
Tempus fugit?

Towards an Ontology Update Language

Uta Lösch, Sebastian Rudolph, Denny Vrandečić, and Rudi Studer

Institut AIFB - Universität Karlsruhe (TH)
Karlsruhe, Germany

{uhe,sru,dvr,rst}@aifb.uni-karlsruhe.de

Abstract. Ontologies are used to formally describe domains of inter-
est. As domains change over time, the ontologies have to be updated
accordingly. We advocate the introduction of an Ontology Update Lan-
guage that captures frequent domain changes and hence facilitates regu-
lar updates to be made in ontologies. We thoroughly discuss the general
design choices for defining such a language and a corresponding update
framework. Moreover, we propose a concrete language proposal based on
SPARQL Update and provide a reference implementation of the frame-
work.

1 Introduction and Motivation

Ontologies (see [12] for a comprehensive overview) are formal specifications of
the knowledge about a domain of interest. They constitute one of the central
concepts in the field of Semantic Web technologies and facilitate information
integration and exchange as well as semantic search. Usually, their expressive
power exceeds that of traditional databases and allows to infer new information
that is not explicitly present in the specification but a logical consequence of it
(the so-called implicit knowledge).

Currently, the most commonly used ontology languages are RDF and OWL,
both standardized by the World Wide Web Consortium (W3C). RDF ([7], in
particular the RDF Schema extension) constitutes a so-called “leightweight”
ontology language, providing basic modeling features for assertional (instance-
related) and terminological knowledge handling classes, binary relations (so-
called properties), hierarchies of classes (also referred to as taxonomies) and
properties as well as domain and range specifications for properties. OWL (the
Web Ontology Language, [8]) constitutes the other well-established knowledge
representation formalism for the Semantic Web, based on Description Logics [1],
a family of decidable yet expressive logics for which highly optimized inferencing

? Supported by the Deutsche Forschungsgemeinschaft (DFG) under the ReaSem
project and the Graduate School Information Management and Market Engineering
and by the European Commission through the IST project ACTIVE (ICT-FP7-
215040).

implementations exist. Syntactically, OWL can be represented in RDF(S) where
certain vocabulary elements impose stronger restrictions on the semantics.

Following the uptake of ontology-based technologies by industry, the compre-
hensive modeling of complex domains will become necessary. We expect future
ontologies to rarely be developed by a single person starting from scratch. Rather
collaborative design and development of ontologies and continuous refinement
will become the usual scenarios for which elaborate methodologies and appro-
priate tool support will become crucial (see for example [15, 14]).

In this spirit, ontology change is one of the fundamental issues to be ad-
dressed. Obviously, there are diverse reasons for changing an ontology. We argue
that it is helpful to conceptually distinguish two cases by answering the question:
Is the ontology changed due to an according change in the described domain?

Note that there are many cases where the answer to that question would be
no: an ontology change might be the consequence of the discovery of modeling
errors (ontology repair) or the acquisition of new additional domain knowledge
(ontology amendment). Obviously, this type of ontology changes reflects a change
in the way the modeler conceives or formalizes the domain of interest. As an
example, consider the case that new findings in genetics might imply that the
taxonomy of living beings has to be corrected in order to properly reflect the
current knowledge of the real situation. A lot of research has been devoted to this
kind of ontology change (employing techniques from belief revision, knowledge
acquisition, ontology learning and ontology evolution to name just a few). We
propose the term ontology refinement to subsume all those activities.

As opposed to those, we will be concerned with the task that we refer to as
(temporal) ontology update: changes to the ontology might become necessary as
the underlying domain changes over time. As time passes, the state of affairs in
the domain like a person’s employer or her academic title may change. However,
such changes are not restricted to assertional knowledge, but may also concern
the schema. As an example consider EU membership: it is expected that addi-
tional countries become member of the EU, thereby changing the terminological
definition of the class of EU citizens.

In many cases it will be possible to come up with change patterns which
describe typical ways in which a domain may evolve. For example, a domain
individual recorded as underage may turn into an adult, while the opposite is
impossible. While most of these patterns will probably deal with the update of
assertional knowledge, they may also occur on the schema level (as an example
consider a country becoming member of the EU).1

The observation that such change patterns exist leads to the idea to formally
specify typical ways in which an ontology may be updated over time. As an
example, in a biological domain, an individual might cease to be member of the
class Caterpillar and become member of the class Butterfly instead. These
update specifications may concern schema knowledge as well as fact knowledge.
1 While here we focus on change patterns that reflect temporal and domain-specific

changes, we are aware that such patterns may be identified beyond this use case (our
approach may thus be applicable in other change scenarios, too).

On a more general level, update specifications allow to encode process knowledge
and associate it with the ontology, such that it can be used for updates.

The specifications can be seen as operational descriptions how to update an
ontology as a consequence to information entered into the system. However, in
contrast to common Ontology Evolution approaches [13], we propose to base
those updates on domain specific knowledge about temporal changes. Using the
above mentioned information, a natural reaction to asserting that an individ-
ual willie is now a class member of Butterfly would be to also retract the
information that willie is an instance of Caterpillar [3].

This way, an ontology change requested by a person responsible for ontology
maintenance can be supplemented by additional changes. This allows to prevent
modeling flaws that might occur due to only partially entered information. Gen-
erally, an ontology update specification allows constraining ontology changes to
clearly defined, foreseen cases in a domain-specific way.

Then, frequent maintenance or update tasks can be transferred from knowl-
edge engineers (roughly: the ”ontology administrator”) to knowledge workers
(possibly formally less skilled users in charge of monitoring changes in the do-
main of interest and transferring them into the ontology) while minimizing the
risk of introducing errors. Like the actual ontology, the according update specifi-
cation has to be created by a knowledge engineer who is also in charge of ontology
refinement activities as well as addressing unforeseen changes not anticipated by
the update specification that might become necessary.

In this paper, we elaborate on our idea of a framework and a language for
ontology updates. Section 2 explains our design choices when working out the
overall and more detailed aspects of an ontology update language. In Section 3
we briefly sketch the architecture of a system where ontology update specifica-
tions are employed. Section 4 provides the formal specification of our proposed
Ontology Update Language and Section 6 describes the details of our reference
implementation of an according ontology update system. In Section 5 the ben-
efits of our approach will be illustrated by means of a small example before we
conclude and provide directions for future research in Section 7.

2 Design Choices

In this section, we review the major choices and questions to be addressed when
designing a framework for ontology update management.

2.1 Ontology-inherent Temporal Knowledge vs. External
Specification

One approach to capture temporal changes in a domain is to use logic for-
malisms that allow for their description inside ontological specifications. There
is a plethora of formalisms and approaches such as temporal logics or situation
calculi that provide a logic-inherent way of describing temporal and dynamic

phenomena in the domain. Clearly, these approaches have advantages when-
ever the intended use of the ontology includes reasoning over domain changes
(maybe even planning). However, besides the more complicated formalisms, a
usual drawback of such formalisms is the high reasoning complexity.

Note that our goal is much more moderate: from the above described, it
becomes clear that we aim at designing an operational formalism that – given
a change request – deterministically comes up with an updated ontology in a
timely manner. Moreover, we would like to stick to the usual approach that an
ontology encodes a static description of the domain, hence every state of the
actual ontology should be considered a kind of “snapshot”.

Therefore, we adopt an approach keeping the actual ontology and the accord-
ing update specification distinct, which also enables to use off-the-shelf reasoners
for dealing with the ontology part.

2.2 Unguided Belief Revision vs. Guided Update

Although most of the work done in the area of belief revision has dealt with sce-
narios of ontology refinement (see [6] for an RDFS-based formal framework and
[10] for a survey), some proposals have been made to also address the update sce-
nario [5]. Notwithstanding, belief revision approaches try to resolve inconsisten-
cies that were introduced by an update. However, many changes in the ontology
will not lead to an inconsistent state, thus no additional changes are performed.
Therefore, the applicability of belief revision is restricted to formalisms expres-
sive enough to cause inconsistencies. While this is certainly the case for OWL,
causing “meaningful” inconsistencies in RDF(S) is virtually impossible.2 To a
certain extent, this fallback can be mitigated by adding additional constraints
beyond RDF(S) on top of an RDF(S) knowledge base3 [6].

As another downside of belief revision, note that the strategies to restore
consistency do not take domain specifics into account. To illustrate that, con-
sider the following example: let a knowledge base contain the disjointness of the
classes Adult and Child and the fact that Peter belongs to the class Child. If
we now add that Peter is also an instance of the class Adult, the knowledge
base becomes inconsistent and (if configured appropriately) a belief revision ap-
proach would retract Child(Peter), as newly added facts override those already
present. While this is the desired behavior, re-adding Child(Peter) to the new
knowledge base would lead to the deletion of Adult(Peter) irrespective of the
actual irreversibility of this development in the described domain. Clearly, a
more appropriate “reality-aware” reaction of an update mechanism would be to
reject the second change request.

As opposed to belief revision, our approach aims at preventing inconsistent
ontology states that might arise from incomplete change requests. To this end,
2 More precisely: in RDF(S) inconsistencies can only be provoked by so-called XML-

clashes, which is more a datatype-related unintentional peculiarity than a design
feature.

3 Note that we use the terms ontology and knowledge base interchangeably throughout
the paper.

change requests are completed by further ontology changes based on specified
knowledge about how a domain may develop. This way, consistency can be pre-
served; as a worst case, the change request can be denied.

Note however, that those two approaches are not mutually exclusive but could
be combined: in case of a change request not matching any of the anticipated
update patterns, applying a belief revision “fallback solution” might sometimes
be preferable to simply rejecting the request.

2.3 Syntactic vs. Semantic Preconditions

In most cases, the best way to react to a change request will depend on the
current state of the ontology. Hence it is crucial to provide the opportunity to
formulate respective preconditions for triggering changes. There are essentially
two distinct kinds of checks that can be done against an ontology: semantic and
syntactic4 ones.

If some changes should be made depending on the validity of some state-
ment in the ontology, we have to employ reasoning in order to decide whether
the statement is logically entailed by the given information. As a special case of
this, one could diagnose whether an intended change would turn the ontology
inconsistent and reject the requested change on these grounds. Semantic checks
provide the more thorough way of testing the knowledge contained in an ontol-
ogy, however the reasoning to be employed may be expensive with respect to
memory and runtime.

The alternative would be to just syntactically determine whether certain
axioms are literally contained in a knowledge base. This would be less expen-
sive than the semantic approach. Yet usually, there are many possible ways to
syntactically express one piece of semantic information making a näıve syntac-
tic “pattern matching” approach problematic at best. One way to mitigate that
problem while still avoiding to engage in heavy-weight reasoning would be to syn-
tactically normalize the ontology and the change request. That is, the ontology
is transformed into a semantically equivalent, but syntactically more constrained
form, facilitating to identify and manipulate pieces of semantic information by
purely syntactic analyses.

Since both kinds of preconditions are useful under different circumstances,
we argue that an ontology update formalism should offer both options leaving
to the knowledge engineer to decide which one should be used in a specific case.

2.4 Change Feedback

It has to be expected that the changes mediated by an ontology update spec-
ification might not be directly obvious for the knowledge worker. However, it
is clearly crucial to ensure that the system’s behavior is as transparent as pos-
sible to the knowledge worker. For this reason, feedback about the automated
4 In our actual proposal, we refrain from taking a purely syntactic approach, but rather

the structural level of the RDF graph that is used by SPARQL.

Fig. 1. Ontology Update Architecture

reactions to a change request should be an essential part in any practically em-
ployable ontology update framework.

In order to provide informative feedback, the ontology engineer has to provide
template-like explanation snippets commenting on the nature of the change pat-
terns contained in the update specification and the changes triggered by them.
At runtime, those templates instantiated with the actually changed ontology
elements can be presented to the knowledge worker in order to explain what
actually happened to the ontology.

3 System Architecture

In this section, we propose an abstract architecture for an ontology update frame-
work taking into account the design choices made in the previous section. A con-
crete instantiation of this architecture is described in the subsequent sections.
The suggested architecture is sketched in Fig. 1. Therein, the usual unguided in-
teraction mode of committing changes directly to the ontology is complemented
by an additional update management component as editing interface for the
knowledge worker. Still, the knowledge engineer will be able to directly change
both the ontology and the ontology update specification.

The typical work flow of an ontology update step is carried out as follows:
Initially, the knowledge worker issues a change request by providing a piece of
knowledge to be added to or deleted from the ontology.

A change request will only be acted upon if the accompanying Ontology
Update Specification accounts for it. The Ontology Update Manager will scan
the Update Specification for an update rule whose applicability conditions are
satisfied by the uttered change request and the ontology. Those applicability
conditions might contain syntactic as well as semantic checks. If there are several
applicable update rules, only one of them is applied.

If an applicable update rule has been determined, the change request can be
acted on accordingly by denying or accepting it but possibly also by carrying
out more ontology changes than explicitly requested.

Finally, a feedback message describing the activated change pattern and con-
taining the actually performed changes is generated and sent back to the knowl-
edge worker.

In case no applicable update specification was found, the change request is
denied. It is however logged such that the ontology engineer can take care of it
later and also refine the Ontology Update Specifications if needed.

The proposed framework is inspired by database triggers as e.g. described
in the SQL standard [4]. Database triggers are stored procedures that are acti-
vated by changes that are submitted to the database. They may be defined for
insertions, updates and deletions of instance data in the database. Our approach
provides the same kind of functionality for instance data in ontologies while ad-
ditionally allowing for defining update specifications for schema changes, which
is usually not possible with database triggers.

4 A Language Proposal

In this section, we instantiate our previous general considerations by provid-
ing an ontology update framework based on RDF(S) and SPARQL, as well as
SPARQL Update. This framework consists of the syntax of the Ontology Up-
date Language (OUL, specified in Fig. 2) together with the precise description
how ontology change requests are to be handled by the ontology management
component (cf. Alg. 1).

Every update rule (also called changehandler) has an identifier. It carries a
change request pattern, expressing for which change request it can be applied and
some preconditions that define whether a change request can be handled by this
rule depending on the current ontology state. If several matching changehandlers
exist, the first one occurring in the update specification will be applied.5

A change request pattern is defined by the WHERE-clause of a SPARQL select
query that is to be evaluated on the change request. That means that the state-
ments submitted for a change are interpreted as an RDF graph and it is checked
whether the change request pattern executed as SPARQL query yields any (or,
if the unique option is set: exactly one) result on this change graph (lines 4 –
6 in the Algorithm) The result of this queries are bindings of all variables that
are present in the WHERE-clause. Those bound variables can be reused later in
the preconditions and actions part.

If a match is found, the precondition of the changehandler is evaluated. This
determines whether the changehandler is applicable or whether another matching
one has to be found. There are three basic types of preconditions: a syntactic

5 We are aware that we thereby deviate from pure declarativity. However, for a first
proposal, this kind of implicit priority declaration seems both intuitive and compu-
tationally feasible.

CREATE CHANGEHANDLER <name>

FOR <changerequest>

AS

[IF <precondition>

THEN] <actions>

<changerequest> ::== add [unique] (<SPARQL>)

| delete [unique] (<SPARQL>)

<precondition> ::== contains(<SPARQL>)

| entails(<SPARQL>)

| entailsChanged(<SPARQL>)

| (<precondition>)

| <precondition> and <precondition>

| <precondition> or <precondition>

<actions> ::== [<action>]|<action><actions>

<action> ::== <SPARQL update>

| for(<precondition>) <actions> end;

| feedback(<text>)

| applyRequest

<SPARQL> ::== where clause of a SPARQL query

<SPARQL update> ::== a modify action (in SPARQL Update)

<text> ::== string (may contain SPARQL variables)

Fig. 2. Ontology Update Language syntax specification in BNF.

check (that simply verifies whether certain triples are contained in the ontol-
ogy) is performed via contains. Semantic entailment checks may be performed
on the ontology in its current, unaltered state (entails) or on the “hypothet-
ical” ontology that would result from carrying out the changes as requested
(entailsChanged). As explained above, it is desirable to provide syntactic and
semantic checks on the ontology, as syntactic checks are less expensive but also
less accurate than semantic checks. Syntactically, basic preconditions are also
the WHERE-part of a SPARQL query.

Basic preconditions can be combined by and and or. As it is reasonable to
allow for (yet unbound) variables to occur in several basic preconditions, and and
or are realized as join and union on the result sets of the basic preconditions. In
the end, a precondition is considered to be successful (line 8) if its result set con-
tains at least one entry. Before evaluation of the precondition, all variables that
occurred before in the change request pattern are substituted by their binding
(line 7, in the case of several existing bindings, the first one is chosen).

If the precondition is evaluated successfully, the actions specified in the
changehandler’s body are applied to the ontology.6

As for the evaluation of preconditions, all variables occurring in the action
part of the changehandler that were bound before (i.e. that were present in either

6 As it is possible to specify a changehandler which matches any request, it is up to the
knowledge worker what should be done with change requests for which no matching
changehandler is found.

Algorithm 1: Processing of Change Request
Input: ontology O consisting of axioms (RDF triples – Note that in RDFS

every axiom is represented by exactly one triple),
ontology update specification US treated as list of changehandlers,
change request op(Ax) where op ∈ {add, del} and Ax is a set of axioms
resp. triples.
Data: candidate changehandler that is checked for applicability
toExecute container to store the activated changehandler
updateList list of SPARQL Updates to be carried out, initially empty
Result: Updated ontology O
//find an appropriate changehandler1

while toExecute.isEmpty and not US.endOfDocument do2

candidate← US.nextChangeHandler3

matches← SPARQLmatch(candidate.changerequest, op(Ax))4

if not matches.isEmpty then5

if matches.count == 1 or not candidate.changerequest.unique then6

instPrecondition←7

Substitute(candidate.precondition, matches.first)
if not evaluate(instPrecondition,O).isEmpty then8

toExecute.add(candidate)9

end10

end11

end12

end13

//execute actions, if applicable14

if not toExecute.isEmpty then15

todo← Substitute(toExecute.first.actions, matches.first)16

cumulateActions(O, todo, updateList)17

foreach update ∈ updateList do18

apply update to O19

end20

end21

return O22

the change request or in the precondition) are replaced by their binding before
the action part is applied (line 16). If several possible bindings were found for
the change request or the precondition, the first binding is chosen.

Elementary actions that can be carried out are knowledge base changes (ex-
pressed as SPARQL Update operations), the applyRequest action (carrying
out the originally uttered change request), and feedback messages. Moreover,
elementary actions can be nested into loops which iterate over the result set of a
precondition. While executing the action part of a changehandler, the activated
ontology changes are not directly applied but first assembled in a list (line 17)
and applied thereafter. This way all the loop preconditions are evaluated against
the original ontology (or, in the case of entailsChanged, against the ontology
that has been altered in the initially proposed way), thereby preserving a declar-

ative flavor. The application of the changes is done in an atomic manner after
assembling is complete.

As it would not be easy to ensure termination or avoid high computational
cost if the actions part of a change request was allowed to trigger other change
requests, no other changehandlers are triggered during the execution of a change-
handler. While this ensures termination, it makes the ontology engineer responsi-
ble for “manually” handling all additional changes that might become necessary
due to the changes during the execution of the changehandler.

As a preliminary solution, the association of changehandlers with an ontology
works similar to the association of DTDs with a XML document [2]. They can ei-
ther be defined inline in the document specifying the data or they can be defined
in external files. In either case, the changehandler is defined in a comment (such
that the rdf file can also be parsed by ontology management systems that do not
support OUL). All comments that have an extra ’-’ at the beginning are parsed
as changehandler definitions. This begin of the comment may be followed by a
file name enclosed in quotation marks, which defines an external changehandler,
or by the definition of a changehandler enclosed in square brackets, defining the
changehandler inline.

5 Examples

In this section, we provide a small example aimed at both advocating the poten-
tial usefulness of our proposed update framework and demonstrating the con-
crete work flow. We start with the knowledge base from Fig. 3. This RDFS
specification, where we use Turtle syntax for better readability, contains the
knowledge of the current status of our domain. Furthermore suppose this ontol-
ogy is accompanied by the ontology update specification shown in Fig. 4. The
first changehandler therein deals with the case that somebody leaves his/her
current affiliation. In that case, the deletion of the affiliation information has
to trigger further changes: the person will not continue to lead projects at the

philipp rdf:type PhDStudent .
philipp hasAffiliation aifb .
philipp leads xmedia .
philipp worksOn multipla .
philipp supervises thanh .
thanh rdf:type PhDStudent .
thanh hasAffiliation aifb .
thanh worksOn xmedia .
xmedia rdf:type Project .
xmedia assocInstitution aifb .
multipla rdf:type Project .
multipla assocInstitution aifb .

Fig. 3. Example knowledge base.

CREATE CHANGEHANDLER leavesInstitution

FOR del { ?x hasAffiliation ?y }

AS applyRequest;

feedback("?x is no longer affiliated to ?y");

for(contains(?x ?wol ?z . ?z rdf:type Project .

?z assocInstitution ?y .

FILTER(?wol=worksOn || ?wol=leads)))

delete data {?x ?wol ?z};

feedback("Thus, ?x does not lead/work on project ?z anymore."); end;

for(contains(?x supervises ?z . ?z hasAffiliation ?y))

delete data {?x supervises ?z};

feedback("Thus, ?x does not supervise ?z anymore"); end;

CREATE CHANGEHANDLER authorsPhD

FOR add { ?x swrc:authorOf ?y }

AS IF entailschanged(?y rdf:type swrc:PhDThesis .)

THEN applyRequest;

delete data { ?x rdf:type swrc:PhDStudent};

feedback("Change accepted. ?x authored a PhDThesis,

so he is no PhD student anymore.");

Fig. 4. Example ontology update specification.

institution he/she leaves nor to supervise persons. Now suppose the following
change request, indicating that Philipp is leaving the AIFB institute, is entered
into the system:
delete data {philipp hasAffiliation aifb .}

The system will now check whether this change request matches the first
changehandler’s change pattern del { ?x hasAffiliation ?y }. This is the
case, as the corresponding SPARQL query yields a result which binds philipp
to ?x and aifb to ?y. The considered changehandler is now executed as it does
not contain further preconditions for activation. So, the specified actions will be
carried out: applyRequest means that the initial change request is granted and
added to the list of updates to be executed. After that the following message is
displayed:
philipp is no longer affiliated to aifb.

Next, we consider the graph pattern in the first loop. Note that it contains
variables that have already been bound by the change pattern matching. Before
evaluating the loop action, those variables are substituted by their bindings, in
our case resulting in the following rewritten loop action:

for(contains(philipp ?wol ?z . ?z rdf:type Project .

?z assocInstitution aifb .

FILTER(?wol=worksOn || ?wol=leads)))

delete data {philipp ?wol ?z};

feedback("philipp does not lead/work on project ?z anymore"); end;

Now, the conditional part of the rewritten loop action is matched against
the database, yielding the following two variable bindings: ?wol7→leads, ?z
7→xmedia and ?wol7→worksOn, ?z 7→multipla. Next, for each of these two
bindings, the subsequent actions are executed: therefore, the triples philipp
leads xmedia. and philipp worksOn multipla. are scheduled for deletion
and the following two messages are prompted to the user:

Thus, philipp does not lead/work on project xmedia anymore.
Thus, philipp does not lead/work on project multipla anymore.

In analogy to that, by executing the second loop of the activated changehandler,
philipp supervises thanh. is scheduled for deletion and the message

Thus, philipp does not supervise thanh anymore.

prompted to the user. Finally, all the scheduled changes are carried out.
Finally, we will present some standard situations or decisions which might

occur in an ontology update setting and how they can be realized by means of
the Ontology Update Language as presented in this paper.

Restricting the Size of the Change. Clearly, it is not always desirable to
permit change requests of arbitrary size. In principle, an entire ontology could
be added in one step, which would be a situation hard to handle with update
rules. One solution to this is to restrict the size of the change a priori. As an
extreme case of this, only one RDF triple per change might be allowed. While this
constraint can be imposed by external means, our formalism is flexible enough to
handle it. In order to allow only add changes consisting of one triple, the following
changehandler would have to be inserted at the beginning of an ontology update
specification:

CREATE CHANGEHANDLER tooMuchForOneBite

FOR add ({ ?a ?b ?c . ?d ?e ?f .

!(sameTERM(?a,?d) && sameTERM(?b,?e) && sameTERM(?c,?f))})

AS feedback("Request denied. Only one triple per change!");

In words, the change request pattern checks whether there are two distinct triples
contained in the change request. If so, the changehandler is activated without
doing any changes (thereby effectively rejecting the request). Note that the im-
plemented selection strategy also prevents any subsequent changehandler in the
document from being activated.
Handling of Change Requests. Of course, change requests might occur which
do not activate any of the specified changehandlers. In the presented implemen-
tation, the request will be tacitly denied in this case. It is however possible to
create changehandlers that match any add (resp. delete) request. Placed at
the bottom of an ontology update specification, those can be used to provide
feedback whenever no other changehandler was activated:

CREATE CHANGEHANDLER noMatchRestrictive FOR add ({ ?a ?b ?c . })

AS feedback("Request denied. No matching change rule found!");

This is just an explication of the default restrictive strategy: every unforeseen
request will be denied. In the same way, it is of course possible to realize a
permissive strategy by stating

CREATE CHANGEHANDLER noMatchPermissive FOR add ({ ?a ?b ?c . })

AS applyrequest;

feedback("Request accepted. No matching change rule found.");

instead. This way, all requests not matching any of the preceding changehandlers
will be complied with.

6 Implementation

We provide an implementation of our architecture and our language proposal
at http://www.aifb.uni-karlsruhe.de/WBS/uhe/OUL/. The implementation
uses Jena as underlying framework for ontology management. This framework
was chosen, as Jena provides an implementation of SPARQL update [11].

SPARQL update is an extension of the ontology query language SPARQL
[9]. While SPARQL’s purpose is to find data in a RDF graph, SPARQL update
provides functionality for updating and managing RDF graphs using a SPARQL-
like syntax. Update operations allow changing existing graphs by adding data
(insert), deleting data (delete) or both (modify). Besides directly insert-
ing/deleting a set of triples, these operations allow to change an ontology based
on a pattern. A pattern is a description of a RDF graph, which may contain
variables that can be used to describe elements of the graph and can then be
determined as result. These results are used in SPARQL update queries to de-
termine which triples should be added resp. deleted from the ontology.

Our implementation provides a wrapper for Jena’s SPARQL update end-
point, which implements the ontology update management as we proposed it.
SPARQL update requests can be submitted as in the original implementation,
but instead of directly executing them, the graph of changes that will have to be
applied is constructed and a suitable change handler is searched for as explained
in Section 4 and the respective actions are performed. By default, if no change
handler is found, the ontology remains unchanged. This approach makes the
update management as transparent as possible for the user. The only difference
with respect to using the original implementation is using another endpoint and
getting all the described advantages. This allows to open SPARQL endpoints for
writing access more liberally.

7 Conclusions and Future Work

In this paper, we have addressed the task of updating an ontology due to changes
in the described domain. We have argued for a formalism that allows for speci-
fying the domain-dependent ways in which a specific ontology may evolve over
time. We thoroughly discussed the crucial design decisions to be made for an

ontology update framework that would automatically align change requests with
change patterns and thereby allow to delegate simple ontology maintenance tasks
to users not necessarily possessing the expertise of a knowledge engineer. We pre-
sented and implemented a proposal for such a framework.

Being aware that our proposal constitutes just a first step towards a much
needed functionality for semantic technologies, we identify several directions for
future research:

Extending the implementation to OWL. Currently, our implementation
works with RDF(S) and SPARQL. Extending it to OWL would require to extend
SPARQL accordingly, and to allow Algorithm 1 to use multiple-triple axioms as
they often occur in OWL DL knowledge bases.

Interactivity. It might be the case that a change request cannot be un-
equivocally assigned to one single change pattern. As an example, the change
request to retract the fact that an individual is a PhD student might be due
to the fact that he got his PhD degree or he dropped out; either of the vari-
ants requiring different further ontology changes. While this alternative could
be easily accommodated by extending the update language, the ultimate choice
which change pattern to apply in a concrete case should be left to the person
uttering the change request. Therefore, also additional interactive control loops
would have to be introduced into the framework.

Combination with belief revision. Although we have argued that the
rationale of belief revision does not fit well with our purpose, there are certainly
cases where a combination of both is beneficial. Belief revision could be used as a
fall-back strategy if a change request would lead to an inconsistent ontology and
is not tackled by any of the update specification’s change patterns. Instead of
simply rejecting the change, belief revision techniques could be more appropriate.
In general, belief revision and other coping strategies could be incorporated into
the proposed formalism in a plugin-manner as additional actions next to adding
and deleting axioms.

Higher order constructs. Our proposal of an ontology update has a rather
operational flavor. While this arguably facilitates the employment and allows for
an efficient and straightforward implementation, a more declarative way of de-
scribing the possible domain changes would be more in the spirit of the current
ontology languages. Moreover a specification in OWL would abide by the ratio-
nale to reuse formalisms (just as the XML syntax is also used for XML Schema).
Hence it seems sensible to introduce a more abstract description layer for com-
plex changes, preferably in OWL. The underlying model for such a declarative
framework could be inspired by the usual ways of describing discrete dynamic
systems such as finite automata or petri nets. A simple example would be to
relate the two classes Child and Adult with each other with a property allowing
the transformation of instances of the one class to an instance of the other, e.g
Child disjointTransformationTo Adult. Note that in OWL2 such a property
is legal due to punning.

Learning Change Patterns. Clearly, the success of the proposed frame-
work depends on the quality of the update specification. While in certain domains

the development of such a specification might be straight forward (possibly be-
cause there are already informal documents describing the standard processes
and work flows) there might be scenarios where this is not the case. Under
those circumstances, frequent change patterns could be extracted from ontology
change logs by some machine learning techniques. Those findings could then be
presented to the knowledge engineer as suggestions for ontology update rules to
be incorporated into the specification.

An elaborate ontology update mechanism as presented here allows ontologies
to be updated in a more predictable and quality preserving way. Administrators
of ontology based system may choose to allow a wider audience to edit their
ontologies in a controlled manner, thus extending the collaborative aspect of
ontology maintenance.

References

1. F. Baader et al., editor. The Description Logic Handbook: Theory, Implementation
and Applications. Cambridge University Press, 2007.

2. T. Bray et al. Extensible markup language (xml) 1.0 (fifth edition). W3C Recom-
mendation, 26 Nov. 2008. Available at http://www.w3.org/TR/REC-xml/.

3. E. Carle. The Very Hungry Caterpillar. Philomel Books, 1969.
4. C. J. Date and H. Darwen. ISO/IEC 9075-2:2008 (SQL - Part 2: Foundations) ,

“The SQL Standard”, Third Edition (Addison-Wesley Publishing Company, 1993).
5. H. Katsuno and A. O. Mendelzon. On the difference between updating a knowledge

base and revising it. In P. Gärdenfors, editor, Belief Revision, pages 183–203.
Cambridge University Press, December 1992.

6. G. Konstantinidis et al. A formal approach for RDF/S ontology evolution. In
M. Ghallab et al., editor, Proc. ECAI’2008, pages 70–74. IOS Press, JUL 2008.

7. F. Manola and E. Milner. RDF Primer. W3C Recommendation, 10 Feb. 2004.
Available at http://www.w3.org/TR/REC-rdf-syntax/.

8. D. McGuinness and F. v. Harmelen. OWL Web Ontology Language Overview.
W3C Recommendation, 10 February 2004. Available at http://www.w3.org/TR/

owl-features/.
9. E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF.

W3C Recommendation, 15 Jan. 2008. Available at http://www.w3.org/TR/

rdf-sparql-query/.
10. G. Qi and F. Yang. A survey of revision approaches in description logics. In

D. Calvanese and G. Lausen, editors, Proc. RR2008, volume 5341 of LNCS, pages
74–88. Springer, 2008.

11. A. Seaborne et al. SPARQL Update. W3C Member Submission,
15 Jul. 2008. Available at http://www.w3.org/Submission/2008/

SUBM-SPARQL-Update-20080715/.
12. S. Staab and R. Studer, editors. Handbook on Ontologies. International Handbooks

on Information Systems. Springer, 2004.
13. L. Stojanovic. Methods and Tools for Ontology Evolution. PhD thesis, Universität

Karlsruhe (TH), 2004.
14. C. Tempich et al. Argumentation-based ontology engineering. IEEE Intelligent

Systems, 22(6):52–59, 2007.
15. T. Tudorache et al. Supporting collaborative ontology development in protégé. In

International Semantic Web Conference, pages 17–32, 2008.

