
veloped with the aim of providing users with support
for automation while working in the Web. The initial
approaches e.g. [2] targeted mainly the data on static
Web pages. Later the idea of semantic description of
Web data has been applied for Web services resulting
in approaches like OWL-S [3] and WSMO [4]. Auto-
matic composition techniques for semantic Web services,
e.g. [5] have considered RPC style Web services, even
though the mentioned semantic Web service description
techniques provide with models for describing composite
Web services as well. The execution environments like
OWL-S Virtual Machine [3], [6] and Semantic Execu-
tion Environment [7] focus mainly on the execution of
workflows that have semantic Web services as atomic
activities. To the best of our knowledge, the composite
service description techniques have not been applied for
describing dynamics of Web sites, nor the composition
algorithms have been developed for the composition of
various Web sites, nor there are any semantic execution
environments that support a user in executing composed
Web sites in the Web browser.



In this paper, we present an approach which supports
users in the accomplishment of recurring tasks in the
Web. The central idea is to allow users to define solution
templates as complex decentralized workflow with many
Web processes and store them as ”intelligent” bookmarks.
For every concrete instantiation of a problem appropri-
ate bookmark can be selected triggering the execution
of the complex underlying workflow. For defining such
Web processes, we need a process description language,
which we briefly introduce in Section II-A. In order to
be able to define the solution templates declaratively, the
descriptions of many Web processes should be available.
In Section II-B we give an overview of our semi-automatic
techniques for obtaining descriptions of the processes
implicit in the flow of Web pages. In order to be able
to search and rank the process descriptions in a large pool
of process descriptions, there is a need for appropriate
search and ranking mechanisms. We introduce them in
Section II-C and Section II-D respectively. Having all the
preliminaries introduced, we develop in Section III an
automatic technique for supporting users in the task of
defining the solution templates. In Section IV we present
the overall architecture of our system with implementa-
tion details of our Web browser based graphical solution
template synthesis and execution prototype. We conclude
in Section VI after discussing related work in Section V.

II. PRELIMINARIES

In this section we give short overviews of some existing
technologies which are needed to develop the main contri-
bution of the paper. Automatic techniques for generating
appropriate compositions of Web processes are useful only
if there is a large pool of semantic descriptions of Web
processes available. In II-A, we give an overview of the
process description language that we use for describing
the dynamics of Web sites. In II-B, we give a brief
introduction of our view of Web sites as processes as
well as an overview of our semi-automatic approach for
obtaining descriptions of processes implicit in the flow of
Web pages.

A. Semantic Description of Web Sites as Processes

In this section, we present an overview of the suprime
Process Description Language (suprimePDL ) that we use
to describe the information flow and control flow among
the Web pages. suprimePDL is based on the π-calculus
process algebra. For details on the syntax and formal
semantics of the language, we refer to [8], [9].

In suprimePDL an agent is defined with
A(x1, . . . , xn)

def
= P , where x1, . . . , xn are the only

names that may occur then unbound in the process
expression P which is defined recursively as follows:

P ::= 0 | y[v1 . . . , vn].Q | y〈x1 . . . , xn〉.Q |
l(x1, . . . , xn)(y1, . . . , ym).Q |
[ω]Q | P1 ‖ . . . ‖ Pn | P1 + . . .+ Pn |
@A{y1, . . . , yn}

Element Maps to
Base URL of Web page / Link Logical URI of ontology
Display element id Ontology class
Content of a display element Ontology instance of the class

corr. to the display element id
Variable name of link Ontology class
Variable value of link Ontology instance of class corr.

to the variable
Form name Complex ontology class
Form field id Property of the class correspond-

ing to the form name
Form field name ontology class representing the

range of the property corre-
sponding to the field id

Form Field Value Instance

Table I
CORRESPONDENCE BETWEEN PAGE CONTENT AND ONTOLOGY

The Null process 0 denotes a process that performs
no action and is often used as termination symbol. In-
put process y[v1, . . . , vn].Q denotes a process that takes
inputs at the connection y and binds them to names
v1 . . . , vn. The subsequent behavior of this process is
defined in the process expression Q. Output process
y〈x1, . . . , xn〉.Q denotes a process that outputs the names
x1 . . . , xn at connection y. Its subsequent behavior is
defined in the following expression Q. Local process
l(x1, . . . , xn)(y1, . . . , ym).Q is a process that performs the
operation l with the arguments x1, . . . , xn and produces
output y1, . . . , ym. Its subsequent behavior is defined
in the process expression Q. Conditional Process [ω]Q
denotes a process which behaves like Q if the condi-
tion ω is true, otherwise it behaves like 0. Composition
P1 ‖ . . . ‖ Pn denotes the parallel composition of
processes P1, . . . , Pn. Choice P1 + . . . + Pn denotes a
process with n alternatives P1, . . . , Pn, from which only
one is selected for further execution. Agent Invocation
@A{y1 . . . , yn} denotes invocation of a defined agent
identifier A. Furthermore, an agent may have a set of
semantic SPKI certificates as proof of values of some non-
functional properties.

B. View of Web Sites as suprimePDL Processes

Table I summarizes the correspondence between the
static part of a Web page and the ontology elements.
For each new Web site, we create an ontology with the
logical URI derived from the base URL of the Web
site. In the semantic description of the content of a link,
the arguments of a link are modeled as classes in the
ontology, and the values of the arguments as instances of
the classes corresponding to the arguments. An HTML
form corresponds to a complex ontology class in the
ontology. The names of the input elements of the form
are the properties of the complex class representing the
whole form. The range of a property corresponding to an
input element is modeled as an ontology class. The name
of the class can be often derived from the label of the input
field (see e.g. [10]). Some types of input elements provide
a set of values from which one or more can be selected. In
these cases, the provided values are modeled as ontology



Web Artifact Element of the Process Description Lan-
guage

URL Agent identifier
Web page Composition of a set of outputs and a

choice from a set of links and forms
Selection of a link Invocation of an agent identifier
Submission of a form Input process
CGI script Execution of a local Operation
Web Agent identifier composed of concurrently

running Web pages

Table II
MAPPING BETWEEN WEB ARTIFACTS AND ELEMENTS OF THE

FORMALISM

instances, while the class representing the range of an
input field as enumeration class instead of a normal class.
Thus, we obtain an ontology with classes, instances and
relationships for each Web site. Automatic techniques for
detecting mappings and alignments, e.g. [11] in such a
large pool of ontologies are necessary.

A set of mappings, illustrated in Table II, is defined
between the Web artifacts and the elements of our process
description language. In our view, a URL is equivalent to
an agent identifier, whereas the selection of a link, which
is a usage of a URL, is equivalent to invocation of an
agent identifier with concrete values for the arguments. In
our model, a Web page corresponds to a process which is
a composition of a set of outputs and a choice from a set
of links and forms. Formally, a Web page P that display l
values x1, . . . , xl, contains m links u1, . . . , ul and n forms
f1, . . . , fn can be described as follows:

y〈o1, . . . , ol〉.0 ‖ {U1 + . . .+Ul+F1.N1 + . . .+Fn.Nn},

where U1, . . . , Ul denote the URLs that the
links u1, . . . , ul are respective invocations of and
F1.N1, . . . , Fn.Nn the input processes corresponding to
the forms f1, . . . , fn.

Our semi-automatic acquisition of semantic process de-
scriptions of Web sites automatically crawl the (dynamic)
Web pages and create ontologies for the terms occurring
on a Web page, especially in the links and forms as well as
description of the process implicit in the flow of crawled
Web pages. Such automatically created ontologies and
process descriptions can be further refined manually with
a browser based graphical editor for suprimePDL [12],
[13].

C. Search

For the synthesis of a coordinating process, it is required
that the processes that need to be coordinated are known.
Furthermore, during the synthesis, it is required to find
those processes that can be glued together to a given
process. Technically it means, that for a given interaction
pattern, processes with inverse interaction pattern need to
be detected automatically. In [14], we have developed a
technique for finding processes that fulfill constraints on
the functionality, including temporal constraints (desired
order of activities). The query formalism for constraints
is a combination of the µ-calculus temporal logic and

SHIQ(D) description logic. In [14], we have developed
a model checking algorithm that checks for a given query
and a given process description in suprimePDL, whether
the process description fulfills the query or not. We will
use the model checking technique developed for the pur-
pose of finding processes with required temporal structure
and functionality from within our synthesis algorithm
presented in the next section.

D. Ranking

Especially, when the set of results for a given query
can be large, there is need for ranking the results. In
this section we give an overview of the ranking approach
that will be used to rank the automatically synthesized
solution templates as well the outputs returned as the
result of a process consumption. In addition, the results
of the process search component can be ranking using
the same approach. Since, user preferences on NFPs are
often non-crisp and computation of optimal solution is
a computationally hard, we have developed a ranking
technique based on Fuzzy inferencing. Users express the
preferences as Fuzzy If-Then rules with the help of given
customizable vocabulary instead of dealing with concrete
numerical values and weights [15]. The computation of
the rank for given user preferences as Fuzzy If-Then rules
is carried out as follows: (1) The concrete values of NFPs
of a process are fuzzified (2) For every rule the degree
of fulfillment of the premise is computed and the part of
the fuzzy set in the conclusion that is above the degree
is chopped away. (3) All the chopped fuzzy sets (one per
rule) are aggregated to one fuzzy set which represents the
overall score of the process as a fuzzy set. (4) The fuzzy
set is defuzzified to obtain a crisp value between 0 and 1,
which represents the acceptance score of the process. After
performing the above 4 steps for each process, we obtain
a score for each process by which they can be sorted. For
further details of the ranking approach, we refer to [16].

III. SYNTHESIS OF SOLUTION TEMPLATES

In this section, we present an automatic technique to
synthesize solution templates. Given the logical constraints
on the information flow among processes, a solution
template also determines the sequences in which processes
are invoked. Different independently acting Web processes
invoked by a user do not communicate with directly with
each other, but rather via the user, e.g. when the outputs of
one Web process need to fed to another Web process. As a
consequence, the problem of automating the coordination
can be seen as the task of synthesizing a controlling
process C that runs in the user’s Web browser. Our ap-
proach allows user to specify constrains on the controlling
process with respect to desired control and information
flow and constructs controlling processes that fulfill user’s
constraints by combining the semantic descriptions of
the appropriate Web processes available in the process
repository created with the semi-automatic acquisition
technique [13]. In Section III-A, we show how the a
controlling process can be modeled with suprimePDL.



Since, modeling solution templates can be a very tedious
task, if performed manually, we develop an algorithm
for synthesizing such solution templates automatically in
Section III-B.

A. Modeling Controlling Processes

In this section we show how such a controlling process
can be modeled with our process formalism semantically.
When a user models a controlling process, the user has
certain constraints regarding the data flow, the control flow,
the properties of the data as well changes made by the
whole process. We derive three requisites from the above
mentioned three reasons for the usage of a controlling
process. (1) When no single process provides all desired
outputs, a parallelization of component processes is re-
quired in order to simulate the possible data flow among
them. Also, when there are several similar processes, i.e.
processes that provide the same results, the parallelization
can collect results of all processes. (2) When the number
of inputs required from the user can be reduced by
reusing known inputs that are provided by the user or
by previously obtained outputs of other processes, then
we need to model the data flow between the controlling
process and the process for which inputs can be provided.
As the controlling process is the invoker, it always needs
to accept outputs provided by the processes. (3) When the
output of the composed process needs to be the best among
all alternatives, then the resulting information obtained
from all component processes shall be aggregated.

Suppose the controlling process is denoted by C and the
Web processes that are supposed to be composed together
with the help of the controlling process C are denoted
by P1, . . . , Pn. Then a solution template is denoted by
C ‖ P1 ‖ . . . ‖ Pn. That is, all the Web processes run in
parallel to each other and also to the controlling process.

Modeling Data Flow On the level of formalism it
means that for every input activity a in a Pi if there is
an output activity b such that a is connected to b then b is
in C. Similarly, for every output activity b in a Pi if there
is an input activity a such that b is connected to a then a
is in C. Unconnected input and output activities in a Pi
imply that the input values will be provided by the user
and output values will be sent to the user respectively.
If a user is willing to provide some inputs, then there
will be corresponding (unconnected) input activities in C.
Similarly, if a user wishes to obtain some output from C,
there will be corresponding (unconnected) output activities
in C.

A data flow connection from an output activity to an
input activity is valid only if the values emitted by the out-
put activity are of the types expected by the input activity.
Recall from Section II-A that we model the data objects
as instances of ontological classes as well as the classes
along with their relationships with other classes as domain
ontology. Having such semantic descriptions, such a type
checking can be achieved by standard ontology reasoning
procedures for classification despite heterogeneity in the
schemata of the processes Pi and Pj .

Local Operations Often output values provided by a
process can not be fed into the input of another process
directly. For example, when values from different sources
(processes) first need to aggregated and only the aggre-
gated value and not the individual values are used as the
input of another process. For such calculation purposes, we
assume a set of operations that can be performed locally
respective to the controlling process. Whenever a pre-
processing of data is needed, one or more local operations
are added to the definition of the controlling process C
at the appropriate position (refer to local operations in
Section II-A).

B. Automatic Synthesis of Solution Templates

The synthesis algorithm computes a set of solution tem-
plates for a given problem, which is described by a user’s
requirements. The user formulates the desired properties
of a solution template as a tuple (I,O,Γ,Πo,Πt) that
contains a set I of inputs, a set O of outputs, a description
Γ of constraints on the outputs and how these outputs are
related to the inputs, and sets Πo and Πt of preferences on
outputs and templates, respectively. The algorithm not just
composes several processes such that a template provides
the required outputs taking requirements and preferences
into account. It focuses on synthesizing a controlling
process that eases controlling the process execution by
automating non-challenging tasks like provision of inputs
or forwarding parameters.

The set I of inputs describes inputs that a user is willing
to provide to processes of a template. In our example,
Mary wants to provide I = {Time(flightArrivalTime),
Airport(flightStart), Airport(flightEnd),
Time(carPickupTime), City(carPickup), . . . ,
CreditCard(cc)

∗
, UserProfile(user)∗}. The last two

inputs cc and user are marked for manual submission.
The execution engine will not perform any submit action
if one of these marked inputs occurs in the form.
The desired outputs O must be provided by a solution
template. For instance, Mary requires a Web process that
delivers basic information like start and end location
and/or time for flight, rental car, and hotel, as well as
pricing information and perhaps payment details. She
could serialize this aspect as O = {FlightTicket(ft),
Time(ftEndTime), Price(fp), RentalContract(car),
Price(cp), . . .}.
Γ denotes a logical expression that describes the relation
between inputs and outputs of the composed process.
It allows also to constrain the data flow among several
Web processes and to constrain the outputs of the
processes. For example, Γ = {equiv(flightEnd, ftEnd),
before(ftEndTime, carPickupTime), ≤ (fp, 100), . . .} is
a set of constraints that are interpreted as a conjunctive
query. Each constraint can be a binary or unary
predicate. equiv(flightEnd, ftEnd) states that the desired
destination equals the destination airport of the flight
ticket. before(ftEndTime, carPickupTime) relates the
dependency between the arrival time and the pickup
time of the rental car. It allows to use the outputs



of the flight booking process for a subsequent rental
car arrangement process (if it is required to combine
these two different processes). Web process outputs are
constrained (filtered) when a parameter is compared to a
literal, as in ≤ (fp, 100). It is also possible to filter based
on a variable value instead of specifying a constant value
at design time. Then, the execution will generate an input
form for that variable value. Summarizing, users only
need to deal with outputs satisfying the constraints Γ.
Thus, Γ can be regarded as a set of filters on processes
as process execution only continues if the outputs fulfill
the constraints.

Finally, a set Πo of preferences on the outputs and
a set of preferences Πt on composed processes can be
specified as further requirements. Here, Mary prefers
offers (obtained at execution time) with Πo = IF (fp =
low ∧ travelDuration = short) THEN acceptance =
excellent, whereas travelDuration denotes the overall du-
ration carPickupTime−flightDepartureTime of the travel.
The preferences Πt are analogously expressed using Fuzzy
If-Then rules as mentioned in Section II-D. Preferences on
a template comprise non-functional properties of a process
like availability or user rating and determine a ranking of
the solution templates.

Algorithm 1 searchProcess
Require: Desired properties (I,O,Γ,Πo,Πt), P ← {}
Pmatch ← match(I,O,Γ)
for all P ∈ Pmatch do
P ← P ∪ {P ||synthContrProc(P,C,Γ)}

for all O1 ∈ 2O do
5: if |O1| > 0 and |O1| < |O| then

P1 ← searchProcess(I,O1,Γ,Π
o)

P2 ← searchProcess(I,O −O1,Γ,Π
o)

for all P1 ∈ P1 and P2 ∈ P2 do
P ← P ∪
{P1||P2||synthContrProc(P1||P2, C,Γ)}

10: P ← addResultRanking(addProcessFilter(P,Γ),Πo)
return rankTemplates(P,Πt)

Given desired properties (I,O,Γ,Πo,Πt), we first
identify processes from a repository of available Web
processes that match the query (cf. line 1 in Algorithm 1).
Here, we assume that there is a matchmaker available
that is capable to discover Web processes fulfilling given
constraints (refer to Section II-C). Compositions of Web
processes are investigated subsequently (see the for loop
beginning at line 4). Therefore, for any binary disjunct
decomposition of the set O of desired outputs, which
is distinct from {} and O, the matchmaker identifies
Web processes that fulfill the query with a reduced set
of outputs. Divide and conquer allows us to recursively
relax the query, which in turn decreases the complexity
of the synthesis problem, because the number of desired
outcomes is reduced while the remaining parameters are
fixed.

1) Creating the Structure of the Controlling Process:
The matchmaker always returns a set P of matching

Figure 1. Synthesized solution template with a filter derived from a
constraint.

Web processes. Each process P ∈ P runs in parallel
in the created template. Then a controlling process C
is synthesized such that each of the processes P ∈ P
can be executed, i.e. inputs are provided and outputs are
received by C. Therefore C splits into |P| threads; one
thread CP per process P ∈ P . A thread CP has roughly
the complement interface of P . For example, there is
always an input operation in CP expecting the outputs
from an output operation in P . Analogously, for each input
operation c[i1, i2, . . . , im] in P there is an output operation
c < o1, o2, . . . , om > in CP providing the required inputs
i1, i2, . . . , im at the time P is expecting the input on
channel c. If P performs a local operation, CP provides
inputs and subsequently accepts outputs according to the
signature of the local operation. In cases of deterministic
choice, composition, and summation in P , the thread
CP is split again and the sub threads are analogously
synthesized for the remaining sub processes.

2) Incorporating Atomic Web Services: If a matching
process P ∈ P , i.e. P provides the required outputs and
requires inputs that are not supposed to be provided by the
user manually (by comparing with I), then the algorithm
tries to provide a composition of atomic Web services that
derives the missing inputs of P from the given information
in I. We assume, that if a user wishes some locally
available information to be integrated automatically, there
are corresponding Web services to access the information.
Web services provide simple operations that can be used
to transform the data; a composition of Web services can
provide the required input for P . We will not describe
further details of Web service composition, since many AI
planning based techniques have been introduced and well-
investigated [17], [18]. Our matchmaker therefore also
need to consider temporal constraints on the processes
used for the data transformation as we only consider those
that provide outputs before another input is required that
cannot be provided by C. For instance, a process requires
airport codes as inputs instead of city names and an
available service translates a city name to the airport code.
Then the template should not introduce this service if the
airport code is returned after the credit card is charged.

3) Example: Recalling Mary’s travel booking sce-
nario, we assume for example that there is no pro-
cess that provides all required outputs. We focus on
two component processes that provide flight arrange-
ments. The controlling process operates them as shown



Figure 2. suprime Architecture

in Figure 1. Besides the synthesis of the controlling
process as the complement of the individual Web pro-
cesses, the controlling process should ensure that con-
straints and requirements of the query are taken into
account. For a constraint γ ∈ Γ that constraints the
values of one required output o ∈ O a local pro-
cess lγ({o1, c1}, {o2, c2}, . . . , {on, cn})(c1, c2, . . . , ck) is
added to a new thread of the controlling process C. After
a process Pi returns oi to the corresponding thread CPi

of the controlling process and Pi’s next process is an
input operation, CPi forwards oi and its communication
channel identifier ci to the local process lγ that implements
the process filter that is used for γ. The filter lγ re-
turns a set of communication channels {c1, c2, . . . , ck} ⊆
{c1, c2, . . . , cn}. In order to avoid synchronization issues,
the channels are defined as shared variables within the
scope of C. A channel ci ∈ {c1, c2, . . . , ck} is in the result
set if the corresponding process Pi is continued. We say
that a process P is continued if the thread CP provides
inputs to the next input operation in P after P returned
the parameter required for the filter. CP ′ does not provide
any further inputs to P ′ if P ′ is not continued. As shown
in Figure 1, after the price information of offered flights
were received by the threads of the controlling process, a
filter leq100 synchronizes both threads by receiving price
information fp from each thread in C. Mary specified the
requirement ≤ (fp, 100) ∈ Γ, which means that processes
with prices lower than 100 may continue execution at
runtime.

4) Ranking: Handling preferences Πo on outputs, like
the ticket prices of offered flight, are similarly handled
within the synthesis of a controlling process. A syn-
chronizing activity is introduced after the Web processes
provided the parameters and computes the ranking. Then,
a ranked list of the results is generated with the help
of the ranking technique introduced in Section II-D and
displayed in the browser, which lets the user select one
or multiple outputs, e.g. flight offers, that can be further
considered in the remaining process, e.g. hotel and rental
car reservation.

IV. IMPLEMENTATION

In this section, we give overviews of the implementation
of the suprime components relevant for this paper and
refer to the suprime Web site 2 for more technical details.
Figure 2 shows the main components of the suprime
framework.

The languages for describing processes, offers, queries
and preferences build the basis for the intelligent tech-
niques like acquisition, search, composition, ranking and
execution. Our process description language suprimePDL
has been briefly introduced in Section II-A. The query
language for specifying constraints on process properties,
especially temporal constraints, has been presented in [19].
The Fuzzy If-Then rules based preference specification
language has been introduced in [16]. For each language,
we have developed a Java API as well as a graphical
notation.

The Repository component stores process descriptions,
ontologies and ontology mappings persistently. The de-
scriptions can be managed with the help of the methods
for adding, removing and updating the descriptions. E.g.
the automatic acquisition module that generates the se-
mantic process descriptions as introduced in Section II-B
uses these methods to manage the process descriptions
persistently.

The Search component has direct access to the repos-
itory and searches for process descriptions within the
repository that fulfill a query as introduced in Section II-C
and presented in [19]. Roughly, the search is based on
a tableaux based model checking algorithm that checks
whether a process expression is a model of a temporal
logic formula. In order to achieve efficiency, indexing
techniques based on the simulation relationships among
the process expression have been incorporated, which can
be computed independent of a query, and therefore off-
line.

While the Search component filters the set of processes
to only those that fulfill certain criteria, the Ranking
component sorts the processes according to a preference
structure. In our system, the preferences are defined as
Fuzzy rules as introduced in Section II-D. We have im-
plemented the FITA (First Inferencing Then Aggregation)
strategy [20] in Java that computes a score between 0 and
1 for a given set of values for NFPs and a Fuzzy rule base.

The query formalism proposed in Section III for spec-
ifying end user requirements is roughly a union of the
Fuzzy rules based preference specification formalism [16]
and a subset (without temporal constraints) of the query
language presented in [19]. Therefore, the Java APIs for
the query language and the preference language are used
to process the user’s synthesis requirements program-
matically. A user interface allows graphical modeling of
user’s requirements on a solution. The synthesis algo-
rithms presented in Section III, implemented as part of
the Composition component, generates a set of solution

2http://suprime.aifb.uni-karlsruhe.de



templates. For doing so, it often utilizes the search for
appropriate processes in the repository.

The browser based front end is based on the open source
Oryx process editor 3 and allows end users to model,
search, compose Web processes graphically as well as
execute them in the Web browser. We have extended the
Oryx editor to support our languages by the so called
Stencil Sets. In particular, the process editor allows users
to refine the automatically obtained suprimePDL descrip-
tions of the Web processes. The search GUI allows users
to model a query in the above mentioned query language
graphically. The discovery component returns the set of
process descriptions that fulfill the query and the ranking
GUI allows users to define Fuzzy sets and model their
preferences as Fuzzy rules. When a user has modeled
the requirements on a solution template, he can press the
”synthesize” button, upon which the synthesis algorithm
is invoked. The set of solution templates (suprimePDL
process expressions) is sent to the ranking component
together with the preferences, which return a sorted list
of solution templates. The list is presented to the user at
the GUI, where he can view the details of each solution
template, refine the solution templates and store useful
ones in the repository.

In our browser based implementation of the execution of
a complex process, a browser tab corresponds to a thread.
That is, for each thread a new browser tab is opened, in
which the thread can receive inputs and provide outputs.
When the thread terminates, the corresponding browser
tab is closed. When an input is required from the user by
a controlling process, an HTML form is created from the
set of input variable and displayed in the corresponding
tab. Similarly, when a controlling process produces an
output to the user, the output values are displayed in
the corresponding tab. If there is a data flow specified
from an output activity of a controlling process to an
input activity of a Web process, the values are entered
in the corresponding form and the form is submitted
automatically. Note that, in this way the names of the
browser tabs act as communication channels for various
input and output activities. When a non-deterministic
choice is executed, a Web page is generated with a list
of links and forms depending on whether an alternative is
a process invocation or an input activity. A user can then
either click on a link or submit a form. In case of a link
selection the URL of the tab is changed to the URL of
the new link, whereas in case of a form the tab behaves
as described above.

V. RELATED WORK

Annotation of Web pages has been of interest for
quite some time now [2]. However, the main goal of the
annotation approaches was to annotate the data on Web
sites with ontologies to achieve better interoperability.
We base our work on an approach that can capture not
only dynamic Web pages, but more interestingly also
the dynamics of the flow of Web pages. The semantic

3http://bpt.hpi.uni-potsdam.de/Oryx/WebHome

descriptions of the data on Web pages goes adjacent to
the semantic description of the behavior of the Web sites.
Our process description language suprimePDL is more
appropriate than e.g. OWL-S[3] due to (1) its clear formal
semantics and Turing complete expressivity and (2) its
support for mobility which makes it possible to send links
as data objects which is inherent in Web processes.

From the research community, perhaps the METEOR-
S project first used the term Web processes, even though
with a different meaning than we used it in this paper [21].
In [21] and other many other related METEOR-S research
works, the focus is on constructing workflows by com-
bining atomic Web services. In this paper, our focus is
on viewing Web sites as processes and combining them
to (more complex) processes. Mashup tools, e.g. Yahoo!
Pipes4 allow users to combine data from various Web
pages and present the aggregated view on the data on a
new Web page. Thus, mashup tools are data flow driven.
Furthermore, they mostly rely on RESTful Web services
for obtaining access to the data. Our main focus in this
paper is not to create a new Web pages with aggregated
information collected from various Web pages, but rather
to provide users of the Web sites with techniques for
composition and execution of Web sites in order to relieve
them from manual coordination of the Web sites they often
use for a task at hand.

iMacros5 is a commercial browser plugin that allows
users to record a navigation behavior as a macro and
execute such macros at some later stage. However, the
synthesis of the macros is fully manual and a macro
can use only those Web processes that are known to
the end user while recording it. Our automatic synthesis
technique allows users to compute generic solutions based
on user’s requirement automatically. While doing so, all
Web process descriptions available in the repository can
be used. Furthermore, the formal nature of our process
language makes it possible to employ automatic proce-
dures for reasoning about the properties of synthesized
solution templates. In the recent years, many automatic
composition techniques, e.g. [5], have been proposed.
The major difference between them and our synthesis
approach is that we aim at gluing together processes to
a more complex process, whereas automatic composition
techniques aim at composing atomic Web services to
workflows.

The execution with iMacros is rather syntactic, by which
we mean that it does not support interoperability of data
among different sources by considering their semantics. In
our approach, we rely on semantic descriptions of the data
with ontologies with a standard language OWL in order to
achieve the semantic interoperability despite differences in
the terminologies used at different Web sites. Furthermore,
our execution engine generates HTML forms for receiving
user inputs that can be used across all the involved Web
processes.

4http://pipes.yahoo.com/pipes/
5http://www.iopus.com/iMacros/



VI. CONCLUSION AND OUTLOOK

The work presented in this paper was motivated by
mainly two observations (1) Most of the interesting pro-
cesses in the Web are targeted at human users and (2)
human users have to coordinate various Web processes
manually. We have argued that most of such coordination
e.g. entering the same or logical dependent data in many
different forms, can be automatized. In this paper, we have
presented an approach that helps the users to automatize
the coordination, which is especially beneficial in case of
recurring tasks. We first presented the overviews of the
techniques that are used in the main part of the paper. Our
main contribution lies in the interplay of many techniques
to obtain a useful application in the wider sense, as well
as in the automatic technique for supporting users in
the synthesis of solution template in the deeper sense.
While composition is an intermediate step, the ultimate
goal of the user is to achieve efficiency in day to day
work by executing the solution templates. We addressed
this issue by presenting a Web browser based execution
environment that automates navigation of Web processes
while still allowing manual interaction in case where input
from human is required or desired by the user. Even
though all the necessary components of our approach are
implemented, they still need to be packed in a browser
plugin. We plan to implement the browser plugin and make
it publicly available soon. Furthermore, scalability of the
system is an important issue, that we need to investigate
in the near future, since we consider Web processes which
are huge in number.
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