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What is captured in entity-
embeddings

learned from KGs?
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KG Embedding Approaches — Overview [Nic16] A“(IT

® Latent Feature Models
W Latent Translation Models
® Tensor Decomposition
® Multi Layer Perceptrons
® Latent Graphical Models
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® Approaches
® TransE ® HolE,
® TransH % ComplEx,
® TransR ® RDF2Vec
® Rescal a...
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Latent Distance Models — TransE — Model [Bor13] “(IT
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What is captured in entity-
embeddings
learned from a KG?

They capture abstract

relational context.

Is there other types of context
that could complement entity
embeddings?
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Other media (images, text documents) contain additional information:

Example Baseball:
® Visual — Shape, Color, Background

) “... 26th pitcher in baseball
® Textual — Co-occurrence Correlation history to have 40 games with

at least 10 strikeouts ...”

Yankee Batand

Stadium Ball games
WBS Con-
federation
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Baseball

® Knowledge Graph - Relational Knowledge



Karlsruhe In:

stitute of Technology

Is there other types of context
that could complement entity
embeddings?

Yes. Context from
the visual and

lingual modality.

How do we collect such
diverse content with a
common encoding?
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Visual Features Word Embeddings KG-Entity Embeddings

“... 26th pitcher in baseball
history to have 40 games with
at least 10 strikeouts ...”

Yankee
Stadium

Bat and
Ball games
WABS Con-
federation

Baseball

“It's not some shocking
baseball miracle.”
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Visual Embedding — Inception V3 [Rus15] A“(IT

® Deep Convolutional Neural Networks
® Optimized on object recognition

|
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® Abstract visual features \ \L
: J ] ]
Higher level layers correspond to more 7 S A —
abstract features " J \J |

Schematic Convolutional Net, abstracting
visual features
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Text Embedding — Word2Vec [Mik13]
® Words represented as vectors ot proecton outout
,King* > 020115 |03 | . (V2
w(t-1)
' w(t+1)
® Arithmetic operations \[
q w(t+2)

Skip-gram: Predicting
surrounding words

Adaptive Data Analytics Group

11 Steven Thoma, Achim Rettinger, Fabian Both
Towards Holistic Concept Representations: Embedding Relational Knowledge, Visual Attributes, and Distributional Word Semantics Institute AIFB



AT

Karlsruhe Institute of Technology

Visual Features Word Embeddings KG-Entity Embeddings

“... 26th pitcher in baseball
history to have 40 games with
at least 10 strikeouts ...”

Yankee
Stadium

Bat and
Ball games
WABS Con-
federation

Baseball

“It's not some shocking
baseball miracle.”

12 Steven Thoma, Achim Rettinger, Fabian Both Adaptive Data Analytics Group
Towards Holistic Concept Representations: Embedding Relational Knowledge, Visual Attributes, and Distributional Word Semantics Institute AIFB



Karlsruhe In:

stitute of Technology

How do we collect such
diverse content with a
common encoding?

Multiple Embeddings

How do we align the
embeddings across
modalities?
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Multiple Different Tri-modal Concatenated Concept Space
Represen- : :
tations for i i
“Baseball’
Visual Features Word Embeddings KG-Entity Embeddings
Inception—V3T Word2Vec T TTransE

“... 26th pitcher in baseball
history to have 40 games with
at least 10 strikeouts ...”

Bat and
Ball games
WBS Con-
federation

“It's not some shocking
baseball miracle.”
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Shared Concept Space A\‘(IT

Alignment of concepts from model space to shared space.

W Textual
® Direct matching to words in model

B KG (DBPedia)
® Get most probable URI (entity) for a given word

| Visual
® Use WordNet hierarchy to get from image categories (synsets) to words
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How do we align the
embeddings across

modalities?
Match them across

modalities

How do we identify
complementary
information?
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Shared Shared Cross-modal Concept Space ﬂ(IT

Karlsruhe Institute of Technology
Representation
for "Baseball’

Modality Fusion
(PCA, SVD, ...)

Multiple Different Tri-modal Concatenated Concept Space

Represen- : ;
tations for i i
‘Baseball’
WordNet Word KG-Entity
Mapping Matching Mapping
Visual Features Word Embeddings KG-Entity Embeddings
Inception—V3T Word2Vec T TTra nsk
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Baseball

“It's not some shocking
baseball miracle.” eee
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Fusion techniques

® Crucial: normalization and weighting before combination

Tri-modal Concatenated Concept Space

I |
11l =1 ! |1l = 1 ! Il =1
Wiisual Wiext Wka
® Shared Cross-modal Concept Space
® PCA, SVD, Autoencoder
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How do we identify ﬂ(“.

complementary
information?

Dimensionality

reduction techniques

How do we measure if
those embeddings are
more holistic in terms of
covered context?
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Empirical Analysis — Word Similarity

Examples for word similarity:

(sun, sunlight) = 50.0 (high similiartity)
(happy, kiss) = 26.0 (medium similarity)
(bakery, zebra) - 0.0 (low similiartity)

Datasets : MEN, WSS-353, SIMLEX-999, Mturk-771
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Empricial Analysis — Word Similarity — Rank Correlation A“(IT
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How do we measure if
those embeddings are
more holistic in terms of

covered context? Word similarity

assessed by humans

Is every modality
contributing
information?
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Empirical Analysis — Word Similarity — Influence of Modalities
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Is every modality
contributing
information?

How do the embedding
spaces differ?

Steven Thoma, Achim Rettinger, Fabian Both
Towards Holistic Concept Representations: Embedding Relational Knowledge, Visual Attributes, and Distributional Word Semantics

AT

Karlsruhe Institute of Technology

Adaptive Data Analytics Group
Institute AIFB



AT

Karlsruhe Institute of Technology

Empirical Analysis — Entity Segmentation

First two PCA components for various birds (blue) and land vehicles (red)
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How do the embedding
spaces differ?

Entity segmentation

Do knowledge graph
tasks benefit?

28 Steven Thoma, Achim Rettinger, Fabian Both Adaptive Data Analytics Group
Towards Holistic Concept Representations: Embedding Relational Knowledge, Visual Attributes, and Distributional Word Semantics Institute AIFB



Empirical Analysis — Entity-Type Prediction
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Empirical Analysis — Entity-Type Prediction

Hierarchic Construction (HC)
Constructing categorial embeddings from the multi-modal embeddings:

1
c; = NZ e;, Ve, iff (e, cj) exists

In each evaluation run: leave out the edges (e;, cj) which have to be predicted e.g. e;is left out for
building c, as this connection exists and has to be predicted.

Categories
e “ e }
30 Steven Thoma, Achim Rettinger, Fabian Both Adaptive Data Analytics Group

Towards Holistic Concept Representations: Embedding Relational Knowledge, Visual Attributes, and Distributional Word Semantics Institute AIFB



Empirical Analysis — Entity-Type Prediction ﬂ(“.
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What are the lessons

learned?

Visual common-sense knowledge
and distributional text semantics
complements entity embeddings.

Cross-modal concept
representations show a
significantly better performance on
various benchmarks.
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So, shouldn’t everyone
try cross-modal concept

embeddings?
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Future Challenges A\‘(IT

1.

stitute of Technology

How to scale to the size of KGs?

How to learn the most general-purpose entity representations? How to
represent them?

Which modalities and data sources should/can be exploited?

Can you transfer knowledge back to single-modal embeddings? | [Bot17]

Early-fusion techniques better?
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