
Cloud Service Orchestration with TOSCA, Chef and
Openstack

Gregory Katsaros
FZI Forschungszentrum Informatik

Berlin, Germany
Email: katsaros@fzi.de

Michael Menzel
FZI Forschungszentrum Informatik

Karlsruhe, Germany
Email: menzel@fzi.de

Alexander Lenk
FZI Forschungszentrum Informatik

Berlin, Germany
Email: lenk@fzi.de

Jannis Rake-Revelant
T-Labs (Research & Innovation)

Berlin, Germany
Email: jannis.rake-revelant@telekom.de

Ryan Skipp
T-Systems International GmbH

Bellville, South Africa
Email: ryan.skipp@t-systems.com

Jacob Eberhardt
Karlsruhe Institute of Technology

Karlsruhe, Germany
Email: jacob.eberhardt@student.kit.edu

Abstract—As the sector of SaaS is being evolved, the need of
portability and effective orchestration of Cloud-enabled applica-
tions over virtualised infrastructures is more apparent. In this
paper we present a proof-of-concept project which deals with the
deployment and orchestration of Cloud applications through the
1st published version of the TOSCA specification. In our work
we investigate the state of the art in the management of Cloud
applications and by combining technologies such as Opscode Chef
and Openstack we design and develop a framework that allows
the management of service topologies on Cloud infrastructures.
For the evaluation of the implemented system we orchestrate the
un-/deployment of a multi-tier Cloud application use case and in
the end we discuss the results and experiences of this activity.

Keywords—TOSCA, service orchestration, cloud applications,
Chef, Openstack

I. INTRODUCTION

Enterprise IT operators derive three main benefits from
the adoption of Cloud infrastructure technology: (a) instant
availability of Cloud services, (b) Cloud services can be
facilitated to gain elastic software behavior and billed per use
(metered resource usage), and (c) provision existing service
offerings from a market with multiple competing providers.

Cloud infrastructure services allow the operation of soft-
ware applications on virtual machines managed in public or
private Cloud environments. Virtualization technology is the
enabler of such functionality which facilitates the automated
creation of virtual machines and discloses remote interfaces
for virtual machine management. However, there are neces-
sary prerequisites for realizing the expected Cloud benefits.
Software applications often consist of multiple components,
thus, a Cloud service must allow deployments of a software
application over multiple virtual machines. Additionally, soft-
ware applications might be operated on virtual machines of
various Cloud providers. Furthermore, with growing workload
a Cloud service must allow to scale out components of an
application as needed. Virtual machines occupied in such a
setup can be part of a private Cloud or a public Cloud. Unlike
public Clouds, private Clouds are operated and maintained in
a companys own data centers. Setups with a mix of public and
private Cloud environments are referred to as hybrid Clouds.

A relocation of software applications between substitutable
services of competing Cloud providers is not unusual. Simi-
larly, distributing components of a software application across
multiple providers or a hybrid setup is not uncommon. When-
ever an application or parts of it need to be deployed over
multiple services or in multiple copies, a repetitive deployment
task occurs. Obviously, there is a need to be able to package
and transport applications and related parameters within or
across different Cloud environments. This portability charac-
teristic is an essential operational feature of the contemporary
Cloud applications. While movability and migration have been
already investigated in functional level [1][2][3], Cloud service
portability in a management level has been only recently
explored [4]. To this end, one very interesting activity that
brought together various important industrial partners as well
as people from academia, is the definition of a Topology and
Orchestration Specification for Cloud Applications (TOSCA)
[5]. This effort is supported by OASIS (Organization for
the Advancement of Structured Information Standards) and is
sponsored by important companies of the ICT sector such as
IBM, CA Tehnolgoies, Hewlett-Packard, Red Hat, SAP and
others.

A team led by T-Systems Telekom Innovation Laboratories,
and the FZI Research Center for Information Technology (FZI
1) carried out a proof of concept (PoC) project to investigate
the packaging and management of Cloud-enabled applications
and their parameters and constraints for deployment to var-
ious environments. The activities of this PoC included the
state-of-the-art analysis and the selection of the appropriate
technologies for carrying out the necessary tasks. In that
context, TOSCA has been the technological driver of the PoC
implementation as the first standard that has been developed
to support the orchestration of Cloud-enabled applications.

In the following section we introduce the state-of-the-art
in the field of Cloud application orchestration, and in section
III we describe the testbed environment and the fundamental,
to this PoC, technologies. In section IV we elaborate on the
service orchestration framework that we developed using the
TOSCA v1 specification, presenting in details all the phases

1http://www.fzi.de



of this activity, namely the TOSCA2Chef environment, the
modeling of the use case with TOSCA and the un-/deployment
process.Finally in section V we conclude and discuss the
findings of this PoC.

II. STATE-OF-THE-ART

Cloud orchestration, is the automation of tasks involved
with managing and coordinating complex Cloud-enabled soft-
ware and services. The goal of Cloud orchestration is to
automate the configuration, coordination and management of
software and software interactions in Cloud environments.
This task is sometimes complicated while it involves inter-
connecting processes running across heterogeneous systems in
multiple locations, usually with proprietary interfaces.

Lately there have been several initiatives and efforts so
much in research [6] [7] [8] [4] but also in industry [9][10]
dealing with Cloud application orchestration or tools and
specifications to describe service topologies. Most of them
are independent projects supported by only a part of industry
or academic organizations and they do not reach high level
of adoption. There are also others that receive the support
from bigger part of industry and they manage to become
official standards or be adopted by important companies of the
field. In the following paragraphs we will elaborate on some
selected technologies and solutions, namely CAMP, TOSCA,
CloudFormation and Heat.

A. CAMP

A first approach to enhance interoperability is to unify the
management interfaces across multiple cloud infrastructures,
which is what the standard introduced here aims at: Cloud
Application Management for Platforms (CAMP)[11] is a spec-
ification designed to ease management of applications across
platforms offered as a service (PaaS). This OASIS proposed
standard specifies a RESTful generic self-service application
and platform management API, which is language, framework,
and platform neutral. It is limited to PaaS offerings and aims
to enhance interoperability of the interfaces provided by such
platforms and with that PaaS adoption in general by reducing
vendor-lock in. Furthermore the specification facilitates the
creation of services interacting with complying platforms.

The specified CAMP API consists of a resource model
and a protocol to remotely manipulate these resources. The
resources contained in the model are divided into a Platform,
Assemblies, Platform Components and Application Compo-
nents. All resources listed, besides the platform, can exist in
an instantiated and in a deployed form (templates). A Platform
resource describes a PaaS offering as a whole. It references all
applications on the platform and allows discovery of Platform
Components. Platform Components (e.g. database service, web
server) are PaaS vendor provided and can be used by invoking
applications. An Application Component is an artifact (e.g.
source code, resources, metadata), which can make use of
other Application Components and depends on Platform Com-
ponents. As depicted in Figure 1, an Assembly is a resource
representing an application by referencing the components it
is composed of thereby allowing runtime management.

application_components[]
platform_components[]
...

Assemply

platform_components[]
...

Application 
Component

Platform Components Atributes
Platform Components Metrics
...

Platform Component

Assembly 
Application Component

Assembly 
Platform Component

Application Component
Platform Component

Key:
Association (URI)

Fig. 1: CAMP Ressource Relationships - Assemblies and
Components. Source: [11]

B. TOSCA

While CAMP offered only limited functionalities to deal
with the aspects of portability and orchestration, there is
one industrially-endorsed standardization effort in the area
of application topology specification that proposes a more
comprehensive approach. The Topology and Orchestration
Specification for Cloud Applications (TOSCA) [5] aims to
leverage portability of application layer services between var-
ious cloud environments. Software components and their rela-
tionships (topology model), as well as management procedures
to orchestrate operational behavior (e.g. deployment, patching,
shutdown), can be described in an interoperable way using
the specified XML-based language. As depicted in Figure 2,
TOSCA introduces Service Templates encapsulating a Topol-
ogy Template describing an applications topology model as
well as plans defining manageability behavior using process
models (e.g. BPEL, BPMN). This abstract description can be

Node 
Template

Relationship 
Template

Topology Template

Service Template

Node Types 

}{

InterfacesPr
op
er
tie
s

Node Type

Relationship Types 

Plans

}{

InterfacesPr
op
er
tie
s

Relationship Type

Fig. 2: Structural Elements of a Service Template and their
Relationships. Source: [5]



mapped to concrete infrastructure by cloud providers, which
enhances usability and hides complexity from the user of the
cloud application.

Regarding available tools, only recently (end of September
2013) were the first open source available software published
through the OpenTOSCA initiative [12][13]. Specifically a
modeling tool called Winery [14][15] was published, through
which one can define a Cloud application topology using a web
GUI, and a first version of the TOSCA container infrastructure
was also released.

It has to be noted though that development of this PoC as
well as the implementation of our complete software solution,
have been performed before the release of the OpenTOSCA
tool-set. Therefore, we had to design and implement our
own environments and software components which was at
that point only the first version of the TOSCA specification
documentation.

C. AWS CloudFormation

In contrast to the previous general specifications, Amazon
Webservices (AWS) CloudFormation [16] is an orchestration
approach proprietary to the Amazon Infrastructure. A JSON-
compliant template describes a set of related AWS resources
(EC2 or Elastic Load Balancer instances, S3 buckets) called
a stack. This stack can then be managed (created, updated
and deleted) as an entity. AWS CloudFormation is declarative,
which means the platform automatically resolves dependencies
and orchestrates the creation of the AWS resources declared in
the template and connects them afterwards. There is no need
to specify management processes (e.g. deployment processes).

D. HEAT

Openstack [17] is one of the most popular Cloud mid-
dleware software stacks, and thus they suggest their own
orchestration program: Heat [18], is the main project of the
OpenStack Orchestration program, enabling declarative infras-
tructure provisioning while being portable between OpenStack
Clouds. It provides a cross-compatible AWS CloudFormation
implementation for OpenStack and introduces an advanced
template language based on YAML (strict superset of JSON).

III. TESTBED AND FUNDAMENTAL TECHNOLOGIES

The end-to-end management of Cloud-enabled service
topologies using TOSCA demands a framework of components
that will allow the translation of a topology defined though
the TOSCA specification to the commands that will actually
realize the deployment of instances and software packages
to the Cloud. The testbed we used in our work was hosted
in the T-Labs Openstack Testbed, in an isolated network
partition. Existing Openstack [17] based infrastructure was
leveraged, using the Opscode Chef [19] platform to perform,
manage and automate virtual machine (VM) deployments and
the software packages installations over the infrastructure.
The management of both systems is achieved through the
Knife client. Therefore, our proposed solution combines the
technologies of Chef, Openstack and BPEL in order to evaluate
an end-to-end, realistic scenario. In the following paragraphs
we briefly introduce those technologies before proceeding to
the presentation of our TOSCA2Chef runtime environment.

A. OpenSTACK

For the infrastructure provisioning on the testbed, we relied
on OpenStack [17]. It is a free open source IaaS cloud
platform, which controls and manages compute, storage, and
network resources aggregated from multiple physical compute-
nodes. For flexible management, monitoring and on-demand
provisioning of resources, a web interface and APIs are
available. As described in [20], OpenStack consists of three
main projects: (a) OpenStack Compute, a scalable compute
provisioning engine, (b) OpenStack Object Storage, a fully
distributed object store, and (c) OpenStack Imaging Service,
an image registry and delivery service.

B. Opscode Chef

Configuration management was handled using Opscode
Chef [19]. It is an open source software, operating on a
client-server model, enabling to describe and manage system
configuration using a Ruby based domain-specific language
(DSL). Chef manages so called nodes, which can be physical
or virtual machines running a Chef client. This client performs
the automation tasks the specific node requires. The nodes
register at a server, which then provides recipes defining these
automation tasks and assigns roles. Cookbooks are used to
organize related recipes, which are basically Ruby scripts, and
supporting resources (e.g. installation files). Roles contain lists
of recipes, which are then executed by the Chef client upon
retrieval from the server, leading to the desired configura-
tion. Furthermore Chef provides a command line tool called
Knife, allowing to interact with the Chef server (e.g. install
Chef client, upload cookbooks). An extended Knife-Openstack
client provides the means to instantiate and configure VMs
with a single interface.

C. BPEL & ODE

For the definition of management plans contained in
TOSCA service templates, we choose the Business Process Ex-
ecution Language (BPEL). This XML-based language allows
orchestration of web services by defining executable business
processes as specified in the OASIS standard [21]. As a BPEL-
engine, allowing us to execute these plans, the open source
BPEL-engine Apache Orchestration Director Engine (ODE)
was used [22].

IV. TOSCA2CHEF SERVICE ORCHESTRATION
FRAMEWORK

In order to perform in an end-to-end fashion this PoC, and
considering the limited available resources and TOSCA related
tools during the period of development, in this project we had
to implement a functional TOSCA-enabled runtime environ-
ment, we had to design node hierarchies and relations to model
our use case and also define un-/deployment processes to put
the topology execution in an order. As it is presented in the
following subsections, the necessary developments of this PoC
were split and grouped into three tasks: (a) the development
of the TOSCA2Chef runtime environment, (b) the modeling of
the use case using TOSCA, and (c) the un-/deployment process
definition.



A. TOSCA2Chef runtime environment

The core entity of the proposed architecture is the
TOSCA2Chef runtime environment: a set of components and
services that parses a TOSCA document, extracts the infor-
mation regarding the described application and triggers the
necessary commands execution towards the Knife client.

The TOSCA2Chef execution environment incorporates two
basic operations: (a) the parsing of the TOSCA document in
order to perform the deployment of a given topology, and (b)
the execution of the deployment (or unemployment) TOSCA
plans. The TOSCA plans are defined as process models,
i.e. a workflow of one or more steps. TOSCA specification
relies on existing languages like BPMN or BPEL in order to
capture such plans. Therefore, in our experimentation, the plan
execution operation is realized using the Apache ODE BPEL
engine [REF]. On the other hand, the parsing of the TOSCA
document and execution of the necessary commands towards
the test-bed is being managed through the TOSCA Container
web service (Figure 3).

Telekom Cloud Testbed

Apache Tomcat

Apache ODE
Deployment Process

Start Event
Interrupting

Service Task

End Event
Interrupting

TOSCA 
Container 

Web Service

OpenStack Cloud Environment

Nova 
Compute 
Service

Opscode Chef Server

SOAP Message Flow

Start BPEL Editor
(Eclipse IDE)

WSDL

Cloud User

Full TOSCA 
Document

Knife 
OpenStack Instances

JAX-WS

Cookbooks

Recipes

Roles

TOSCA Plan 
in BPEL 
(XML)

Quantum 
Network 
Service

Fig. 3: High level architecture of the TOSCA2Chef execution
environment.

For the effective management of the TOSCA topology de-
scriptions we had to introduce certain interfaces facilitating the
file management and plan execution. The API that have been
designed and exposed by the respective service is presented in
Figure 4.

Telekom Cloud Testbed

Apache Tomcat

TOSCA Container 
Web ServiceWSDL Knife OpenStackJAX-WS

GetTOSCADocument

DeployNode

UndeployNode

PutTOSCADocumentTOSCA 
Document

TOSCA 
Document

Node ID

Node ID

OpenStack Cloud Environment

Nova 
Compute 
Service

Opscode Chef Server

Instances

Cookbooks

Recipes

Roles

Quantum 
Network 
Service

Fig. 4: TOSCA Conatiner API.

The implementation of the TOSCA container is required to
parse a TOSCA XML document that describes an application
topology. Furthermore, the web service acts as a processor
of (un-)deployment requests for TOSCA XML documents. To

transform a parsed TOSCA XML document into running VMs
in the testbed, an intermediary data model was required that
reflects a TOSCA topology in terms of Chef and Openstack.
The intermediary model builds the basis to deploy - or un-
deploy - VMs via the Knife-Openstack client. Given that
a TOSCA model derives from TOSCA XML document, a
transformation logic can derive an intermediary data model.

In order to enable the deployment of the described appli-
cation to a specific test-bed environment, an intermediary data
model (Figure 4) must include some domain specific entities
that are relevant with the technologies used in the Cloud
test-bed. To this end, our data model captures information
regarding the Openstack VM images and flavors as well as
the Chef recipes and roles. Figure 5 depicts the data model
that was introduced. It captures domain specific infrastructure
and topology data, consisting of a Node with a Flavor, Image,
Attributes and a Runlist of Recipes and Roles. The extension
of the developed system to support different IaaS providers
(e.g. AWS) would require the introduction of a different data
model that could capture the new, domain-specific attributes
(e.g. AMIs). In addition, we would have to adapt the TOSCA
parsing code in order to fill the new data model in its
transformations. Also, the plan execution operation must be
adapted to be able to base its execution logic on the new model.

Fig. 5: Intermediate, domain specific data model.

Since no tools were available for parsing a TOSCA doc-
ument (at the moment of the PoC implementation), a library
for the XPath XML query language was employed to replace
a missing TOSCA model. Information from a TOSCA XML
file is extracted with a set of XPath queries and stored into
an Openstack- and Chef-compatible intermediary data model.
An execution engine based on the intermediary data model
orchestrates the deployments.

B. Modeling the use case with TOSCA

For the realization of this proof of concept project a specific
multi-tier application service topology had do be designed as



the use case through which we would evaluate the related tech-
nologies. The selected application is a basic 3-tier web appli-
cation, comprising a Load Balancer component implemented
through HAProxy open source software package [23] and
two application servers implemented through Apache Tomcat
[24], hosting a Demo Web Application for demonstrating the
operation. On the data layer we introduced a database server
through a MySQL implementation that keeps some dummy
data for the demonstration. The graphical representation of the
topology is presented in Figure 6.

DemoWeb 
Application 

Application 
Server 

Application 
Server 

DemoWebAp
plication 

Database Server 
Load Balancer 

Fig. 6: The selected 3-tier web application use case.

For the description of the use case topology following
the TOSCA specification, a series of NodeTypes, Relation-
shipTypes and ArtifactTypes have been defined in order to
capture all the entities of the application and their interrelation.
While those types are actually re-usable definitions, they
could populate a pool of resources that could be used by
application developers for other service topology descriptions.
The NodeTypes definitions of the use case application are
presented in Figure 7.

Node 
Types 

Virtual 
Machine OS 

Database Web 
Server 

Open 
Stack 
VM 

Linux 

Ubuntu 
12.04 SQL 

MySQL 
Server 

Load 
Balancer 

Apache 
Tomcat 
Server 

HAProxy m1.small 
flavor 

Software 

DemoWeb 
App 

Fig. 7: Nodetypes definitions.

The TOSCA specification supports an inheritance func-
tionality (DerivedFrom tag), which allows us to design our
application and define several layers and types. In that context,
we distinguish the nodes into three basic categories: Software,
Operating System (OS) and Virtual Machine. Furthermore,

we define additional abstractions for each category such as
Database, SQL or Linux etc., allowing the definition of generic
interfaces and operations. The dark green NodeTypes (Figure
7) are the final types that are also implemented (through
a NodeTypeImplementation element) and compose our use
case application deployment. Every NodeTypeImplementation
declares a DeploymentArtifact, which is the one that actually
includes the scripts (in our case Chef Roles and Recipe
names) in order for the node to be instantiated during the
deployment. In Figure 8 we visually present the definitions
of the NodeTypeImplementations and DeploymentArtifacts for
our use case application.

Node 
Type 
Impl 

MySQL 
Server 
Impl 

Apache 
Tomcat 
Server 
Impl 

HAProxy
Impl 

DemoWeb 
App 

Haproxyinstallation 
artifact 

DeploymentArtifact 
Mysqlinstallation 

artifact 

DeploymentArtifact 
Demowebappdeploy 

artifact 

DeploymentArtifact 
Apachetomcat 

installation 
artifact 

DeploymentArtifact 

Fig. 8: NodeTypeImplementation diagram and
Deploymentartifact definitions.

The following part of example XML code describes the
implementation for the NodeType HAProxy. We use the Re-
quiredContainerFeature functionality in order to define the
environment in which this implementation is valid, in our
case the Openstack and Chef testbed. In addition, we define a
DeploymentArtifact with the reference haproxyinstallationtem-
plate which includes the implementation scripts or commands.
As can been seen in the following lines of code, the artifact
include the declarations of the roles and/or recipes that are
necessary for the Chef bootstrapping of that very node.

<NodeTypeImplementation name="HAProxyImpl"
nodeType="HAProxy">

<RequiredContainerFeatures>
<RequiredContainerFeature
feature="http://telekom.de/openstackCloud/" />
<RequiredContainerFeature
feature="http://telekom.de/opscodechef/" />

</RequiredContainerFeatures>
<DeploymentArtifacts>

<DeploymentArtifact name="haproxyinstallationartifact"
artifactType="chefinstallation"
artifactRef="haproxyinstallationtemplate" />
<DeploymentArtifact name="haproxyconfigartifact"
artifactRef="haproxyconfigtemplate"
artifactType="chefconfig" />

</DeploymentArtifacts>
</NodeTypeImplementation>

<ArtifactTemplate id="haproxyinstallationtemplate"
type="haproxyinstallation\">

<Properties>
<roles>

<chef:role name="haproxy" />
</roles>
<recipes>

<chef:recipe name="apt" />
</recipes>

</Properties>
</ArtifactTemplate>



A functional topology was defined, capturing the relation-
ships between the nodes as well as the multiple instances
of some NodeTypes. In Figure 9 we can see the Topology
Template of the use case application depicting the software
components (HAProxy, Apache Tomcat and MySQL server)
to be hosted on an Operating System that is hosted on an
Openstack Virtual Machine instance. The DemoWebApplica-
tion that we used to demonstrate the operation is hosted on an
Apache Server.

Ubuntu 
12.04 

MySQL 
Server HAProxy 

m1.small 
flavor 

co
mmun

ica
tio

n 

communication 

Topology Template 

Ubuntu 
12.04 

m1.small 
flavor 

HostedOn 

HostedOn 

HostedOn HostedOn 

HostedOn 

DemoW
ebApp 

Ubuntu 
12.04 

m1.small 
flavor 

HostedOn 

Ubuntu 
12.04 

m1.small 
flavor 

DemoWeb
App 

Apache 
Tomcat Apache 

Tomcat 

HostedOn 

Fig. 9: Use case Service Topology design.

In the use case application the HAProxy component is bal-
ancing the load between the two DemoWebApp deployments,
which in their turn communicate with the MySQL server to
retrieve the relevant data. Based on the general HostedOn and
Communication relationships, we have defined specific ones
in order to capture the relation of each component with each
other and define specific parameters for the realization of the
topology. In Figure 10 we present all the relationship types and
their hierarchy. In the same way that nodes are instantiated
(through artifacts), the relationships can also be configured.
In that context, Implementation Artifacts can be defined to
capture certain parameters of a relationship between two nodes.

C. Use case un-/deployment process

After the long lasting state-of-the-art analysis, design
phase, and development of the orchestration framework, this
PoC project dealt with the evaluation of the implemented
use case scenario. During that phase two business processes
were defined within the TOSCA document, responsible for the
deployment and un-deployment actions. The processes were
defined in BPEL XML notation within the plans section of
the TOSCA document. Both BPEL processes could only be
modeled with the knowledge of the TOSCA2Chef web service
interfaces. Either BPEL process interacts with the web service
to deploy or un-deploy nodes from the use case application
topology. In Figure 11 we present the graphical representation
of the deployment process for our use case application. The
un-deployment process looks exactly the same but it invokes

Relatio
nship 
Type 

Commu
nication 

Hosted
On 

OS 
HosteOn 

VM 

Software 
HosteOn 

OS 

Ubuntu1
2.04 

HosteOn 
M1.small 

ApacheTo
mcat 

HosteOn 
Ubuntu12.

04 

MySQL 
HosteOn 
Ubuntu1

2.04 

DemoWeb
App 

HosteOn 
ApacheTo

mcat 

HAProxyC
ommunica
teApache
Tomcat 

DemoWeb
AppComm
unicateMy

SQL 

HAProxy 
HosteOn 

Ubuntu12.
04 

Fig. 10: Relationship types definitions.

the un-deployment service endpoints to trigger the respective
instances and nodes deletion.

Fig. 11: Deploy BPEL process.

Over this evaluation phase a web-based graphical user
interface (GUI) has been developed to make the TOSCA2Chef
web service interfaces accessible to a test user (Figure 12). The
GUI was implemented as a web page that enables uploading
TOSCA XML documents and executes the related deployment
and un-deployment BPEL processes. The upper section pro-



vides an upload feature for TOSCA XML files. The bottom
section displays a list of available, already uploaded files and
gives means to trigger the deployment and un-deployment
process via a button.

The server-side of the web GUI was developed with Java
Servlets on a Apache Tomcat server. From the servlets the web
service interfaces of the TOSCA2Chef web service are called
to put or get TOSCA documents. For the BPEL processes
the web service interface of the Apache ODE is called to
instantiate a deployment (or un-deployment) process. From
the BPEL processes, again, the TOSCA2Chef web service
interfaces are called to orchestrate the topology deployment.

The overall deployment and un-deployment
processes of the use case through the TOSCA2Chef
components that were developed in this PoC,
are demonstrated in the publicly available video:
http://www.youtube.com/watch?v=VaPADNi2IAM.

Fig. 12: Evaluation GUI.

Experiments with the prototype give insights regarding
the quality of the solution. To conduct the experiments we
used a testbed operated by Telekom Laboratories. Within
the testbed hardware resources were transparently managed
with an OpenStack installation. Additionally, an Opscode Chef
Server instance has been put in place to act as a configuration
manager of machines within a topology. The OpenStack en-
vironment and its endpoints together with the Opscode Chef
server make up the testbed.

On the testbed run 2 components: (1) an Apache ODE
server able to execute BPEL processes, and (2) an Apache
Tomcat application server serving the TOSCA2Chef web
service, Java servlets and static web content. The Apache
ODE server is prepared with 2 BPEL processes to trigger
deployment and undeployment of the topology described in
the use case. The BPEL processes execute web service calls
to the Tomcat application server that each trigger the un-
/deployment of one of the topology’s components. The web
service itself executes OpenStack Knife plug-in with a range of
parameters on a system level (i.e., Linux shell scripts). A call
to the web service is synchronous and a response is sent after
a virtual machine instance has been initiated and all software
configuration tasks (managed by Opscode Chef) have finished.
This blocking behavior is necessary to guarantee a successfully

finished deployment but also needed several timeout settings
of the Tomcat and ODE server to be touched. Aside from the
web service a small web front-end is deployed on the Tomcat
server. The front-end gives means to upload a new TOSCA
document and trigger the deployment or un-deployment of an
already uploaded TOSCA document.

We have measured the deployment time of 10 deployment
runs to calculate an average deployment time for the use case
topology. In each test run a deployment of the whole use
case topology has been triggered via the BPEL deployment
process. The process (see Figure 11) first deploys a MySQL
component, then two Tomcat components in parallel, and
finally a HAProxy component. The average of 10 successful
use case deployment runs is 17 minutes 25 seconds.

The time is an aggregation of the single component
deployments, except for the two Tomcat servers which are
deployed in parallel. A sequential deployment is necessary to
guarantee that Opscode Chef scripts (”recipes”) can be applied
correctly. Particularly, when a configuration recipe’s goal is
to connect available components. The script will fail if one
of the components is not available. Hence, an orchestrating
deployment, such as the BPEL processes, and a blocking
execution of the deployment tasks is unavoidable.

In contrast, if a configuration management software was
able to execute inter-component tasks in a later sequence
after the initial configuration has been applied over the whole
topology, the deployment part can be parallelized. Our exper-
iments and time measurements show that the major effort is
due to software installations. A parallelization of the software
installation phase and a later configuration phase would show
a tremendous decrease in total deployment time.

V. SUMMARY AND CONCLUSIONS

The capability of application packaging in Clouds which
enables the re-usability and portability of them, is an important
precondition to truly realize the often-expressed benefits of
virtualized Cloud services. This requires that certain well-
defined standards exist, and are generally adopted by the
industry. In addition, common deployment processes need to
be established as part of an overall Service Orchestration.

Service Orchestration has to address a number of dimen-
sions including: (a) Commercial orchestration (contract and
financial aspects and pre-requirements), (b) Technical Service
Orchestration (actual system deployments), (c) Service Or-
chestration (configuration of systems according to SLAs with
support teams invocation, reporting etc.), and (d) Consumer
interface management (updating status etc. in the Portal UI
GUI, and via the API).

Previous PoC projects [25][26] have proven that the above
dimensions can be orchestrated up to the VM level (and in
some cases even the Operating System level), based on the
industry adoption of standards such as the DMTFs OVF. The
capability for Service Orchestration at the PaaS and SaaS
levels, leveraging industry standard frameworks and templates
is still extremely limited. In our proof-of-concept activity we
tried to investigate the next layers up into the Application
stack - to support PaaS and SaaS by exploiting the industrially-
endorsed TOSCA standard in a realistic use case deployment
scenario.



A. PoC findings

During the development of this PoC we gained valuable
experience related with service orchestration approaches using
TOSCA. Those findings can be summarized in the following
points:

• TOSCA Specification v1.0 introduces a new set of
entities and concepts used in the definition of service
topologies. For the Cloud service specification the
exact types and hierarchies of types must be defined.

• Without a realistic pool or library of
resources/TOSCA-types for the nodes, relationships
and artifacts the overhead for the application
development is relatively big: TOSCA specification
in the current form and with the current available
resources is abstract and therefore deriving
the required Cloud resources and configuration
management actions becomes a challenging task.

• A domain specific extension to TOSCA helps to define
details needed to derive a system configuration. This
can be achieved through the introduction of data
model, related with current Cloud deployment archi-
tectures and supported by several pre-defined TOSCA
Node and Relationship Types.

• The functionality and concepts for the support of mul-
tiple NodeType implementations in the same topology
description and the effective, automated orchestration
of such use case is under-specified. With the current
specification multiple NodeTypeImplementations can
be introduced, but the selection logic lies ultimately
on the parser / orchestrator component.

• There are no typical models or recommended ways yet
to apply an actual deployment process by means of
Plans. The part of service orchestration with TOSCA
that is related with the plans execution is not satisfac-
tory documented.

• There is no official TOSCA Container implementation
available that supports the execution of Plans, and little
documentation describing communication between a
BPMS executing a Plan, and the container. No sug-
gested API is available, thus the implementation of
such component is highly related with the domain of
the application or the underlying infrastructure (e.g. in
our PoC Openstack and Chef).

Overall we could comment that the TOSCA specification
is an important initiative that is dealing in a holistic way with
Cloud application portability and orchestration. The v1 of the
published specification is not mature enough to be directly
adopted and integrated in a realistic development environment.
The TOSCA Technical Committee is currently working on the
second version of the specification which, after having some
insight in it, is going to solve many of the inefficiencies of the
first version.

REFERENCES

[1] F. Leymann, C. Fehling, R. Mietzner, A. Nowak, and S. Dustdar,
“Moving applications to the cloud: an approach based on application
model enrichment,” Int. J. Cooperative Inf. Syst., 2011.

[2] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch, “How to adapt
applications for the cloud environment - challenges and solutions in
migrating applications to the cloud,” Computing, 2013.

[3] S. Strauch, V. Andrikopoulos, T. Bachmann, and F. Leymann, “Migrat-
ing application data to the cloud using cloud data patterns,” in CLOSER,
2013.

[4] T. Binz, G. Breiter, F. Leymann, and T. Spatzier, “Portable cloud
services using tosca,” IEEE Internet Computing, 2012.

[5] O. T. TC. (2012, Nov.) Topology and orchestration specification
for cloud applications version 1.0. [Online]. Available: http://docs.
oasis-open.org/tosca/TOSCA/v1.0/csprd01/TOSCA-v1.0-csprd01.pdf

[6] A.-F. Antonescu, P. Robinson, and T. Braun, “Dynamic topology or-
chestration for distributed cloud-based applications,” in Network Cloud
Computing and Applications (NCCA), 2012 Second Symposium on,
2012, pp. 116–123.

[7] G. Juve and E. Deelman, “Automating application deployment in
infrastructure clouds,” in Cloud Computing Technology and Science
(CloudCom), 2011 IEEE Third International Conference on, 2011, pp.
658–665.

[8] C. Liu, J. E. V. D. Merwe, and et al., “Cloud resource orchestration:
A data-centric approach,” in in Proceedings of the biennial Conference
on Innovative Data Systems Research (CIDR), 2011.

[9] IBM. (2013) Smartcloud orchestrator. [Online]. Available: http:
//www-03.ibm.com/software/products/us/en/smartcloud-orchestrator/

[10] IDC, IBM, Orchestration Simplifies and Streamlines Virtual and Cloud
Data Center Management, 2013.

[11] O. C. T. Members. (2012, Aug.) Cloud application management for
platforms, version 1.0. [Online]. Available: https://www.oasis-open.
org/committees/download.php/47278/CAMP-v1.0.pdf

[12] OpenTOSCA. (2013) Opentosca initiative. [Online]. Available: http:
//www.iaas.uni-stuttgart.de/OpenTOSCA/

[13] OpenTOSCA. (2013) Opentosca ecosystem. [Online]. Available:
http://files.opentosca.de/v1/

[14] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann, “Winery - A
Modeling Tool for TOSCA-based Cloud Applications,” in Proceedings
of 11th International Conference on Service-Oriented Computing (IC-
SOC’13), Dezember 2013.

[15] OpenTOSCA. (2013) Winery tool. [Online]. Available: http://http:
//winery.opentosca.org/

[16] I. Amazon Web Services. (2013, Oct.) Aws cloudformation
documentation. [Online]. Available: http://aws.amazon.com/en/
documentation/cloudformation/

[17] OpenStack. (2013, Oct.) OpenStack Documentation. [Online].
Available: http://docs.openstack.org/

[18] OpenStack. (2013, Oct) Heat - OpenStack Orchestration. [Online].
Available: https://wiki.openstack.org/wiki/Heat

[19] OpsCode Inc. (2013, Oct.) Chef documentation - overview. [Online].
Available: http://docs.opscode.com/chef overview.html

[20] OpenStack. (2013, Oct.) OpenStack Overview. [Online]. Available:
http://www.openstack.org/downloads/openstack-overview-datasheet.pdf

[21] WSBPEL TC. (2013, Oct.) Web services business process execution
language version 2.0. [Online]. Available: http://docs.oasis-open.org/
wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

[22] Apache Foundation. (2013, Oct.) Apache ode. [Online]. Available:
http://ode.apache.org/

[23] HAProxy. (2013, Sep.) Haproxy tcp/http load balancer. [Online].
Available: http://haproxy.1wt.eu/

[24] The Apache Software Foundation. Apache tomcat 7.
http://tomcat.apache.org/. Accessed September 27, 2013.

[25] Open Data Center Alliance. (2012) Virtual machine (vm)
interoperability in a hybrid cloud environment rev. 1.1.
[Online]. Available: http://www.opendatacenteralliance.org/docs/VM
Interoperability Rev 1.1 b.pdf

[26] Open Data Center Alliance. (2013) Implementing the open data
center alliance virtual machine interoperability usage model.
[Online]. Available: http://www.opendatacenteralliance.org/docs/VM
Interop PoC White Paper.pdf


