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Abstract. In this paper, we investigate cumulated clauses on a set of
attributes consisting of concept descriptions of the description logic FLE .
This kind of expression is useful for describing the attribute logic of
contexts where the attributes can be seen as FLE concept descriptions.
We provide a deduction calculus for this type of expressions and prove
its soundness and completeness.

1 Introduction

In recent years, several attempts have been made to combine Formal Concept
Analysis (FCA) with Description Logic (DL) (see [13, 1, 14, 15, 3, 6]). In particu-
lar, DL concept descriptions can be used to to define attributes for formal con-
texts. This paper is focused on FLE – a description logic containing conjunction,
existential and universal quantification. Cumulated clauses on attributes (logical
statements of the shape

∧
A_

∨
1≤i≤n

∧
Bi with attribute sets A,B1, . . . , Bn)

can be seen as a generalization of attribute implications and are a common way of
expressing information in FCA. They have been thoroughly investigated in [11],
where also a deduction calculus for “plain” cumulated clauses is given. When
considering cumulated clauses on FLE attributes, it becomes clear that due to
the logical interdependencies of FLE concept descriptions, more derivations on
the corresponding cumulated clauses are possible and therefore the deduction
calculus has to be revisited in order to keep completeness. In this paper, we
present a deduction calculus for this kind of cumulated clauses and prove sound-
ness and completeness thereof.
Such a deduction calculus is valuable in several ways: First, it helps adapting
attribute exploration (see [10]) to contexts with FLE type attributes as sketched
in [14] and [15] and concisely worked out in [16]. In this framework, cumulated
clauses are used to specify non-implicational background knowledge (see [8]).
Moreover, it can be used to explain automatic inferences to non-sophisticated
users (see e.g. [5] for similar work wrt. ALC subsumption).



2 Description Logic Basics

In general, the term “Description Logic” comprises an amount of different for-
malisms which vary in expressiveness and decision procedure complexity. This
allows to use a certain logic “tailored” to ones needs in practice. For a concise
overview for DL, see [2].
In our work, we focus on the well known description logic FLE which includes
conjunction, existential and universal quantification. FLE concept descriptions
are used to describe the entities of a certain domain. Here we recall the definition
of the FLE language.

Definition 1. Let MC and MR be arbitrary finite sets the elements of which
we will call concept names1 and role names resp. By FLE(MC ,MR) (or
shortly: FLE if there is no danger of confusion) we denote the set of concept
descriptions being inductively defined as follows:2

MC ∪ {>,⊥} ⊆ FLE
C, D ∈ FLE ⇒ C u D ∈ FLE

C ∈ FLE , R ∈ MR ⇒

E

R.C ∈ FLE
C ∈ FLE , R ∈ MR ⇒

A

R.C ∈ FLE

Next, we provide a semantics. In order to do this, we first define interpretations.
In our case, an interpretation is formalized as binary power context family.

Definition 2. Let ∆ be an arbitrary nonempty set called the universe. The
elements of the universe will be called entities. A binary power context

family
−→
K on ∆ is a pair (KC , KR) consisting of the formal contexts KC :=

(GC ,MC , IC) and KR := (GR,MR, IR) with GC = ∆ and GR = ∆×∆.

Note that our notion of binary power context family is a special case of the
power context families as e.g. defined in [17]. There is a canonical one-to-one
correspondency to Kripke structures (being used as the usual models for modal
logic, see e.g. [4]) or labelled transition systems with attributes (LTSA, see [9]).
Next, we describe an extensional semantics for the above defined concept de-
scriptions: for a given binary power context family

−→
K = ((∆, MC , IC), (∆ ×

∆, MR, IR)) we assign to each concept description C ∈ FLE(MC ,MR) a set
A ∈ P(∆) of entities3 that ”fulfill” this concept description.

1 Whenever in this publication we use the term concept, we refer to the notion used
in DL. If we want to refer to the meaning used in FCA, we use formal concept.

2 In DL terminology, it is usual to denote concept descriptions as well as role names
by capital letters. In order to avoid possible confusion (with other capital letters
denoting sets), we use typewriter font (A, B, C) for FLE concept descriptions and
calligraphic letters (A,B, C) for concept description sets. Furthermore, we use the
symbols

E

and

A

for “role quantification” to clearly distinguish them from the “or-
dinary” quantifiers ∃ and ∀ occurring in some proofs and definitions.

3 Throughout this publication, P will denote the powerset and Pfin the finite powerset.



Definition 3. The semantics mapping [[.]]−→
K

: FLE(MC ,MR) → P(∆) for a

binary power context family
−→
K on a universe ∆ with attribute sets MC and MR

is defined recursively as follows:

[[>]]−→K := ∆
[[⊥]]−→K := ∅
[[C]]−→

K
:= CIC for all m ∈ MC

[[C u D]]−→
K

:= [[C]]−→
K
∩ [[D]]−→

K
[[

E

R.C]]−→
K

:= {δ1 ∈ ∆ | ∃δ2 ∈ ∆ : (δ1, δ2) ∈ rIR ∧ δ2 ∈ [[C]]−→
K
} for R ∈ MR

[[

A

R.C]]−→K := {δ1 ∈ ∆ | ∀δ2 ∈ ∆ : (δ1, δ2) ∈ rIR → δ2 ∈ [[C]]−→K } for R ∈ MR

For δ ∈ [[C]]−→
K

we will occasionally write δ |= C and say C is valid in δ.

Furthermore, a concept description C is valid in
−→
K (which we denote by

−→
K |=

C), iff [[C]]−→
K

= ∆. A concept description D subsumes a concept description C in
−→
K (write: C v−→K D) iff [[C]]−→K ⊆ [[D]]−→K . A concept description D subsumes a concept

description C universally (write: C v D) iff C v−→K D for all
−→
K with attribute sets

MC and MR.
Two concept descriptions C and D are called

−→
K−equivalent iff C v−→K

D and
D v−→K C (write: C ≡−→K D) and universally equivalent (write: C ≡ D) iff this is

the case for all
−→
K with attribute sets MC and MR.

It follows directly from the definition of the semantic of FLE concept descriptions
that for any FLE concept descriptions C, D, E the composed concept descriptions
(C u D) u E and C u (D u E) are universally equivalent. The same holds for C u D
and D u C. In the sequel we will exploit this fact in several ways:

– We will omit all parentheses which are not necessary.
– We will make extensive use of the following abbreviation:

Let C = {C1, . . . , Cn} be a finite set of FLE concept descriptions. Then the
new concept description C1 u . . .u Cn will be abbreviated by

d
C. We extend

this definition in an intuitive way for |C| < 2 by setting
d
{C} := C andd

∅ := >. This “syntactic sugar” could then be directly incorporated into
the semantic by adding [[

d
C]]−→

K
:=

⋂
C∈C [[C]]−→

K
to Definition 3.

– We will consider all concept descriptions which can be transformed into each
other by the equivalences mentioned above as syntactically equivalent, i.e.
we write for instance (C u D) u E = (E u C) u D =

d
{C, D, E}.

A notion we will need in the sequel is the maximal role depth of an FLE
concept description:

Definition 4. Let C be an FLE-concept description. The maximal role depth
of C is given by the function rd : FLE → N recursively defined as follows:

rd(C) := 0 for all C ∈ MC ∪ {>,⊥}
rd(C u D) := max(rd(C), rd(D))
rd(

E

R.C) := rd(C) + 1 for all R ∈ MR
rd(

A

R.C) := rd(C) + 1 for all R ∈ MR

For any n ∈ N we define FLEn := {C | C ∈ FLE , rd(C) ≤ n}.



3 FLEnorm – Reduced, yet Complete

Consider a binary power context family
−→
K and let δ be an entity from

−→
K . Then,

knowing that C and D are valid in δ, we automatically know that CuD is valid in
δ as well. So, one could ask for a ”test set” S ⊂ FLE such that knowing for every
concept description from S whether it is valid in δ allows to conclude this for
any FLE concept description. We will define a concept description set FLEnorm

and show that it has this desired property.

Definition 5. The set FLEnorm of normalized FLE concept descriptions
is an FLE subset defined in the following way:

MC ∪ {⊥} ⊆ FLEnorm

C ∈ Pfin(FLEnorm),⊥ 6∈ C, R ∈ MR ⇒

E

R.
d
C ∈ FLEnorm

C ∈ FLEnorm, R ∈ MR ⇒

A

R.C ∈ FLEnorm

Additionally, for any i ∈ N, let FLEnorm
i = FLEnorm ∩ FLE i.

Theorem 1. For every FLE-concept description C there is a set C of FLEnorm

concept descriptions such that

C ≡
l
C.

Proof sketch: We define a function n : FLE → P(FLEnorm) in a recursive manner:

n(>) = ∅
n(⊥) = {⊥}
n(C) = {C} for C ∈ MC
n(

A

R.
d
C) =

⋃
C∈C{

A

R.D | D ∈ n(C)}

n(

E

R.
d
C) =

{
{⊥} if ⊥ ∈

⋃
C∈C n(C){ E

R.
d ⋃

C∈C n(C) else.
n(

d
C) =

⋃
C∈C n(C),

that provides such a set C for a given C. The fact C ≡
d

n(C) can then easily
be proven via induction on the maximal role depth of C (conjunctions can be
decomposed into conjunction-free concept descriptions of at most equal maximal
role depth). ut

Obviously, this theorem provides a way to check on the basis of the ”test set”
FLEnorm whether δ |= C for any C ∈ FLE . This is the case exactly if n(C) ⊆ {D ∈
FLEnorm | δ |= D}.
This fact will prove helpful in the next sections since most of our considerations
and proofs will have to deal only with FLEnorm but will propagate to whole
FLE .



4 Cumulated Clauses on FLEnorm

Cumulated clauses have been studied and used in FCA as a means of specifying
knowledge. In particular, they have been used to encode background knowledge
for the attribute exploration process. It can be easily shown that in the case of
propositional logic any formula is equivalent to a set of cumulated clauses on the
attributes.
Here, we will consider cumulated clauses on FLEnorm. The fact that those at-
tributes have an internal logical structure exerts influence on the clause logic.
We will deal with these issues by presenting a sound and complete deduction
calculus.
We will start by introducing the notion cumulated clause.

Definition 6. Given an arbitrary set M , a cumulated clause on M is an
element from CC(M) := Pfin(M) × PfinPfin(M). To support intuition, we will
write A ( {B1, . . . ,Bn} instead of (A, {B1, . . . ,Bn}) for A,B1, . . . ,Bn ⊆ M .
A set N ⊆ M is said to respect a cumulated clause A ( {B1, . . . ,Bn} if
A 6⊆ N or Bi ⊆ N for some 1 ≤ i ≤ n.
A cumulated clause k on FLEnorm is said to be valid in a binary power context
family

−→
K (also:

−→
K respects k, written:

−→
K |= k), if for every δ ∈ ∆ the set

{C | δ ∈ [[C]]−→
K
} respects it.

If a cumulated clause k is valid in every binary power context family that respects
all cumulated clauses from a certain set K, we say k follows semantically
from K (written K |= k).

In words, the validity of the cumulated clause A ( {B1, . . . ,Bn} in a power
context family means that every entity δ ∈ ∆ fulfilling all concept descriptions
from A also fulfills all concept descriptions from B1 or from B2 ... or from Bn.
Obviously, for n = 1, the notion of a cumulated clause coincides with that of an
implication.

Proposition 1. A cumulated clause A ( {B1, . . . ,Bn} is valid in a binary
power context family

−→
K iff⋂

A∈A
[[A]]−→

K
⊆

⋃
1≤i≤n

⋂
B∈Bi

[[B]]−→
K
.

Proof. We start with the definition of validity and show the equivalence to the
statement above:

∀δ ∈ ∆ : A 6⊆ {C | δ ∈ [[C]]−→K } ∨
∨

1≤i≤n Bi ⊆ {C | δ ∈ [[C]]−→K }
⇐⇒ ∀δ ∈ ∆ : δ 6∈

⋂
A∈A [[A]]−→K ∨

∨
1≤i≤n δ ∈

⋂
B∈Bi

[[B]]−→K
⇐⇒ ∀δ ∈ ∆ : δ ∈

⋂
A∈A [[A]]−→

K
→ δ ∈

⋃
1≤i≤n

⋂
B∈Bi

[[B]]−→
K

⇐⇒
⋂

A∈A [[A]]−→
K
⊆

⋃
1≤i≤n

⋂
B∈Bi

[[B]]−→
K
.

ut



5 Deduction Calculus on FLEnorm

In the next definition, we present a deduction calculus on CC(FLEnorm).

Definition 7. The set DR of derivation rules consists of the following rules
(with A, B, C ∈ FLEnorm and A,B1, . . . ,Bn, C,D1, . . . ,Dk ∈ Pfin(FLEnorm)):

⊥ ( {{A}} contradiction

A ( {A} identity

A ( {B1, . . . ,Bn}
A ∪ {C} ( {B1, . . . ,Bn} premise extension

A ( {B1, . . . ,Bn}
A ( {B1, . . . ,Bn, C} conclusion extension

A ( {B1, . . . ,Bn, C},A ∪ C ( {D1, . . . ,Dk}
A ( {B1, . . . ,Bn,D1, . . . ,Dk} substitution

A ( {B1, . . . ,Bn}
[

E

R]A ( {[

E

R]B1, . . . , [

E

R]Bn}

E

-lifting

[

E

R]A ∪ {
A

R.B} ( {[
E

R](A ∪ {B})}

A

-propagation

A ( {B1, . . . ,Bn, C}
[

A

R]A ( {[

E

R]B1, . . . , [

E

R]Bn, [

A

R]C}

A

-lifting

where [

E

R]A := {

E

R.
d
A} and [

A

R]A := {

A

R.A | A ∈ A} are used as abbrevia-
tions.
Given a set K of cumulated clauses, we denote with DR(K) the smallest set
containing K and closed under the derivation rules above. For k ∈ DR(K) we
also write K ` k.

The soundness property of the introduced deduction calculus is stated by the
following theorem.

Theorem 2. For K ⊆ CC(FLEnorm) and k ∈ CC(FLEnorm):

K ` k =⇒ K |= k

The proof of soundness is rather straightforward: one shows that for every deriva-
tion rule

K

k ∈ DR

with K ⊆ CC(FLEnorm) and k ∈ CC(FLEnorm) holds that every binary power
context family

−→
K respecting all cumulated clauses from K also respects k.

Showing completeness is (as usual) the much more intricate part. We introduce
several constructions to achieve that goal.



5.1 The Standard Model

The corresponding proof for DR will be done in the following way:
Given a set of cumulated clauses on FLEnorm we will define a particular binary
power context family called standard model, which

– respects all the given clauses and
– respects just those clauses being derivable from the given ones via DR.

As a consequence, this standard model can serve as a “universal counterexample”
against the claim that any non-DR-derivable clause holds in every binary power
context family respecting the given clauses.
Note that the usual proof techniques for completeness from modal logic (see e.g.
[12]) using maximal consistent formula sets (also known as ultrafilters) is not
applicable here, since they require that the considered logic is closed wrt. nega-
tion. This is not the case for FLE . For the same reason, adapting other calculi
(like that for the multi-modal logic K(m) – see [7]) and corresponding proofs to
cumulated clauses on FLE cannot be easily realized.

Definition 8. The standard model
−→
K(K) of a given set K ⊂ CC(FLEnorm) is

the binary power context family
−→
K = (KC , KR) = ((∆, MC , IC), (∆×∆, MR, IR))

defined as follows:

– First, we set
−→
K (0)(K) = ((∆(0),MC , I

(0)
C ), (∆(0) ×∆(0),MR, I

(0)
R )) with:

• ∆(0) := {N ⊆ FLEnorm | N respects all k ∈ K,⊥ 6∈ N},
• δI

(0)
C C :⇔ C ∈ δ, and

• (δ1, δ2)I
(0)
R R :⇔

E

R.
d
C ∈ δ1 for all finite C ⊆ δ2 and

C ∈ δ2 for all

A

R.C ∈ δ1.
– From

−→
K (n)(K), we determine

−→
K (n+1)(K) by

• ∆(n+1) :=
{

δ ∈ ∆(n) | {C |

A

R.C ∈ δ} =
⋂

(δ,δ̃)I
(n)
R R

δ̃ and

{C |

E

R.
d
C ∈ δ} =

⋃
(δ,δ̃)I

(n)
R R

Pfin(δ̃)
}

• I
(n+1)
C := I

(0)
C ∩ (∆(n+1) ×MC), and

• I
(n+1)
R := I

(0)
R ∩

(
(∆(n+1) ×∆(n+1))×MR

)
.

– Finally, we set
• ∆ :=

⋂
i∈N ∆(i),

• IC := I
(0)
C ∩ (∆×MC), and

• IR := I
(0)
R ∩ (∆2 ×MR).

Verbally: our standard model is approximated in a (possibly infinite) process,
starting by taking as entities all FLEnorm subsets respecting the given cumulated
clauses K. The implicit aim of the construction is to achieve that every entity
fulfills exactly those concept descriptions from FLEnorm (semantically) that it
contains (syntactically). To reach that goal, we successively delete those entities
not ”compatible” with their ”role neighbors”. The final standard model can then
be seen as the fixed point of this process. In the sequel, we will show that this
construction indeed fulfills the intended purpose.



Lemma 1. Let K be a set of cumulated clauses and
−→
K(K) the corresponding

standard model. Then we have for every D ∈ FLEnorm and every δ ∈ ∆

D ∈ δ ⇐⇒ δ |= D.

Proof. Obviously, for every δ ∈ ∆ from
−→
K(K) holds:

{C |

E

R.
l
C ∈ δ} =

⋃
{Pfin(δ̃) | (δ, δ̃)IRR} (∗)

as well as
{C |

A

R.C ∈ δ} =
⋂
{δ̃ | (δ, δ̃)IRR} (∗∗).

We do now an induction over the maximal role depth of a concept description
D:

– Induction anchor: D ∈ FLEnorm
0 .

Then we have either D ∈ MC or D = ⊥ In the first case we have D ∈ δ iff δICD
by definition of the standard model. In view of the semantics definition this
is equivalent to δ |= D.
Considering the second case, we find that ⊥ ∈ δ does not occur (due to the
explicit exclusion of entities containing ⊥ in the standard model definition).
Likewise, δ |= ⊥ is never the case since [[⊥]]−→

K
= ∅. So those both statements

are trivially equivalent.
– Induction step: D ∈ FLEnorm

n , n > 0. Again, we have to distinguish two cases.
First, assume D =

E

R.
d
D withD ⊆ FLEnorm

n−1 . Then the statement

E

R.
d
D ∈

δ is obviously equivalent to D ∈ {C |

E

R.
d
C ∈ δ} and this because of (*)

to D ∈
⋃
{Pfin(δ̃) | (δ, δ̃)IRR}. So we know that there exists an R-successor

δ̃ of δ, which contains all concept descriptions from D. Since D ⊆ FLEnorm
n−1 ,

we see by induction hypothesis that this is the case iff δ̃ |= E for all E ∈ D.
Subsequently, this is equivalent to ∃δ̃ : (δ, δ̃)IRR ∧ δ̃ ∈

⋂
E∈D [[E]]−→

K
and this

(by the semantics definition) to ∃δ̃ : (δ, δ̃)IRR ∧ δ̃ ∈ [[
d
D]]−→K and finally to

δ ∈ [[

E

R.
d
D]]−→K which means just δ |=

E

R.
d
D.

It remains to consider the case D =

A

R.E with E ∈ FLEnorm
n−1 . Then

A

R.E ∈ δ
can be written as E ∈ {C |

A

R.C ∈ δ} which is due to (**) equivalent to
E ∈

⋂
{δ̃ | (δ, δ̃)IRR}. Therefore knowing that all R-successors of δ contain E

(which is an element of FLEnorm
n−1 ), we conclude by the induction hypothesis

that this is equivalent to ∀δ̃ : (δ, δ̃)IRR → δ̃ ∈ [[E]]−→K and by the semantics
definition to δ ∈ [[

A

R.E]]−→
K

which means just δ |=

A

R.E.

Note that all argumentations work in both directions. So indeed the equiv-
alence is assured. ut



5.2 Realization Trees

Now, we will show that every cumulated clause k valid in the standard model can
be derived from K via DR. This will be done in several steps: First, we define
a tree structure that – starting from a given set A ⊆ FLEnorm – represents all
“branching possibilities” of extending A in order to make it respect all cumulated
clauses derivable from K.

Definition 9. Given a set K of cumulated clauses and a set A ⊆ FLEnorm, we
call a structure TK

A = (N, r,≺, ε) realization tree of A if

– N is an arbitrary set (the elements of N will be called nodes),
r ∈ N (r will also be called the root),
≺⊆ N ×N (≺ will be called the successor relation), and
ε : N → P(FLEnorm),

– (N,≺) is a tree with root r,
– A = ε(r),
– a node ν ∈ N has no successors (i.e., ν≺ := {ν̃ | ν ≺ ν̃} is empty), if and

only if ε(ν) respects all cumulated clauses from DR(K),
– otherwise, there exists a cumulated clause k = B ( {C1, . . . , Cn} ∈ DR(K)

(called witnessing clause) not respected by ε(ν) with
• k is minimal wrt. the greatest role depth occurring in C1, . . . , Cn, and
• among those cumulated clauses fulfilling the conditions above k’s conclu-

sion is minimal wrt. set inclusion,
such that ν≺ = {ν1, . . . , νn} with ε(νi) = ε(ν) ∪ Ci.

Given such a realization tree, we call

– (νi)i∈{0,...,k} a finite complete path if ν0 = r, νi ≺ νi+1 for all 0 ≤ i < k
and νk has no successors,

– (νi)i∈N an infinite complete path if ν0 = r, νi ≺ νi+1 for all i ∈ N.
– A ⊆ FLEnorm a leaf if A = ε(ν) for a ν ∈ Ñ that has no successors,
– A ⊆ FLEnorm a pseudoleaf if we have A =

⋃
i∈N ε(νi) for some infinite

complete path (ni)i∈N, and
– A ⊆ FLEnorm a quasileaf if it is a leaf or pseudoleaf.

Next, we define the term covering of a realization tree, being a transversal of all
complete paths in this tree.

Definition 10. Given a realization tree T = (N, r,≺, ε) a node set Ñ ⊆ N will
be called covering of T if every (finite or infinite) complete path r = ν0 ≺ ν1 ≺
. . . contains (at least) one element from Ñ .

Using the fact that a realization tree is finitely branching, it follows immediately
from König’s Lemma that every arbitrary covering contains a finite one.

Lemma 2. For every covering Ñ of a realization tree, there exists a finite cov-
ering Nfin ⊆ Ñ .



In the sequel, we will show that for any cumulated clause “readable” from a
realization tree endowed with a covering we can construct a corresponding DR
proof tree.

Lemma 3. Let A ⊆ FLEnorm and let TK
A be a realization tree of A. Let further-

more be Ñ ⊆ N a covering of TK
A . Let now C1, . . . , Cn ⊆ FLEnorm be finite sets

such that for every ν ∈ Ñ there is an i ∈ {1 . . . n} with Ci ⊆ ε(ν). Then there is
a finite B ⊆ A such that K ` B ( {C1, . . . , Cn}.

Proof. W.l.o.g. we can assume Ñ to be finite due to Lemma 2. We will prove
the proposition by showing, that for any node ν ∈ N where there is no ν̃ ∈ Ñ
on the path from r to ν there is a finite Bν ⊆ ε(ν) such that Bν ( {C1, . . . , Cn}
is DR-derivable. (For ν = r then follows the claimed result.)
(Note that every ascending path starting from such a ν must contain an element
from Ñ , for otherwise we could construct a path starting from r and containing
no element from Ñ , which would contradict the precondition.)
Consider all ascending paths starting from such a ν. For every such path ν =
ν0 ≺ ν1 ≺ . . . we can determine the smallest index i such that νi ∈ Ñ . The
greatest one of those smallest indices (there can be only finitely many due to the
finiteness of Ñ) will be called the type of ν and denoted by τ(ν).
We will prove the proposition by induction over the type of the considered nodes.

– Induction anchor: τ(ν) = 0
Then we have ν ∈ Ñ and thus Ck ⊆ ε(ν) for some k ∈ {1, . . . , n}. Clearly,
K ` Ck ( {Ck} due to the identity rule. By (n − 1)fold application of
conclusion extension we also find K ` Ck ( {C1, . . . , Cn}. Thus we have
found an appropriate Bν , namely Bν := Ck.

– Induction step: τ(ν) > 0
Then we have ν 6∈ Ñ and all successors ν1, . . . , νk of ν are of type less than
τ(ν). Thus for every νi holds by induction hypothesis that there is a finite
Bνi ⊆ ε(νi) with K ` Bνi ( {C1, . . . , Cn}.
Let now be D ( {E1, . . . , Ek} the witnessing clause of ν (and therefore in
particular derivable). Then we know that D ⊆ ε(ν) and ε(νi) = ε(ν) ∪ Ei for
all i ∈ {1, . . . , k}. Now, we can do the following for all νi:
We define B̃νi := Bνi∩ε(ν). Then the cumulated clause B̃νi∪Ei ( {C1, . . . , Cn}
is either equal to Bνi ( {C1, . . . , Cn} or can be derived from it by applying
the premise extension rule. So we know K ` B̃νi

∪ Ei ( {C1, . . . , Cn}. Obvi-
ously, B̃νi ∪D∪Ei ( {C1, . . . , Cn} `

⋃
1≤j≤k B̃νj

∪D∪Ei ( {C1, . . . , Cn} can
be obtained by several premise extensions (note that all sets are finite, so the
union can be realized incrementally). Subsequently, setting B̃ :=

⋃
1≤j≤k B̃νj ,

we get by substitution K ` B̃ ∪ D ∪ Ei ( {C1, . . . , Cn}.(∗)
Furthermore, knowing K ` D ( {E1, . . . , Ek} we can immediately infer by
premise extension K ` B̃ ∪ D ( {E1, . . . , Ek}.



Together with the clauses from (∗) we can do the following derivation:

B̃ ∪ D ( {E1, ..., Ek} B̃ ∪ D ∪ E1 ( {C1, ..., Cn}
B̃ ∪ D ( {C1, ..., Cn, E2, ..., Ek}

...
B̃ ∪ D ( {C1, ..., Cn, Ek}

MP

MP
MP

B̃ ∪ D ∪ Ek ( {C1, ..., Cn}
B̃ ∪ D ( {C1, ..., Cn} MP

So we have K ` B̃∪D ( {C1, . . . , Cn}. But by construction B̃ ∪D is a subset
of ε(ν) and (as a union of finitely many finite sets) also finite. So we can set
Bν := B̃ ∪ D and we are done. ut

In the next lemma, we prove that any quasilieaf of a realization tree respects all
clauses from DR(K). After this, we show that if A does not imply ⊥, none of
the realization tree nodes does contain it either.

Lemma 4. Let K be a set of cumulated clauses, A ⊆ FLEnorm and let TK
A =

(N, r,≺, ε) be a corresponding realization tree. Then for every quasileaf Q of TK
A

we have that Q respects all clauses from DR(K).

Proof. Let Q be the quasileaf and k ∈ DR(K). We distinguish two cases:

– Q is a leaf with corresponding node ν. Suppose Q does not respect k. Then
either k fulfills the minimality conditions from the definition or there is a
”smaller” k̃ ∈ DR(K) that does. Thus we have found a possible witnessing
clause, which by definition forces ν to have successors. Yet this contradicts
our assumption.

– Q is a pseudoleaf with corresponding path p := (νi)i∈N. Suppose Q does
not respect k. Let k be the maximal role depth occurring in k. Now we set
Q̃ = Q ∩ FLEnorm

k . We know that Q̃ is finite since FLEnorm
k is finite. Thus,

there must exist a node νi in p, such that Q̃ ∈ ε(νi). Since νi is contained in
an infinite path, it must have successors. Yet then it has a witnessing clause
k̃ = A ( {B1, . . . ,Bn}. Let Bj be the set from the conclusion for which
ε(νi+1) = ε(νi) ∪ Bj .
The maximal role depth of Bj must be greater than k. Therefore the max-
imal role depth of k̃’s whole conclusion is greater than k. But then k̃ is not
minimal as demanded in the definition, since the maximal role depth of k’s
conclusion is less or equal k and thus definately smaller. So we have found a
contradiction to the assumption that there is a k ∈ DR(K) not respected by
Q. ut

Definition 11. Let K be a set of cumulated clauses. A set A ⊆ FLEnorm will be
called consistent with respect to K if there is no finite set A∗ ⊆ A such that
K ` A∗ ( {{⊥}}.



Lemma 5. Let K be a set of cumulated clauses and A ⊆ FLEnorm be consistent
with respect to K. For any realization tree TK

A = (N, r,≺, ε) of A holds that ε(ν)
is consistent for all ν ∈ N .

Proof. Assume the contrary. By assumption, we have consistency of ε(r). So if
inconsistent nodes ν of TK

A exist, there must be some among them, the prede-
cessor ν̃ of which is still consistent. Assume ν to be such a minimal inconsis-
tent node. Now let k = B ( {C1, . . . , Cn} be the witnessing clause of ν̃ and
w.l.o.g. Cn the set with ε(ν) = ε(ν̃) ∪ Cn. Now, due to our assumption we have
K ` B ( {C1, . . . , Cn} as well as K ` D ∪ Cn ( {{⊥}} for a finite D ∈ ε(ν̃).
Then we get by substitution K ` D ∪ B ( {C1, . . . , Cn−1, {⊥}}.
Furthermore, by the contradiction rule and substitution we can easily derive K `
{⊥} ( {C1}. Using again substitution it follows K ` D ∪ B ( {C1, . . . , Cn−1}.
Yet, the maximal role depth of the conclusion of this new cumulated clause k̃
(the derivability of which has just been shown) is less or equal to that of k and
furthermore k̃’s conclusion is contained in that of k. Therefore k cannot be the
witnessing clause of ν̃ since the minimality conditions are violated. So we have
a contradiction to the prior assumption. ut

5.3 Completeness

Exploiting the two preceding propositions, we now show that any quasileaf of a
realization tree with consistent root is an entity of the corresponding standard
model. The basic idea of this proof is to show that any such quasileaf “survives”
all iterations done in the standard model construction.
Furthermore, we show that any standard model entity has a quasileaf as a subset
as well.

Lemma 6. Let K be a set of cumulated clauses and A ⊆ FLEnorm consistent, let
TK
A = (N, r,≺, ε) be a corresponding realization tree and

−→
K(K) the corresponding

standard model. Then the following two statements hold:

1. for all quasileafs Q of TK
A , we have Q ∈ ∆ and

2. for all δ ∈ ∆ containing A and being minimal wrt. set inclusion there is a
quasileaf Q of TK

A with Q = δ.

Proof. We start with proposition (1) and prove inductively that Q ∈ ∆(n) for
all n ∈ N.
Induction anchor: n = 0. Obviously, Q ∈ ∆(0) for Q respects DR(K) (due to
Lemma 4) and thus in particular K. Additionally, we know that Q is consistent
(and therefore in particular ⊥ 6∈ Q) due to Lemma 5.
Induction step: n > 0. Considering Q, we have to show that

{C |

E

R.C ∈ Q} =
⋃
{Pfin(δ̃) | (Q, δ̃)I(n−1)

R R} (∗)

and
{C |

A

R.C ∈ Q} =
⋂
{δ̃ | (Q, δ̃)I(n−1)

R R} (∗∗)

We start with (*):



”⊇” Assume C to be a subset of an R-successor δ̃ of Q in
−→
K (n−1). Since by

construction we have I
(n−1)
R ⊆ I

(0)
R , we also know that (Q, δ̃)I(0)

R R. But in
view of the definition of I

(0)
R , we know that

E

R.
d
C has to be in Q.

”⊆” By induction hypothesis, we can assume that Q ∈ ∆(n−1). Let

E

R.
d
C ∈ Q.

We now have to show that (in
−→
K (n−1)) there is an R-successor of Q containing

C. Suppose there is no such successor. (+)
We set C̃ := C ∪ {D |

A

R.D ∈ Q} and consider a realization tree TK
C̃

(whose
quasileafs are all in ∆(n−1) by induction hypothesis). Due to the assumption
(+), no quasileaf of TK

C̃
is an R-successor of Q in

−→
K (n−1) (since each of them

contains C). But then (due to the definition of I
(n−1)
R ) no quasileaf of TK

C̃
is

an R-successor of Q in
−→
K (0). So each of these TK

C̃
-quasileafs must contradict

one of the conditions for being an R-successor of Q in
−→
K (0). Obviously, every

quasileaf Q̃ of TK
C̃

fulfills the condition that C ∈ Q̃ for all

A

R.C ∈ Q, since

already C̃ contains all such C. So, to fulfill our assumption (+) every TK
C̃

-

quasileaf Q̃ must violate the other condition: it has to contain a finite set
DQ̃ ∈ FLEnorm such that

E

R.
d
DQ̃ 6∈ Q. (++)

For every TK
C̃

-quasileaf Q̃, we find a node νp on each of its generating paths

p with DQ̃ ⊆ ε(νp). Taking for all quasileafs Q̃ these nodes νp, we have found
a covering N∗ of TK

C̃
. Due to Lemma 2, we then find also a finite covering

Ñ ⊆ N∗. For every ν̃ ∈ Ñ , we choose an arbitrary path p̃ containing ν̃.
Let p̃ generate Q̃. Now, we again assign a finite FLE subset Dν̃ to each ν̃
by Dν̃ := DQ̃. Now let {D1, . . . ,Dk} := {Dν̃ | ν̃ ∈ Ñ}. Using Lemma 3 it

follows K ` C∗ ( {D1, . . . ,Dk} for a finite C∗ ⊆ C̃. Applying the

E

-lifting
rule we have also K ` [

E

R]C∗ ( {[

E

R]D1, . . . , [

E

R]Dk}.(+ + +)
Furthermore, it is easy to see that K ` [

E

R]C ∪ [

A

R](C∗ \ C) ( {[

E

R]C∗} by
incrementally applying the

A

-propagation rule (and due to the fact, that C∗
is finite). So together with (+++), using substitution, we finally get

K ` [

E

R]C ∪ [

A

R](C∗ \ C) ( {[

E

R]D1, . . . , [

E

R]Dk}.

Due to the construction of C and C∗, Q contains the premise of this cumulated
clause. Furthermore, from Lemma 4 we know that Q has to respect all clauses
from DR(K). So Q has to contain one element from {[

E

R]D1, . . . , [

E

R]Dk}
which contradicts the way they have been chosen in (++).
So, our prior assumption (+) must be false.

We continue by showing (**):

”⊆” Assume C to be a concept description, for which

A

R.C ∈ Q. By definition of
I
(0)
R , we know that this implies C ∈ δ̃ if (Q, δ̃)I(0)

R R. So we also know that
C ∈

⋂
{δ̃ | (Q, δ̃)I(0)

R R}. From I
(n−1)
R ⊆ I

(0)
R , we can conclude that

⋂
{δ̃ |

(Q, δ̃)I(0)
R R} ⊆

⋂
{δ̃ | (Q, δ̃)I(n−1)

R R} and therefore C ∈
⋂
{δ̃ | (Q, δ̃)I(n−1)

R R}.



”⊇” Let C ∈
⋂
{δ̃ | (Q, δ̃)I(n−1)

R R}. We have to show that

A

R.C ∈ Q.
Assume the contrary, i.e.,

A

R.C 6∈ Q. Let C := {D |

A

R.D ∈ Q} and consider
a realization tree TK

C of C (remember that by induction hypothesis all its
quasileafs are in ∆(n−1)). Now we assign to each TK

C -quasileaf Q̃ a finite
concept description set DQ̃ ⊆ Q̃ in the following way:

• For each quasileaf Q̃ with (Q, Q̃)I(n−1)
R R, we set DQ̃ := {C} (this is

correct, since C is contained in every R-successor of Q in
−→
K (n−1)).

• If a quasileaf Q̃ is not an R-successor of Q in
−→
K (n−1), it cannot be an

R-successor of Q in
−→
K (0) as well. Yet, then it must violate one of the two

conditions in the definition of I
(0)
R . Obviously, every quasileaf Q̃ of TK

C
fulfills the condition that C ∈ Q̃ for all

A

R.C ∈ Q, since C contains all
such C. So the second condition must be violated and thus there has to
be a finite concept description set E ⊆ Q̃ with

E

R.
d
E 6∈ Q. Then we set

DQ̃ := E .
Now, since all those assigned concept description sets are finite, we find
on every generating path p of a quasileaf Q̃ a node νp for which already
holds DQ̃ ⊆ ε(νp). Collecting all those nodes, we get a covering N∗ of TK

C .

Due to Lemma 2, we find a finite covering Ñ ⊆ N∗. For every ν̃ ∈ Ñ , we
choose an arbitrary path p̃ containing ν̃. Let p̃ generate Q̃. We again assign
a finite FLE subset Dν̃ to each ν̃ by Dν̃ := DQ̃ Now let {D1, . . . ,Dk} :=

{Dν̃ | ν̃ ∈ Ñ}. By using Lemma 3 it follows K ` C∗ ( {D1, . . . ,Dk} for
a finite C∗ ⊆ C. If {C} is not yet contained in {D1, . . . ,Dk}, we may easily
include it by one application of the conclusion extension rule. So we get
K ` C∗ ( {{C}, E1, . . . , Ej} with

E

R.
d
Ei 6∈ Q (as the Ei have been chosen).

But now a single application of the (

A

-lifting) rule yields

K ` [

A

R]C∗ ( {{

A

R.C}, [

E

R]E1, . . . , [

E

R]Ej}.

Since Q as a quasileaf of TK
A has to respect all cumulated clauses of DR(K)

(due to Lemma 4) and by construction [

A

R]C∗ ⊆ Q it has to contain eitherA

R.C (which contradicts our first assumption) or one [

E

R]Ei which contradicts
the choice of the Ei. So our assumption

A

R.C 6∈ Q must be false.

We proceed with proposition (2). Since we know that ε(r) = A, we also know
ε(r) ⊆ δ.
Now we construct a path r = ν0 ≺ ν1 ≺ . . . in TK

A in the following way: If
νi has no successors, we are done and have constructed a complete finite path.
Otherwise we select the node νi+1 as follows: We presuppose that for a νi we
have ε(νi) ⊆ δ. Considering the witnessing clause k = B ( {C1, . . . , Cn} of νi in
TK
A , we know that δ must respect k due to the soundness of DR. Furthermore, by

Lemma 1, we have the correspondence of (syntactic) containment and (semantic)
validity of FLEnorm concept descriptions in the standard model. So, since the
premise of the witnessing clause is contained in ε(νi) which in turn is a subset
of δ, we have δ |= B and therefore we have δ |= Ck for some k ∈ {1, . . . , n}. Now
we choose νi+1 such that ε(νi+1) = ε(νi) ∪ Ck, thereby assuring ε(νi+1) ⊆ δ.



Now let Q be the quasileaf generated by the (finite or infinite) complete path
ν0 ≺ ν1 ≺ . . .. Due to the first part of the theorem we know that Q ∈ ∆. By
construction, we also know that A ⊆ Q as well as Q ⊆ δ. However, since δ is
minimal wrt. set inclusion by assumption we can conclude Q = δ. ut

Having established this correspondence between standard model and realization
tree, it is not difficult to prove that any cumulated clause valid in the standard
model is derivable via DR, which (as the subsequent corollary shows) gives us
the completeness of DR.

Theorem 3. Let K be a set of cumulated clauses and k = A ( {B1, . . . ,Bn} a
cumulated clause. Then

−→
K(K) |= k =⇒ K ` k

Proof. Consider a realization tree TK
A of A. From Theorem 6, we know that for

each quasileaf Q of TK
A holds Q ∈ ∆. From A ⊆ Q and using Lemma 4, we can

conclude Bi ⊆ Q for some i ∈ {1, . . . , n}.
Since all Bi are finite, we find on every complete path a node ν for which already
holds Bi ⊆ ε(ν) for some Bi. This means that we have found a covering N∗ of
TK
A , that due to Lemma 2 can be minimized to a finite covering Ñ ⊆ N∗. In

view of Lemma 3 we then get K ` A∗ ( {B1, . . . ,Bn} for some A∗ ⊆ A and
consequently by premise extension K ` A ( {B1, . . . ,Bn}. ut

Corollary 1. The deduction calculus DR for cumulated clauses on FLEnorm is
sound and complete.

Proof. Soundness has been shown by Theorem 2. Completeness also follows di-
rectly from the preceding theorem: If a cumulated clause k is valid in all power
context families that respect a set K of cumulated clauses, it is in particular valid
in
−→
K(K). But then it is derivable. ut

6 Conclusion and Outlook

In this paper, we presented a sound and complete deduction calculus for cumu-
lated clauses on FLE concept descriptions. This “logic of case distiction” will
be useful for the application of FCA attribute exploration in domains where
attributes are specifiable by FLE concept descriptions. Additionally, we want to
emphasize that the results and notions introduced in this paper can also be used
in a larger framework. For instance, based on a restricted standard model, a
decision algorithm for entailment on cumulated clauses on FLE can be defined,
which differs from the well known tableaux based algorithms in many aspects.
These issues (as well as additional structural properties of the standard model)
are thoroughly addressed in [16].
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