Optimization and New Performance Evaluation of
the Topic-Specific Trust Open Rating System

Holger Lewen

Institute AIFB, Universitat Karlsruhe (TH), Germany
lewen@aifb.uni-karlsruhe.de

Abstract. In this technical report we describe the optimization of our
implementation of the Topic-Specific Open Rating System (TS-ORS).
We rerun our performance experiment and compare them to the old
version of the code. Furthermore, we analyze the complexity of the algo-
rithms used in the system.

1 Introduction

Taking the source and performance measures published in [1], we have reengi-
neered large parts of the code to make the application run faster and with less
memory consumption. In this report we will describe which steps were taken,
how the architecture has evolved, and also how the performance has improved
with the new code base. Also a few new features are described. The new code
base will also be used in our Cupboard system [2].

2 Performance Limiting Factors in the Old Code and
Reengineering

After profiling the old code, the main limiting factors were identified as database
access and the implementation of multithreading. As a first step, the database
connection pool was replaced by a faster one, which yielded in some speed-up,
but was not sufficiently satisfying. The main speedup occurred when we started
bundling the database write access, i.e., caching the statements inserting data
into the database and then writing a huge insert instead of a couple of thousand
small insert statements. Because this way less connections have to be requested
form the connection pool, performance increases notably.

In terms of main memory consumption, most main memory is consumed by
the big matrices we use for trust computation. The former approach for paral-
lelization had multiple instances of a thread performing the same computations
on different data. Taken one computation as a baseline, each additional com-
putation run in parallel takes up the same memory. Running four threads thus
means quadrupling the memory needed. We have changed the computations to
now parallelize the computations by distributing parts of the computation over
more threads. Whereas formerly the matrix multiplication step would have run

on one thread—but with more threads performing the same multiplication on
different data in parallel—we now run one matrix multiplication, but distribute
it over more threads. Since all threads can work on the same matrix, there is no
increase in memory consumption. Whenever possible, we reengineered the core
methods of the algorithm to support multithreading.

For the meta-trust propagation, we redesigned the algorithm so that the
propagation is done directly in the database, without many reads and writes
from the java program. This also caused a significant speed-up.

2.1 Changes in Architecture

We have updated both the database schema, and the structure of the source
code.

Database Schema While most of the schema has stayed the same, we have
introduced a new table localnotrust where information is stored about which
users are not connected to the Web of Trust (WOT). This table is then used for
a faster information lookup at runtime. The updated schema can be found in
Fig. 1. We have also updated the index structure to improve performance. As
before, when the re-computation is triggered during runtime, temp versions of
the tables runtimetemp, localtrust, globaltrust, and localnotrust are created.
When the computations are completed, they replace the tables used at runtime.

2.2 UML-Diagram

Because of the performance optimization explained above, also the design of a
number of classes and methods has changed. The updated UML Class-Diagrams
can be found in Fig. 2 and Fig. 3. We will now lay out the changes and new
functionality.

Changes to TS-ORS Core One of the most important changes is the redesign
of the multithreading functionality. The class Multithreading was removed, and
the Jama Matriz class extended by methods that allow multithreading. The
new Caching class allows to cache results based on standard parameters. The
computations class was cleaned up by moving small methods into bigger ones,
and extended with a method to retrieve the trust statistics for a review.

2.3 Interaction with other Programs

The number of Java Servlets used for the integration with Cupboard has been
increased, to offer access to the new functionality of retrieving the trust statistics
for a review, and also to trigger the caching mechanism. The new UML class
diagram can be seen in Fig. 4.

users globaltrust trust metatrust
uid INT(11) gid INT(11) tid INT(11) mtid INT(11)
username VARCHAR(15) oid INT(11) uid INT(11) uid1 INT(11)
password VARCHAR(15) xid INT(11) rid INT(11) uid2 INT(11)
firstname VARCHAR(30) uid1 INT(11) trust INT(1) oid INT(11)
lastname VARCHAR(30) trustrank DOUBLE distrust INT(1) xid INT(11)
email VARCHAR(50) distrustrank DOUBLE Index newindex(uid,rid) global INT(1)
openid VARCHAR(50) dstar INT(1) Index newindex2(rid) ontology INT(1)
rid INT(11) property INT(1)
Index newindex(oid,xid,uid1) Index newindex(uid1,uid2,0id,xid)
- Index newindex2(uid1,uid2,global)
runtimetemp
tempid INT(11) |°‘_:a|"“5t rating
fid INT(11) lid INT(11) rid INT(11)
dstar INT(1) oid INT(11) uid INT(11)
uid1 INT(11) Xid INT(11) oid INT(11)
wid2 INT(11) uid1 INT(11) xid INT(11)
oid INT(11) uid2 INT(11) dext TEXT
xid INT(11) localtrust DOUBLE dstar INT(1)
trust INT(1) interpretation INT(T) Index newindex(uid,oid xid)
distrust INT(1) dstar INT(1)
Index oidxid(oid,xid) rid INT(11) localnotrust
Index trustpropxid(uid1,uid2 trust,distrust,xid) Index newindex(oid,xid,uid1interpretation) Ir,"d INT(11)
Index trustpropoid(uid1,uid2 trust,distrust,oid) ontologies :;j IISIS;
properties oid INT(11) uid1 INT(8)
xid INT(11) uri VARCHAR(100) uid2 INT(8)
name VARCHAR(25) name VARCHAR(50) Index newindex(oid,xid,uid1)

Fig. 1. This graphic depicts the new database schema of the T'S-ORS.

3 Complexity Analysis

E In order to understand the behavior examined during the benchmarks, it is
also important to analyze the complexity of the algorithms. We have to distin-
guish between the computations run offline (the trust computation), and the
computations needed at runtime (ranking of reviews, computing an overall score
for an ontology). We start by analyzing the computations performed offline. For
this we use the common Big-O notation [3].

3.1 Complexity of Trust Computation

Since the Big-O notation is dominated by the part of the algorithm having the
highest complexity, we will analyze each step taken separately to determine the
Big-O complexity. Since constants are irrelevant for the complexity analysis, we
do not try to provide the exact number of times an operation is performed, but
concentrate on the complexity of the operation performed. Usually one input
parameter is chosen for the complexity analysis, since the result is easier to
understand than trying to combine all variables.

In our system, we have a number of variables. The number of ontologies,
the number of properties, the number of users, the number of reviews, and the
number of trust statements on these reviews. We will consider the number of
users as our input parameter, since it is the one having the largest impact on

+ TrustTemp : double

+ DistrustTemp : double

+rid : int

+ dstar : int
+getNumberOfUsersfromUsers() : int
+getNumberOfOntologiesfromOntologies() : int
+getNumberOfPropertiesfromProperties() : int
+getNumberOfRatingsfromRating() : int
+getTrustandDistrustMatrix(oid : int, xid
+updateGetTrustandDistrustMatrix(oid
+updateGetDistrustMatrix(oid : int, xid
+getEmptyMatrix int) : doubl
+materializeTempDatabase()
+initializeTempGlobaltrustDatabase()
+initializeTempLocaltrustDatabase()
+flushGlobalTrustRanksToDatabase(oid : int, xid
+updateFlushGlobalTrustRanksToDatabase(oid
+getTrustorDistrust(uid2 : int, rid : int) : int
+addTrustorDistrust(uid1 : int, rid : int, trust
+getRid(uid : int, oid : int, int) :int
+getUidfromOpenID(openlD : String) : int
+getOidfromURI(uri : String) : int
+isEmptyTempTrust(rid : int, uid1
+initializeTables()
+loadOpenIDsFromDatabase() : String
+loadReviewsFromDatabase() : String
+addReview(uid : int, oid : int, xid : int, dext
+addUser(username : String, password
+addUser(openld : String)
+addOntology(uri : String, name : String)
+addOntology(uri : String)
+getOntologylD(uri : String) : int
+existsTrustOrDistrust(uid : int, rid

int)
int, xid
int)

int)

int, xid : int, trust

int, distrust : int)

int) : boolean

String, dstar : int)

int) : boolean

+computeF(oid : int, xid : int)

+updateComputeF(oid : int, >

+computeTrustRankAndDistrustRank(oid : int, xid : int)
+updateComputeTrustRankAndDistrustRank(oid : int, xid : int)
+getOntologyRatingBasedOnGlobalTopNReviews(oid : int, alpha : double, N
+getGlobalTopNStarratings(oid : int, xid : int, alpha : double, N : int) : int
+getTopNStarratings(oid : int, xid : int, uid : int, alpha : double, N : int) : int
+getOntologyRatingBasedOnTopNReviews(oid : int, uid : int, alpha : double, N
+returnGlobalReviews(oid : int, xid : int, alpha : double) : String
+returnLocalReviews(oid : int, xid : int, uid : int, alpha : double)
+getTrustStatforReview(rid : int) : int

String

+ cacheOntologyGlobal(oid : int)
+cacheOntologyReviewsGlobal(oid
+cacheOntologyGlobal(oid : int)
+cacheOntologyReviewsGlobal(oid
+cacheOntologyLocal(oid : int, uid
+cacheOntologyReviewsLocal(oid
+cacheOntologyLocal(oid : int, uid
+cacheOntologyReviewsLocal(oid
+cacheOntologyLocal(oid : int, uid
+cacheOntologyReviewsLocal(oid
+cacheOntologyLocal(oid : int, uid
+cacheOntologyReviewsLocal(oid
+cacheOntologyReviewsLocal(uid
+cacheAllOntologiesGlobal()
+cacheAllOntologyReviewsGlobal()
+cacheAllOntologiesLocal()
+cacheAllOntologyReviewsLocal()
+cacheAllOntologies()
+cacheAllReviews()

+cacheAll()

int)

int)
int)
int, uid
int)
int, uid
int)
int, uid
int)
int, uid
int)

Fig. 2. This graphic depicts the updated UML class diagram of some of the TS-ORS

core components.

int, trust : double, distrust : double)
double, distrust : double)

String, firstname : String, lastname : String, email : String)

int, muXid : double, nu : double) : double

int, muXid : double, nu : double) : double

+setMetaTrustOrDistrustOID(uid1 : int, uid2 :int, oid
+propagateMetatrustOID(uid1 : int, uid2 : int, oid : it
+propagateMetadistrustOID(uid 1 int, oid : int)
+getMetaTrustorDistrustOID(uid1 int, oid : int) : int
+setMetaTrustorDistrustXID(uid1 : int, uid2 : int, xid : int, property : int)
+propagateMetatrustXID(uid1 : int, uid2 d @ int)
+propagateMetadistrustXID(uid1 : int, uid2
+setEigentrust()
+getMetaTrustorDistrustXID(uid1 : int, uid2 : int, xid : int) : int
+setMetaTrustorDistrustUID(uid1 : int, uid2 : int, global : int)
+propagateMetatrustUID(uid1 : int, uid2 : int)
+propagateMetadistrustUID(uid1 : int, uid2 : int)
+getMetaTrustorDistrustUID(uid1 : int, uid2 : int) : int
+propagateMetaTrustandDistrust()
+propagateMetaTrustandDistrust1()

int, ontology : int)
)

int, xid : int)

+createTabletemplocaltrust()
+createTabletemplocalNotrust()
+addIndextemplocalNotrust()
+addindextemplocaltrust()
+dropTabletemplocaltrust()
+dropTabletempglobaltrust()
ropTabletemplocalNotrust()
+createTabletempglobaltrust()
+addindextempglobaltrust()
+dropTableglobaltrust()
+createTableusers()
+dropTableusers()
+createTableontologies()
+dropTableontologies()
+createTableproperties()
ropTableproperties()
+createTablerating()
+addindexrating()
+dropTablerating()
+createTabletrust()
+addIndextrust()
+dropTabletrust()
+createTablemetatrust()
+addIndexMetatrust()
ropTablemetatrust()
empGlobaltrust()
empLocaltrust()

int, uid
int, uid

+updateRevie
+updateReview(oid
+updateRevie
+updateReview(rid
+updateRevie: int, text : String)
+updateRevie int, dstar : int)
+updateDstarinTemp(rid : int, dstar : int)
+updateDstarlnTemp(oid : int, xid : int, uid
+updateLocaltrust(oid : int, xid : int)
+updateGlobaltrust(oid : int, xid : int)
+updateTrustComputations(oid : int, xid
+updateTrustOrDistrust(uid1 : int, uid2 : int, oid : int, xid : int, trust
+updateTrustOrDistrust(uid1 : int, rid : int, trust : int, distrust : int)
+updateaddTrustOrDistrust(uid1 : int, uid2 : int, oid : int, xid : int, trust
+updateaddTrustOrDistrust(uid1 : int, rid : int, trust : int, distrust : int)
+updateAddReview(uid : int, oid : int, xid : int, dext : String, dstar : int)
+updateCachedUsernames()
+updateCachedReviews()
+updateNumberUsersfromUsers()
+updateNumberOntologiesfromOntologies()
updateNumberPropertiesfromProperties|
updateNumberRatingsfromRating()
+recomputeEverything()
+switchtables()
updateUIDaddUser(uid
+updateUIDaddUser(uid
leleteUser(uid : int)
+deleteReview(rid : int)
+deleteOntology(oid : int)
+deleteFromMetatrustGlobal(uid1
+deleteFromMetatrustOntology(uid1
eteFromMetatrustProperty(uid1

int, xid
int, xid
int, xid : int, uid

int, dstar : int, text

int, dstar : int, text : String)
int, dstar : int)
int, text : String)

String)

int, dstar : int)

int)
int, distrust

int, distrust

int, openld : String)

int, uid2 : int)
int, uid2 : int, oid
int, uid2 : int, xid

int)
int)

int)

int, username : String, password : String, firstname : String, lastname : String, email

double
double
double
double
+gamma : double

terations : int
+maxerrorTrustRank : double

+DBName : String
+redistributeWeightsWhenReviewsAreMissing : boolean
+noThreadsUsedforComputations : int
+maxConnections : int

+CacheMuXid : double

+CacheAlpha : double

+CacheN : int

+CacheNu : double

+numberUsersfromUsers : int
+numberOntologiesfromOntologies : int
+numberPropertiesfromProperties : int
+numberRatingsfromRating : int
+usernames : String

+reviews : String

+initializeCache()

int)

: String)

+ generateUsers (numberUsers : int, usernamelength : int, passwordLength : int, firstnameLength : int, lastnameLength : int, emailLeéngth = int, emailSuffix = String)

generateOntologies (numberOntologies
generateReviews (fromOid : int, toOid : int, fromXid : int, toXid
generateTrust (fromRid : int, toRid : int, numberTrustperRid : int, rangeUserld
+ generateProperties (noProperties : int)
enerateMetaTrustUid (rangeUserld : int, numberMetatrustStatmentsPerUser
+g rid : int, rangeXid : int, numberMetatrustStatments
generateMetaTrustOid (rangeUserld : int, rangeOid : int, numberMetatrustStatments

int, nameLength : int, uriPrefix : String, uriSuffix : String)
int, numberReviewsPerOidXid : int, rangeUserld : int, fromStar : int, toStar : int)
int, percentTrustVsDistrust : int)

int, percentTrustVsDistrust : int)

nt, percentTrustVsDistrust : int)
int, percentTrustVsDistrust : int)

Fig. 3. This graphic depicts the updated UML class diagram of the rest of the TS-ORS

core components.

Overallrating || <<dataType>> || Review

Jjavax.servlet.http.HttpServiet + trustdir : int + reviewer : String

+ distrustdir : int + rating : int
AN o coT o .

+ trustindir : int + review : String
+ distrustindir : int + rid : int

ReturnOverallRating
+ serialVersionUID : long

doGet (request : HttpServletRequest, response : HttpServietResponse)
doPost (request : HttpServletRequest, response : HttpServietResponse)
ReturnReviews AddReview

|| + serialVersionUID : long + serialVersionUID : long

doGet (request : HttpServletRequest, response : HttpServietResponse) # doGet (request : HttpServletRequest, response : HttpServietResponse)
doPost (request : HttpServletRequest, response : HttpServletResponse) # doPost (request : HttpServletRequest, response : HttpServletResponse)

ManageMetatrust
|| + serialVersionUID : long

doGet (request : HttpServletRequest, response : HttpServletResponse)
doPost (request : HttpServletRequest, response : HttpServietResponse)

AddTrustOrDistrust
+ serialVersionUID : long + serialVersionUID : long

doGet (request : HttpServletRequest, response : HttpServietResponse) # doGet (request : HttpServletRequest, response : HttpServietResponse)
doPost (request : HttpServletRequest, response : HttpServietResponse) # doPost (request : HttpServletRequest, response : HttpServletResponse)

Caching
+ serialVersionUID : long

doGet (request : HttpServletRequest, response : HttpServietResponse)
doPost (request : HttpServletRequest, response : HttpServietResponse)

TrustStats
+ serialVersionUID : long

doGet (request : HttpServletRequest, response : HttpServietResponse)
doPost (request : HttpServletRequest, response : HttpServietResponse)

Fig. 4. This graphic depicts the new UML class diagram of the servlets used for inter-
action with Cupboard.

the complexity. It is important to understand that in the default setting the
computations are performed exactly #ontologies x #properties times (since the
trust is computed for each ontology—property combination individually).

When the offline computations are triggered, the following operations are
used:

Matrix addition (in O(n?))

— Matrix subtraction (in O(n?))

— Matrix transponition (in O(n?))

— Matrix multiplication (in O(n?))!

— Matrix scalar multiplication (in O(n?))

— The majority rounding (in O(n3)) which consists of n times the following:
e Sorting (in O(n * logn))
e Interpreting Trust (in O(n?)

TrustRank computation (in O(n?))

DistrustRank computation (in O(n?)

Since the performed database operations all have a complexity below O(n?), the
overall complexity of the computations is in O(n?®). As long as there are not too
many users, there is no problem computing everything for every ontology and
property separately. If the time taken to compute the trust and distrust is taking
too long for the needs of the application, the number of times the computation is
performed can be reduced by grouping the available trust information and only
perform the computations where they promise the most gain. Possible groupings
could for example be by property or by ontologies of a special area.

! We are aware that other methods for matrix multiplication exist that have a lower
complexity, but their overhead is too big to make them useful in our case

3.2 Runtime Complexity

Here we have to distinguish two tasks the TS-ORS performs at runtime: Ranking
the reviews for a given ontology—property combination, and computing an overall
rating for an ontology. We also have to distinguish the cases that the user is
identified (and local trust can be used), and the case where the user is unknown
(and global trust has to be used).

Ranking of Reviews For this task the system is given as input parameters
the ontology and property for which the reviews have to be retrieved, and the
user who is requesting the information (if available). Also the combination of
trust and distrust can be influenced by a parameter. For the result based on
the global reviews, the method basically just performs one database query and
then provides the ordered reviews as output. Its runtime is dependent on the
number of reviews that exist for this ontology-property combination. Within the
database query, the results are ordered. So with n being the number of reviews,
the complexity of the retrieval is in O(n*logn) which is mainly due to the sorting
needed. In case the user is known, more database queries are performed, but the
complexity stays in O(n x logn) with n being the number of existing reviews.
Since there cannot be more than 1 review per user for each ontology—property
combination, the number of users is an upper bound for the number of reviews.
Most of the times, the number of reviews will be far smaller than the number of
users.

Overall Rating of Ontologies In case only the overall rating of an ontology
has to be computed, the complexity is the same as for the ranking of the reviews,
since for all properties of an ontology, the top n reviews have to be retrieved.
Since during this process the results are sorted in the database, the complexity
is O(n*logn) for both retrieval based on global and on local trust, with n being
the number of reviews. Since the number of properties is a constant factor in
any installation of the system, it does not influence the complexity. For runtime
performance it is important to know that limiting the number of top reviews
based on which the overall rating is computed does lower the computation time,
but does not affect the theoretical complexity. Again, the number of users is an
upper bound for n.

3.3 Further Optimization

While it is not possible to lower the worst case complexity, we have tested suc-
cessfully an optimization for scenarios, where many users are not connected to
the web of trust for a given ontology—property combination. Imagine the case
where there are a million users in the system, but only a few reviews and trust
statements on these reviews. Running the computation with a million times a
million user matrix would result in a serious performance problem. Luckily, we
managed to address this case by reducing the number of users taken into account

for the computation to these actually affecting the outcome of the computation.
By the nature of the algorithms, the only users actually affecting the outcome of
the computation are the users who wrote the reviews for that ontology—property
combination, and the users that have made a (dis)trust (or meta-(dis)trust)
statement covering one of these reviews. In order to only use the data necessary,
we first get the IDs of all users that have either written or (dis)trusted reviews,
and fill two hash maps with a mapping from original ID to new ID and vice versa.
The new IDs start with 1 and are auto incremented. The trust and distrust ma-
trix are then filled with the data using the new IDs, and after the computation is
done, data is written back using the old IDs. The result is exactly the same as if
the algorithms were run on the complete user-base. The overhead is very small,
since writing and reading from the Hash table can be done in almost constant
time. If we use this technique, then we can abandon the localnotrust table, since
we would not have an entry for all the users that we did not consider for the
computation. In our algorithm at runtime, we derive these users instead by first
seeing which authors wrote reviews for that ontology—property combination, an
who of them is not trusted by our user under consideration. This also saves space
in the database.

Using the optimization, we can ensure that the complexity is in O(m3), with
m being the number of users who wrote or (dis)trusted reviews. In the worst
case, m = n, but in the normal data-sparse setting, we can save time during the
computation.

4 Evaluation

In order to make the benchmarking results comparable to the one of the bench-
mark, we have left the evaluation methods unchanged and have just run it using
the new code. So the following diagrams will be the same as in the older deliver-
able, just with updated times. The Setup is exactly as described in [1]. In order
to compute a more accurate average time, we have run the overall computation
task 500 times instead of 300 times. We did not use the optimization described
in Section 3.3, because our scenarios were not data sparse.

4.1 Results

We have performed the benchmark again on two systems: A Dual-core MacBook
Pro running Mac OS X 10.5.8 and a QuadCore PC this time running Ubuntu
64bit.

In order to find out how a different number of reviews for each item and
trust statements on these reviews would influence the computation time, we
did not only vary the number of users (100, 250, 500), but also the amount of
reviews and trust statements available, resulting in 9 different test runs. During
the generation of the test data, for each different user group size, we had one
setting which had 10& of the users review each ontology—property combination
and 10% of the users then trusting or distrusting each of these reviews, one with

a 50%-50% distribution and a worst case scenario (100%-100%). Worst case
means that every users reviews every ontology—property combination, and also
every user then votes on the usefulness of these reviews. In a realistic setting, the
distribution is likely less than 10%-10%. We have furthermore assumed that of
the users making trust-statements, 70% of the trust statements were trust, and
30% were distrust. For the meta-trust generation, we have fixed the percentage
of global, ontology- and property-specific meta-trust statements to 20% per user
for all runs, i.e. each users meta-trusts 20% of the other users. The test data
was regenerated between all runs, to prevent caching effects in between runs.
As for the number of properties, they were fixed to 5. Furthermore we limited
the number of ontologies to 12. As shown in section 3 the complexity of the
computation does not increase by having more ontologies, since the ontologies
are just a linear factor (it will take 10 times longer to perform the computations
for 120 instead of 12 ontologies). This is because all the computations have to
be performed for each ontology—property combinations.

MacBook Pro The computation was performed on a MacBook Pro with 2.16
GHz Intel Core 2 Duo Processor and 3GB 667 MHz DDR2 SDRAM running
Mac OS X 10.5.8. The hard disk is a ST9320421ASG (320GB 7200 RPM, 16MB
Cache, avg. seek time 11 ms). This time we decided to use Java 6 64bit with
Eclipse Version is 3.5 for Mac. MySQL versions are 5.1.36 64bit for the server
and 5.1.8 for the J-Connector.

The results are shown in the figures 5, 6, 7, 8 and 9. The percentages in
the labels refer to the percentage of reviews, trust and meta-trust statements
generated as test data (see explanation above). For example 10%10%20% means
that 10% of all users have reviewed each ontology, 10% of all users have rated
each review, and each user expresses meta-trust towards 20% of the other users.
We believe that this setup allows to draw some conclusions about the scalability
of the system with regard to number of users and sparsity of data. In the following
section we will analyze the results seen in the figures presented here.

QuadCore Vista 64bit The computation was performed on a 2.40 GHz In-
tel Core 2 Quad Q6600 processor with 8GB 800 MHz DDR2 SDRAM running
Ubuntu Kernel 2.6.28-15 x86_64. The hard disk is a Samsung HD103UJ (1TB,
7200 RPM, 32MB Cache, avg. seek time 8.9). Eclipse Version is 3.5.0 for Linux
64bit. Java version was OpenJDK Runtime Environment (IcedTea6 1.4.1) 6b14-
1.4.1-Oubuntull. We used MySQL 5.4.1 beta linux x86 64 ICC-GLIBC23 for
the server and 5.1.8 for the J-Connector.

5 Result Analysis

We will now analyze the improved results of the benchmark and try to explain
how this speedup was gained. The general analysis provided in the last deliv-
erable does still hold. We will start with figures 5 and 10, which depict the

Computation of TrustRanks, DistrustRanks and Localtrust in seconds
1400
1255,193
1200
987,159
1000 503
800 —
14100 User
600
430,963 14250 User
400 27679 T 1500 User
166,426 208,766 168,744
0 - 87,506 2,508
15,198% 11,5737:281 -
0 —
1Core ‘ 2 Cores ‘
10%10%20% ‘ 50%50%20% 100%100%20%
Propagation of Metatrust in seconds
1600
1400 1348,258
1200 —
1000 —
200 100 User
655,658 250 User
600 —
500 User
400 —
187,728
200 —
4,86 11,70240,89 12,237 °%2 28,86
0 - — . _5-_
10%10%20% 50%50%20% 100%100%20%

Fig. 5. This graphic depicts the results of the benchmark of the computation and
meta-trust propagation. Data is presented as time in seconds. (Run on MacBook Pro)

Computation of Overall Ratings for 12 ontologies based on top review and global trust in ms
1800 1614
1600
1400
1200 1121
1000
800 100 User
600 250 User
400 6 500 User
200 14 6 323131 3833 33 © 3131 31 3233 38 2 3131 31 3333 36
0
max min avg max min avg max min avg
10%10%20% 50%50%20% 100%100%20%
Computation of Overall Ratings for 12 ontologies based on top review and local trust in ms
8000
7093 7005
7000
6000
5000
4000
3001 100 User
3000 250 User
500 User
2000 200 408
1000 139159, 243 “
333131 36 33 34 313131 33 35 47 313131 33 38 47
o1
e | o | [e | | o [| wm |
10%10%20% ‘ 50%50%20% ‘ 100%100%20%
Fig. 6. This graphic presents the times taken (min, max and avg.) for returning the

overall rating for all 12 ontologies in ms once for global and once for local trust. 500
runs were performed and only the top review was considered for the computation. (Run
on MacBook Pro)

Computation of Overall Ratings for 12 ontologies based on top 3 reviews and global trust in ms
400
355
350
300 278
250
200 100 User
150 - 250 User
100 500 User
50 | 37394 313131 323332 35 44 313131 3233 34 36 313131 3233 33
0
max min
10%10%20% 50%50%20% 100%100%20%
Computation of Overall Ratings for 12 ontologies based on top 3 reviews and local trust in ms
7000 6496
6216
6000
5000
4000
2991 .
3000 100 User
250 User
2000
1177 1431 500 User
1000 89
365
301 35 31 31 37 33 34 245 3129 31 32 35 46 31 31 31 33 38 45
04
- | o | o | om | o | e [| o |]
10%10%20% ‘ 50%50%20% ‘ 100%100%20% ‘

Fig. 7. This graphic presents the times taken (min, max and avg.) for returning the
overall rating for all 12 ontologies in ms once for global and once for local trust. 500
runs were performed and only the top 3 reviews was considered for the computation.
(Run on MacBook Pro)

r -
Computation of Overall Ratings for 12 ontologies based on all reviews and global trust in ms

140 127
120
100

80

60 4100 User

43 43 44 44
a0 3638 3232 38 3233 35 3 3233 250 User
500 User
20 —
o
max min avg max min avg max min avg
10%10%20% 50%50%20% 100%100%20%
Computation of Overall Ratings for 12 ontologies based on all reviews and local trust in ms
8000
7000 6236
6047
6000
5000
4000 3013 100 User
3000 250 User
2000 1273 500 User
1000 241
35 31 31 3733 34 3131 31 32 35 46 3131 31 33 38 44
04
max min min
10%10%20% 50%50%20% ‘ 100%100%20% ‘

Fig. 8. This graphic presents the times taken (min, max and avg.) for returning the
overall rating for all 12 ontologies in ms once for global and once for local trust. 500

runs were performed and all reviews were considered for the computation. (Run on
MacBook Pro)

Time taken for retrieval of all reviews for each of the 5 properties of the 12 ontologies based on global trust in ms
900 08
800
700
600
500
400 100 User
300 225 250 User
171
200 500 User
108 100,
85 84
100 50527 435343536 TR R S -~ 3745 S8 g2
0
max min avg max min avg max min avg
10%10%20% ‘ 50%50%20% ‘ 100%100%20% ‘
Time taken for retrieval of all reviews for each of the 5 properties of the 12 ontologies based on local trust in ms
12000 10558
10096
10000
8000
6138
6000 100 User
4000 . 250 User
2482484 500 User
2000 o 0
233 115116116 123169169 . 116122127 128182350 120128142 142256351
0
- | o | o | | o | o | om | m | m]
10%10%20% ‘ 50%50%20% ‘ 100%100%20% ‘

Fig. 9.

This graphic presents the times taken (min, max and avg.) for returning all
reviews for all 5 properties of all 12 ontologies in ms once based on global and once
based on local trust. 50 runs were performed. (Run on MacBook Pro)

Computation of TrustRanks, DistrustRanks and Localtrust in seconds

600
543,05
500
418,782
400 386,784 00,584 398312
300 2587 .
244,918 23001 233552 100 User
250 User
20 ~so0u
136,574 129,23 ser
109,126 111,941 . 99,675 99,336 101,813
100 — F—— — -
53,064 49,837 49,161 47,61
2,7 2, 33,02t " " ’
11,1 9,1325 & 9,8391’65Z 11,189 = 13,5¢ 11,326 11,631 12,455 18,7
0
10%10%20% 50%50%20% 100%100%20%
F ion of Metatrust in seconds
300
248,803
250
200
160,109
150 100 User
250 User
100 500 User
59,88
36,48
0 23,149
1,311 6469 6,592 9,991
04 diad — _-

Fig. 10. This graphic depicts the results of the benchmark of the computation and
meta-trust propagation. Data is presented as time in seconds. (Run on Intel Core 2

Quad)

7 -
Computation of Overall Ratings for 12 ontologies based on top review and global trust in ms
140 133
120
100
75 78
80 5
60 | 55 28 100 User
2 250 User
40
17 20 19 19 17 17 17 19 20 19 17 18 17 19 19 19 500 User
20 12 14
0
max min
10%10%20% 50%50%20% 100%100%20%
Computation of Overall Ratings for 12 ontologies based on top review and local trust in ms
3500 3246 o4
3000
2500
2093
2000
1500 100 User
% 1114 250 User
5.
1000 500 User
500 54
55 12 17 17 18 19 20 17 17 17 19 20 25 17 12 17 19 22 24
01
- | e | e [e | o | = |
10%10%20% ‘ 50%50%20% ‘ 100%100%20% ‘

Fig. 11. This graphic presents the times taken (min, max and avg.) for returning the
overall rating for all 12 ontologies in ms once for global and once for local trust. 500
runs were performed and only the top review was considered for the computation. (Run
on Intel Core 2 Quad)

Computation of Overall Ratings for 12 ontologies based on top 3 reviews and global trust in ms

45

P . 38

35 31 3

30

25

20 20

20 +— 1717 18 18 19 17-1 18 19 18 17 7 18 18 18 100 User
15 1 12) . - = —3 250 User
10 500 User
5

0

max min avg max min avg max min avg
10%10%20% 50%50%20% 100%100%20%
Computation of Overall Ratings for 12 ontologies based on top 3 reviews and local trust in ms

3500 3170 3195

3000

2500

2118

2000

1500 100 User

910 g 250 User
1000 500 User
35
500 201 173
56 17 17 17 18 19 20 13 17 13 18 20 24 17 17 14 19 22 24
0 p—
- | e | e [| o | o | oem | e |
10%10%20% 50%50%20% 100%100%20%

Fig. 12. This graphic presents the times taken (min, max and avg.) for returning the
overall rating for all 12 ontologies in ms once for global and once for local trust. 500

runs were performed and only the top 3 reviews was considered for the computation.
(Run on Intel Core 2 Quad)

Computation of Overall Ratings for 12 ontologies based on all reviews and global trust in ms
40 36
35
30 29
25
2151 4 21 30 20
20 14 171 1818 18 4 18 18 18 1717 18 18 18
16 T T 100 User
15 — | T =250 User
10 500 User
5 -
0
max min avg max min avg max min avg
10%10%20% 50%50%20% 100%100%20%
Computation of Overall Ratings for 12 ontologies based on all reviews and local trust in ms
3500 3147
3000
2500
2119

2000
1500 100 User

909 1059 250 User
1000 500 User

37
500 175 17¢
58 18 17 17 19 19 20 17 17 17 18 20 24 17 17 17 19 22 25
0 -
| e | e [[| | om | o |
10%10%20% 50%50%20% 100%100%20%

Fig. 13. This graphic presents the times taken (min, max and avg.) for returning the
overall rating for all 12 ontologies in ms once for global and once for local trust. 500

runs were performed and all reviews were considered for the computation. (Run on
Intel Core 2 Quad)

=
Time taken for retrieval of all reviews for each of the 5 properties of the 12 ontologies based on global trust in ms
250
201
200
150
114 116
100 User
100
73 66 5 250 User
50 339 47 i 34 3 50 37 . 500User
1921 192022 21 26 2 %8
0
max min
10%10%20% 50%50%20% 100%100%20%
Time taken for retrieval of all reviews for each of the 5 properties of the 12 ontologies based on local trust in ms
8000
7000 ca3s 6729
6000
5000 4356
4000 100 User
3000 28 250 User
2000 1863 500 User
1000 0
60 80 110 72 78 86 81124216 77 88105 93 175240
0 4
e [o [oo | o | =]
10%10%20% ‘ 50%50%20% ‘ 100%100%20% ‘

Fig. 14. This graphic presents the times taken (min, max and avg.) for returning all
reviews for all 5 properties of all 12 ontologies in ms once based on global and once
based on local trust. 50 runs were performed. (Run on Intel Core 2 Quad)

computation of trust and the propagation of meta-trust. In order to understand
which steps are performed int these two events, we will now explain them in
more detail.

5.1 Meta-Trust Propagation and Trust Computation

As can be seen better in Fig 15, which provides a direct comparison between
both the old code and the new code on the two test computers, the performance
for Meta-Trust propagation has increased on average by a factor of 10 (over
all settings and only comparing the results on the same machine). The same
is true for the performance of the trust computation. It can be seen that main
memory is a limiting factor in the computation when looking at the compari-
son for the new code on the Core 2 Duo and Core 2 Quad. While for smaller
scenario they perform more or less equally fast, for the scenario with more data
(e.2.100%100%20% with 500 users), the difference between the two computers
increases. This is because on the smaller machine with only 3 GB of Ram, not
everything can be kept in main memory, and is stored on disk (Swap file). When
this happens, the performance decreases, since disk access is much slower than
main memory access.

Leaving memory related variations in the execution time aside, it seems
that the duration for Meta-Trust propagation grows linearly with the increased
amount of data, and roughly squared with respect to the number of users (also
taking into account that the amount of data grows with the number of users).
For example: The time taken for 100 users in the 100%100%20% setting on the
Core 2 Quad is 10 seconds, for 5 times as much users it is 250 seconds (= 10x52).
The time for 500 users in the 10%10%20% setting is 23 seconds compared to the
250 seconds in the 100%100%20% setting. It still has to be noted that this is
mainly due to the bigger number of reviews and trust statements that we set
to a fixed portion of the users. So for the 10%10%20% that means that in the
case of 500 users, we have 5 times the amount of reviews, trust- and meta-trust
statements. If we only increase the number of users, but not the number of
reviews, the computation takes roughly the same time. For example, the propa-
gation of meta-trust for the setting 500 users with a 2%, 2%, 4% setting (which
is equivalent to the 100 User 10%10%20% setting) takes 4.5 seconds instead of
4.9 seconds for the case of 100 Users (which indicates that the number of users
alone does not affect the duration of the Meta-Trust propagation, mainly the
amount of data to process is decisive). The results for this comparison can be
seen in figure 16.

The speedup for the computation was mainly due to the improved database
interaction. The database access is sort of the lower barrier for the execution
time which cannot be lowered any further. Looking at Fig. 17 it can be seen how
the distribution of time changes when the computation is parallelized. Since
database access is not parallelized, this time is solely depending on the amount
of data inserted and read and stays the same even if more threads are used for the
computation. The computation itself sees improvement, but here the overhead
for parallelization has to be regarded, which explains why the time taken for

9%0T%00T%00T

%0T%0T%0T

35 005 135N 05z Jasn 001 4351005 435 052

4351 00T

MU peny 3100
MauongzaJo) ot
plopenp 7210y m
ploongzaio)m 00T
0001
0000T
7424
L06L Y9501 £
9L €120
000007
a[eos o1wyeho| uo Spuodas ul awi ‘uoleINdwod JsnJ} o) Uaxe)} swl} Jo uosiedwo)
%07%001%00T %07%05%0S %07%0T%0T
43N 005 4350 05T J43sn 00T 435N 009 1950 05T 435 00T 4350 009 495N 05T 490 00T
T
M3U penp 7 310 m
M3u onQ Z 310) = [
plo peny z 310y m
poongzaio)m 00T
000T
0000T

a[eos ojwyebo| uo spuooss ul swi ‘uoyebedoid isnijelaw 1oy usye) sawi jo uosiedwo)

Fig. 15. This graphic presents a direct comparison between the two versions of the

code and the two different computers. Please note that the left axis has a logarithmical

scale.

Comparison based on 10 reviews, 10 trust per review and 20 metatrust statements

250,0 237,7

200,0

1416 140,5

150,0
122,7,

100 User
100,0
65,7 4500 User

50,0 J T 3247303 37,2 1 33,5331
152 116
49 45 /
A H i BN =

Metatrust Computation1 ~ Computation 2 Overall global top3 Overall local top3 Retrieval Reviews Retrieval Reviews
Propagationin s Coreins Coresins avginms avginms globalin ms local in ms

Fig. 16. This graphic presents a comparison between the time taken for different ac-
tions based on the same review and trust statements but increased number of users.
(Run on MacBook Pro)

computation does not go down linearly with an increasing number of threads
used. For most realistic scenarios, it seems at least 2 and at most n-1 threads
should be started on a multi-core processor.

The results seen in the figures are for computing all 60 ontology—property
combinations. So you have to divide the results by 60 to know how long one trust
computation cycle lasts. For updates during runtime (a single trust statement
was added), it is possible to recompute the trust on the fly, since with the
new code, even in the worst case setting, the computation time is now around
6 seconds per ontology-property combination. In a more realistic setting (few
reviews and trust statements) this time is now less than 1 seconds.

5.2 Overall Computation

In order to see how the different parameters influence the time for retrieving the
overall rating for an ontology, we have based the computation on only the top
review, the top 3 reviews and all reviews (just for worst-case considerations).
For each of these settings, we base the computation on both local trust and
global trust. Furthermore, we run each computation 500 times, to get more
accurate average results. We measure the execution time for each of the 500
runs, and present the maximum time as well as average and minimum time
needed for providing the result. It is intended to make use of the databases
caching techniques, since they can also be exploited in real systems using the
caching method (see section 2.2 above). For the local trust based computation,
we changed the user for which the results were computed in between the 3
different settings (top-1, top-3, all) so that results would have to be re-cached).
The results can be found in figures 6, 7, 8, 11, 12 and 13.

Distribution of Time Spend for Computation on Ubuntu Core 2 Quad

600
500
400 T7593,603
4 ! 166,503 ~ 148,952
300 B Computation Local
2, 3,642 N
200 . pehicd 2 e ~ - W Computation Global
100 224,665 225,681 223,636 226,334 W Database Access
o — [E— — [E—
1 Core 2 Core 3 Core 4 Core

100%6100%20% - 500 User

Fig.17. This graphic presents the distribution of time spend for the different tasks
during the trust computation for a different number of threads.

The overall computation is one of the most important features of the TS-
ORS and it is performed constantly at runtime. So here a quick response time is
far more important than for the larger computations which are performed offline
and only at dedicated time-points.

The results indicate that while the maximal time in case of a cache miss or for
other system-specific reasons can be in the order of seconds (bare in mind that
this is for all 12 ontologies), the more significant average is relatively independent
of the amount of users or the number of reviews in the system. With the new
code, also the average retrieval time for global and local trust seems to be the
roughly the same. We have compare the results of the old and the new code for in
Fig. 18. Please note that we have chosen to compare the minimum times rather
than the average times, because we have used a different number of runs during
the two performance benchmarks, and the only comparable time is the minimum
time. Also note that the more number of runs you use, the closer the average
time gets to the minimum time. The maximum time is mainly encountered when
there is no cached information (cache miss). For our best machine, the average
minimum time to retrieve both local and global based results now is 17 ms for all
12 ontologies. That means that we have improved computational performance
to roughly 1.5 ms in the best case.

5.3 Review Retrieval

When a user wants to browse reviews for ontology—property combinations, it is
important to retrieve them in a personalized order. So when a user is logged in,
the reviews are retrieved in an order based on local trust of this user, otherwise
they are ordered according to global trust. We have benchmarked retrieving all
of the reviews in aforementioned personalized order for all ontology-property

9%02%001%00T 9%02%05%05 %02%0T%0T

13501 005 138 0S¢ 1351 00T 1351 005 1351 0S¢ 1350 001 1351 00§ 1351 05T J3sn 00T

MU penp 210)

Mau ong 7 210) -

Plopenp z 2103 m

poonqzaio)m

95T (ST SST ss1 esl 85T 3

¥9T

SW ul }snJ} [B00] pue smeinal g do} uo peseq saifojojuo g| 10} sBuirey [[eienQ jo uoneindwo)) 1o} usye} swi} o uostiedwo)

%02%007%00T %07%05%0S %02%07%0T

435N 005 135N 0S¢ 43sn 00T 4351 005 135N 0S¢ 435N 00T 4351 005 185N 0S¢ 435N 00T

MU peny 7 2100 m
Mau ong g 210) =
plopenp z 210y m

pjoonggaio)m

¢ 3

sw ul isnJ} [eqo|B pue smainal ¢ do} uo paseq saifojojuo z| 1o} sBuiey |jesanQ Jo uoieindwoy 1oy usye)} awi jo uosuedwo)

Fig. 18. This graphic presents a direct comparison between the two versions of the

code and the two different computers. Please note that only min times are compares

and the timer

1S 1n ms.

combinations. In figures 9 and 14, you can see the results both based on local
trust and global trust. We have run each task 50 times to compute accurate
results.

This task will also often be requested at runtime, when a user is brows-
ing different ontologies. Since all the reviews have to be ordered, results are
better when there are not too many reviews. For a realistic scenario (e.g. the
10%10%20%), the time to retrieve the ordered reviews is around 0.5 for each
ontology—properties based on global trust (depending on number of users and
thus reviews). Retrieving the results based on local trust takes about 1 ms on
the fast machine.

6 Results Learnt from Benchmark

Since many operations rely on a fast database, having good hard disks and
enough caching enabled for the database is key to obtaining a good performance.
In order to minimize query time at runtime, after each computation of trust, the
caching method can be called to cache results, for example for logged in users.
This leads to fast runtime response times.

It also seems to be sensible to use at least a dual-core machine with 2 threads
for the trust computation, since the results are much faster than those obtained
for a one-core solution. Also sufficient memory and ideally a 64-bit system with
64-bit java improve the performance. Depending on how important it is to take
the latest user data into account, the frequency of overall re-computation can
be increased or lowered. Amazon.com, for example, take 24 hours to take a
trusts statement into account. In case a really fast re-computation is needed,
the computation can be distributed among different machines, each containing
a database filled with only the necessary information. Since the computation of
trust is independent for all ontology—property combinations, in the most extreme
case, you could use one machine per combination and later merge the results.

The runtime performance looks even more promising after the code optimiza-
tion, and should not lead to bottlenecks at runtime.

References

1. Lewen, H.: Implementation and performance evaluation of the topic-speciPc trust
open rating system. Technical report, UniversitSt Karlsruhe (TH) (JUN 2009)

2. d’Aquin, M., Lewen, H.: Cupboard — a place to expose your ontologies to applica-
tions and the community. In Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P.,
Heath, T., Hyvsnen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E.P.B., eds.:
The Semantic Web: Research and Applications, 6th European Semantic Web Con-
ference, ESWC 2009, Heraklion, Crete, Greece, May 31-June 4, 2009, Proceedings.
Volume 5554 of Lecture Notes in Computer Science., Springer (MAY 2009) 913-918

3. Knuth, D.E.: Big omicron and big omega and big theta. SIGACT News 8(2) (1976)
18-24

