Q2Semantic: A Lightweight Keyword Interface
to Semantic Search

Haofen Wang!, Kang Zhang!, Qiaoling Liu!, Thanh Tran?, and Yong Yu!

! Department of Computer Science & Engineering
Shanghai Jiao Tong University, Shanghai, 200240, China
{whfcarter, jobo,1ql,yyu}@apex.sjtu.edu.cn
2 Institute AIFB, Universitit Karlsruhe, Germany
{dtr}@aifb.uni-karlsruhe.de

Abstract. The increasing amount of data on the Semantic Web offers
opportunities for semantic search. However, formal query hinders the
casual users in expressing their information need as they might be not
familiar with the query’s syntax or the underlying ontology. Because key-
word interfaces are easier to handle for casual users, many approaches
aim to translate keywords to formal queries. However, these approaches
yet feature only very basic query ranking and do not scale to large repos-
itories. We tackle the scalability problem by proposing a novel clustered-
graph structure that corresponds to only a summary of the original on-
tology. The so reduced data space is then used in the exploration for
the computation of top-k queries. Additionally, we adopt several mech-
anisms for query ranking, which can consider many factors such as the
query length, the relevance of ontology elements w.r.t. the query and the
importance of ontology elements. The experimental results performed
against our implemented system Q2Semantic show that we achieve good
performance on many datasets of different sizes.

1 Introduction

The Semantic Web can be seen as an ever growing web of structured and in-
terlinked data. Examples for large repositories of such data available in RDF
are DBpedia!, TAP? and DBLP?3. A snippet of RDF data contained in TAP
is shown in Fig. 1. It describes the entity SVGMobile (a W3CSpecification) in
terms of its relations to the other entities and its attribute values.

The increasing availability of this semantic data offers opportunities for se-
mantic search engines, which can support more expressive queries that address
complex information needs [1]. However, query interfaces in current semantic
search engines [2,3] only support formal queries e.g. SPARQL*. For example,
when a person wants to find specifications about “SVG” whose author’s name

! http://dbpedia.org

2 http://tap.stanford.edu

% http://dblp.uni-trier.de/

* http:// www.w3.org/ TR /rdf-sparql-query

<rdf:Description rdf:about="SVGMobile"> PREFIX tap: <http://tap.stanford.edu/tap#>
<rdf:type> W3CSpecification</rdf:type> SELECT ?spec

<tap:hasAuthor rdf:resource="Capin,_Tolga"/> WHERE {

. ?spec tap:hasAuthor ?person.
<rdfs:label xml:lang="en">Mobile SVG spec tap:label “SVG?.
Profiles: SVG Tiny and SVG Basic</rdfs:label> 2person tap:name “Capin”.

</rdf:Description> }

Fig. 1. a) Sample RDF snippet. b) Sample SPARQL query.

is “Capin”, he needs to type in the SPARQL query shown in Fig.1. The user
thus needs to learn the complex syntax of the formal query. Moreover, the user
also needs to know the underlying schema and the literals expressed in the RDF
data.

Keyword interfaces is one solution to this problem. User’s are very famil-
iar with these interfaces due to their widespread usage. Compared with formal
queries, keyword queries have the following advantages: (1) Simple Syntaz: they
are simply lists of keyword phrases (2) Open Vocabularies: the users can use
their own words when expressing their information needs. In the above example,
the user would have to type in only “Capin” and “SVG”.

Since keyword interfaces seem to be suitable for casual users, many studies
have been carried out to bridge the gap between keyword queries and formal
queries, notably in the information retrieval and database communities [4-7].
There also exist approaches that specifically deal with keywords interfaces for
semantic search engines. The template-based approach discussed in [8] fixes the
possible interpretations and thus, cannot always capture the meaning intended
by the users. This problem has been tackled recently by [9,10]. In [10], a more
generic graph-based approach has been proposed to explore the connections be-
tween nodes that correspond to keywords in the query. This way, all interpreta-
tions that can be derived from the underlying RDF graph can be computed.

However, three main challenges still remain: (1) How to deal with keyword
phrases which are expressed in the user’s own words which do not appear in the
RDF data? (2) How to find the relevant query when keywords are ambiguous
(ranking)? For instance, [10] exploits only the query length for ranking. (3)
How to return the relevant queries as quickly as possible (scalability)? Both [9,
10] require the exploration of a possibly large amount of RDF data, and thus,
cannot efficiently deal with large repositories.

In this paper, we address the above challenges as follows:

— (1) We leverage terms extracted from Wikipedia to enrich literals described
in the original RDF data. This way, users need not use keywords that exactly
match the RDF data.

— (2) We adopt several mechanisms for query ranking, which can consider
many relevant factors such as the query length, the relevance of ontology
elements w.r.t. the query as well as the importance of ontology elements.

— (3) We propose an exploration algorithm and a novel graph data structure
called clustered graph, which represents only a summary of the original RDF

Q2Semantic
ApenLab.org

Capin
.

/
Results List Selected Query Graph ,-/ Formal Query & Explanation
\ ——
\ i, —_————
homePag]

W3tRars

Standard
slnitiativ

hasautt
ar

Fig. 2. The result view of Q2Semantic.

data. This improves scalability particularly because the data space relevant
for exploration becomes smaller in size. Additionally, the exploration algo-
rithm also allows for the construction of the top-k queries, which can help
to terminate the interpretation process more quickly.

Also, we have implemented a keyword interface called Q2Semantic to evaluate
our approach. The experiments performed on several large datasets show that
our solution achieves high effectiveness and efficiency.

The rest of the paper is organized as follows. We will start in section 2 with
an overview of Q2Semantic. Section 3 shows how the underlying data models
are preprocessed. Section 4 elaborates on how these models are used in the main
steps involved in the translation process. Section 5 presents several mechanisms
for query ranking. The experimental results are given in section 6. Section 7
contains information on related work. Finally, we conclude the paper with dis-
cussions of current limitations and future work in section 8.

2 Q2Semantic

2.1 Feature Overview of Q2Semantic

Q2Semantic is equipped with a keywords-based search interface. In order to fa-
cilitate usage, this interface supports auto-completion. This feature exploits the
underlying RDF literals enriched with Wiki terms to assist the user in typing
keywords. This is extended to “phrase completion” such that when the first key-
word has been entered, Q2Semantic will automatically generate a list of phrases
containing these keywords from which the user can choose from.

After submitting the keyword query, the user sees the results as shown in the
screenshot of our AJAX interface in Fig. 2 (corresponds to our example query
“Capin” and “SVG”). On the left, the query results are listed in an ascending

Search Process
Ranking & Top-k

Keyword Query o = s === Formal Query
Phrase Mapping Query Construction
|
Inverted Index Graph Index
\ Aclem:q
Clustered RACK Graph
T Clustering
Mapping 5
RDF Graph : RACK Graph

Index Process

Fig. 3. Workflow of Q2Semantic.

order according to the ranking scores of their corresponding queries. For the
selected result, the corresponding formal query and its natural language expla-
nation are presented on the right. In the middle, the data space that is explored
to compute the queries is visualized for the user to understand and explore the
queries. For the selected query, the relevant path in this data space is highlighted
(in yellow and green). The user explores the data by double clicking on a node
to see (further) neighbors. These and other features such as query refinement
can be tested at http://q2semantic.apexlab.org/ULhtml.

2.2 Query Translation in Q2Semantic

Q2Semantic supports the translation of keyword queries to formal queries. In
particular, a keyword query K is composed of keyword phrases {ki, ko, -,k }.
Each phrase k; has correspondence (i.e. can be mapped) to literals contained
in the underlying RDF graph. A formal query F can be represented as a tree
of the form (r,{p1,pa, -, pn}), where r is the root node of F and p; is a path
in F', which starts from r and ends at leaf nodes that correspond to k;. The
root node of F' represents the target variable of the query. So basically, we
restrict our definition of formal queries to a particular type of tree-shaped con-
junctive queries [11] where the leaf nodes correspond to keywords entered by
the user. In our example, K includes k; = “Capin” and ky = “SVG”, and
F = (r,{p1,p2}), where r = W3CSpecification, p; = (z1,label, SVG) and po
= (x1, hasAuthor, 2, name, Capin). Since SPARQL is essentially, conjunctive
query plus additional features, our formal query can be directly rewritten as
triple patterns to obtain a SPARQL query like the one presented in section 1.
The translation process is illustrated in Fig. 3, which includes two main
steps: (1) Phrase Mapping: Retrieve terms stored in an inverted index using
the keyword phrases entered by the user (2) Query Construction and Ranking:
Search the clustered graph to construct potential formal queries and assign costs
to them. Meanwhile, top-k queries are returned based on the costs. Note that
these online activities are performed on the inverted and the graph index. There
is more pre-processing required to build these two data structures, including
mapping, clustering and indexing. We will continue with a detailed elaboration

W3CSpecification

Label WacCspecification ,+* " "
““““ B SVG Tiny and SVG Basic O el iabe) =
has Author has Author L L
Person Person & Name H
— g
8. 2 p- Tolga Capin O > [name
RDF Graph Graph Index InVeried Indax + » » » »
Step 1. il
i Step 3. Wiki
l Mapping I.ndep;r.ing t Enrichment A-Edge
Person Person;1.08 W3CSpecification;1.99

Person \W3CSpecification O Persan

Q< Q@ R-Edge
p Name s O has author; 1.95 O
AL " J‘\'th_ﬂl B Nane. Label;1.99 hame;1.99
5 Name * El ’ & . 4 C-Node

Robert Sutor 4 Step 2 ; = i
i . 2 Tolga Capin, |_|
Tolga Capin i el _Rn:ham’ Cohn Clusgarmg Rogerr ngr, SVG Tiny and SVG Basic:2,0 od
iny a asic Richard Cohn:2.0 Kchode
RACK Graph Clusterad RACK Graph

Fig. 4. Index process.

on these pre-processing steps and then, discuss the online activities required to
translate the keywords.

3 Data Pre-Processing in Q2Semantic

3.1 Graph Construction via Mapping and Clustering

Graph exploration as done in other approaches is expensive due to the large size
of the A-Box (RDF graph) [9,10]. As observed in [12], similar instances always
share similar attributes and relations. Adopting this idea, we propose a clustered
RACK graph which corresponds to a summary of the original RDF graph. This
reduction in size enables faster query construction and ranking especially for
RDF graph containing a large number of instances. In the following, we will
describe our notion of RACK graph and the rules for clustering.

A RACK graph consists of the four elements R-Edge, A-Edge, C-Node and
K-Node, obtained from the original RDF graph through the following mappings:

— Every instance of the RDF graph is mapped to a C-Node labelled by the
concept name that the instance belongs to.

— Every attribute value is mapped to a K-Node labelled by the value literal.

— Every relation is mapped to a R-Fdge that is labelled by the relation name
and connects two C-Nodes.

— Every attribute is mapped to an A-Edge that is labelled by the attribute
name and connects a C-Node with a K-Node.

As shown in Fig. 4, the mapping process results in a RACK graph. Note
that each instance is mapped to the most special concepts if it belongs to mul-
tiple concepts. We also do not consider any axioms (e.g. subsumption between

concepts) in the RACK graph as it does not support reasoning capability for
query interpretation. A clustered RACK graph can be further obtained by the
iterative application of the following four rules.

— Two C-Nodes are clustered to one if they have the same label.

Two R-Edges are clustered to one if they have the same label and connect
the same pair of C-Nodes.

— Two A-Edges are clustered to one if they have the same label and is con-
nected to the same C-Node.

Two K-Nodes are clustered to one if they are connected to the same A-Edge.
The resulting node inherits the labels of both these K-Nodes.

For each clustered node, we track and store the number of original nodes
that collapsed to it during the clustering. Also, for each clustered edge, we store
the number of node pairs that were connected by the original edges collapsed to
it. These numbers stored in nodes and edges are used to compute their costs on
the basis of cost functions discussed in section 5. The costs are shown in Fig. 4.
They will be used later in the construction and ranking of the query.

3.2 Clustered Graph Indexing

The clustered RACK graph computed in the previous step can be stored in a
graph index as discussed in [13]. In our current experiments, we directly load
the clustered RACK graph model into the memory for fast query construction
since it is very small. However, the graph index will be used when the clustered
graph is too big to be loaded into memory.

3.3 Phrase Indexing

We make use of an inverted index to store the labels of K-Nodes. This index is
used to locate relevant K-Nodes for a given keyword phrase faster. In particular,
we create a document for each K-Node and take its labels as the document
content. This document is further enriched with terms extracted from Wikipedia.

This enrichment is performed to support keywords that are expressed in the
user’s own words that do not match the literals of RDF data. In fact, we adopt
the idea in [14] to leverage Wikipedia. Namely, for each K-Node label, we search
the Wikipedia database to see whether it matches the title of any article. If
so, several semantic features of the article as introduced in [15] are added as
additional labels of the K-Node. These features include the title, the anchor
texts that link to the article, and the titles of other articles that redirect to the
article. Therefore, user keywords might be mapped to the actual labels of the
K-Nodes or any of these extracted features added to the K-Nodes.

4 Query Interpretation in Q2Semantic

The query interpretation begins with the mapping of user keywords to the la-
bels of K-Nodes in the inverted index. Starting from the matched K-Nodes, an

exploration on the clustered graph is performed, which is similar to the single-
level search algorithm discussed in [16]. It expands the current nodes to their
neighbors iteratively until reaching a common root. In this process, the edge
with the lowest cost is selected for traversal. The process terminates until the
top-k queries have been found. In the following subsections, we will describe
these steps in detail.

4.1 Phrase Mapping

Each keyword phrase k; in K entered by the user is submitted as a query to the
index, resulting in hits that represent the matching K-Nodes. They are returned
in a ranked list as K L; = {k-node;1, k-node;a, - - - , k-node;n,, }, associated by the
retrieval engine with the matching score S; = {s;1,si2,- -+, Sim, }- Each s;; is
used as the dynamic weight of the respective k-node;; with respect to k;. For
instance, K L1 contains one K-Node that matches “Capin” while K Ly contains
three K-Nodes matching “SVG”, as illustrated in Fig. 5.

4.2 Query Construction

After obtaining these K-Nodes, we construct the potential queries by exploring
the clustered RACK graph. The process is as follows: For each keyword phrase,
we create a thread. Then we do traversal in these threads until all the threads
converge at a same node. This way, the traversal paths correspond to a tree,
from which we construct a tree-shaped formal query. In the following, we first
define the thread and the expansion operations required to traverse the graph.
Then we will present the detailed algorithm.

A thread maintains cursors that haven’t been expanded yet. A cursor is
defined on a node, which traces the expansion track in a thread. Each cursor has
four fields (¢; n; p; k), where ¢ represents the cost for the track, n is the node
where the cursor locates in, p is the parent cursor of the current cursor, and k is
the keyword phrase corresponding to the thread that the cursor is in. Note that
all cursors in the same thread share the same keyword phrase.

Given a thread, a thread expansion (T-Ezxpansion) selects a cursor in it, ex-
ecutes cursor expansion, and then removes the cursor from it. Given a cursor
Ceur, a cursor expansion (C-Ezpansion) includes a validation step and an ex-
ploration step. In the validation, we check whether a new formal query rooted at
the node C¢y,-.n has been found. It is accomplished by checking whether cursors
in other threads have arrived at this node. In the exploration, new cursors (e.g.
Chew) are created for all neighbors of the node Cyy,-.n and added to the current
thread, i.e. Cpew.k = Ceyr.k. The current cursor then becomes parent cursor of
these new cursors, i.e. Cpew.p = Ceur. The costs of the new cursors are calcu-
lated using the formula Che.¢ = Ceyr.C + dist(Ceyr.ny Cpew-n), where dist() is
a distance function between two nodes in the graph. By default, it is the cost of
the edge which connects the two nodes.

The sequence of doing T-Expansions has an impact on the speed of query
construction. This speed is also influenced by the sequence of C-Expansions

W3CSpecification
WaCActivity WACSpecification
(2;3;2;"capin™) O W3ACActivity
Person WaCNote - 3

MailinglList

O O I' Parsa
P’ V O O 2 (1;2;1;"capin”)
E E B B :

; »
Capin SVG fJ 1

Thread 1 Thread 2 (0;1;null;" capin"}

Capin
Fig. 5. Exploring the clustered graph. Fig. 6. Example on repeated expansion.

Input: K = {ki, k2, ..., kn}, where k; hits the K-Nodes
KL; = {k-node;1, k-node;2, - - - , k-node;m, } with the matching relevance
as S; = {Sih Si2,t ", Simi}§

Output: A: result set, initially (;

Data: Tprune: pruning threshold, initially 7o;

1 for i € [1,n] do
2 t; = new Thread();
3 for j € [1,m;] do
4 | ti.add(new Cursor(si;, k-nodeij, NULL, k;));
5 end
6 end
7 while 3i € [1,n] : t;.peekCost() # oo do
8 j < pick from [1,7n] in a round-robin fashion;
9 ¢ tj.popMin();
10 C-Expansion(c); // A and Tprune will be updated here;
11 if t;.peekCost() > Tprune then
12 ‘ Output the top k answers in A;
13 end
14 end

Algorithm 1: Query Interpretation Process

performed during the T-Expansions. Considering that, we use the following two
strategies when choosing what to expand next: 1) Intra- Thread Strategy: In a T-
Expansion, we choose the cursor with the lowest cost for the next C-Expansion.
2) Inter-Thread Strategy: Within different threads, we choose the thread with the
lowest number of expanded cursors for the next T-Expansion in order for a round
robin fasion. These two strategies have been proven optimal in the single-level
search algorithm [16].

This query construction process is described in Algorithm 1. We first initialize
thread t; for each keyword phrase k; in K (Line 2), and fill ¢; with cursors for
the K-Nodes in K'L; (Line 4). Then we do T-Expansions on the threads in a
round-robin fashion (Line 8). In each T-Expansion, we do C-Expansion on the
cursor which has the lowest cost (Line 9). Note that for each thread, popMin()
pops out the cursor with the minimal cost, whereas peekCost() just returns the

minimal cost. Line 11 to Line 13 is the optimization for top-k termination, which
will be discussed in the next subsections.

As shown in Fig. 5, after the initialization, ¢1’s cursor locates in the K-Node
labelled “Capin”, and t5’s cursors point to three K-Nodes. When we expand
the cursor in ¢; to the C-Node Person, and assuming cursors in ¢y have already
reached this node (e.g. a cursor starts from “SVG”, expands through W3CNote
and reaches Person), we get a formal query rooted at Person. One path of the
query is from Person to the K-Node labelled “Capin”, and the other is from
Person to the most left K-Node labelled “SVG”.

4.3 Optimization for Top-k Termination

In order to find out the top-k queries only, we maintain a pruning threshold
called Tprune, which is the current kth minimal cost of the already computed
queries. Tpryne Will be initialized to 9. When we find a valid formal query in C-
Expansion, the cost of the query is calculated by the ranking mechanism, which
will be discussed in Section 5. For a new formal query to be in a top k position,
its cost should be no greater than 7,,,n.. When such a query is found, it will be
added to the answer set A and Tprune Will be updated accordingly. Since a cursor
actually indicates a path in query, if all cursors’ costs are larger than 7p,yne, new
queries including these paths will have even larger costs. Therefore, we can stop
the query interpretation process and output the top-k formal queries.

4.4 Optimization for Repeated Expansion

We assume that it rarely happens for people to propose a query which contains
the same relations several times (e.g. “find Tom’s friends’ friends’ friend, who is
Spanish”). Based on this assumption, we adopt a mechanism to avoid redundant
exploration of the same elements, which can speed up the construction process.
Namely, we add penalty to the cursor whose track contains repeated nodes. This
is done by using a different dist() function for C-Expansion, namely

- P If ny has been visited
dist*(ni,ng) = {dist(nl,ng) (1)
where P is set to a large number as the predefined penalty parameter.

In Fig. 6, there is a cursor on W3CSpecification. Its track is indicated by 1,
2 and 3. Assume that the cost of the current cursor is two, every edge has one
as weight, and P is set to five. Then the cost of the new cursor on W3CActivity
gets three, while the one on Person gets seven as it has been visited already at 2.

This way, repeated expansion on Person is still allowed but with a higher cost.

5 Query Ranking in Q2Semantic

Since the query construction process can result in many queries, i.e. possible in-
terpretations of the keywords, a ranking scheme is required to return the queries

10

that most likely match the user intended meaning. Ranking has been dealt with
in other approaches. For ranking ontologies, [17] returns the relevant ontologies
based on the matching score of the keywords w.r.t. the ontology elements. It also
considers the importance of nodes and edges in the ontology graph as a static
score similar to Google’s PageRank. For ranking complex relationships, [18,19]
employ the length of the relation paths. Besides these approaches for ranking
ontology (answers) and relations, work has been done for ranking queries. [10]
uses the length of the formal query and [9] considers also the keywords’ matching
score.

We define three ranking schemes from simple to complex, which adopt ideas
from other approaches mentioned above, to extend existing work on ranking
queries. They compute the cost for a query. The most complex scheme leverages
all the above factors including the query length, the keyword matching score and
the importance of nodes and edges.

Path Only: The basic ranking scheme R; considers the query length only,

which is as follows:
Ri=> (O (2)
1<i<n e€p;

This formula computes the total length of paths in the formal query, where p; is
a path and e is an edge in p;. Each p; represents a connection between the root of
the formal query and a matched K-Node. Lower cost queries are preferred over
higher cost queries. Since the cost of every edge is defaulted to exactly one, in
effect, shorter queries are preferred over longer ones. As discussed in [10], shorter
queries tend to capture stronger connections between keyword phrases.

Adding matching relevance: When further considering the matching dis-
tance between the user’s keyword phrases and the literals in the RDF graph, a
ranking scheme Ry can be defined as

R= Y (5) 3)

1<i<n = " e€p;

where D; is the score stored in the p;’s starting K-Node, which has been com-
puted in the phrase mapping. In this case, Ry prefers shorter queries with higher
matching score of keyword phrases w.r.t. K-Nodes labels.

Adding Importance of Edges and Nodes: This ranking scheme assumes
that users prefer to find entities with types and relations that are more “impor-
tant”. Ranking scheme Rj3 considers also the importance of query elements. In
particular, specific cost functions are defined for nodes and edges, which reflect
their importance for the RDF graph. R3 and these cost functions are defined as

1
R3 = cost, Z (E Z coste) (4)
1<i<n ecp;
d
COStpode = 2 — loggg('nOTe| +1) (5)

d
COStegge = 2 — logQ(Lj\?el +1) (6)

11

Table 1. Table of TAP sample queries

Query| Keywords Potential information need
Q3 Supergirl Who is called “supergirl”
Q5 Strip, Las Vegas What is the well-known “Strip” in Las Vegas

Q9 Web Accessibility | Find persons who work for Web Accessibility Ini-
Initiative, www-rdf- |tiative and involve in the activity with mailing list
perllib “www-rdf-perllib”

where N is the total number of nodes in the original RACK graph, |node| is
the number of original nodes clustered to the node (as discussed for clustering
in section 3), M is the total number of edges in the original RACK graph,
ledge| is the number of original edges clustered to the edge, and cost, is the
cost function of the query root. The cost functions guarantee the cost of each
node and edge to be in the interval (1,2). Since both local frequencies, i.e. the
number of original elements clustered to an element, and total number of nodes
and edges are incorporated, these function compute the importance of nodes
and edges in a manner similar to TF/IDF used in information retrieval. Note
that the higher its frequency is, the more important a node is considered to be
because it will obtain a lower cost. As the cost is lower for elements with high
importance, they have more positive impact on the rank of the query.

6 Evaluation

6.1 Experiment Setup

As there is yet no standard benchmark for evaluating the performance of trans-
lating keyword queries to formal queries, we use TAP, DBLP and LUBM [20] for
the experiment. For TAP, we manually construct nine scenarios where the key-
words and the corresponding potential information needs are listed in table 1 for
three scenarios. The experiments are conducted on a Intel PC with 2.6GHz Pen-
tium processor and 2GB memory. Note that the following presentation will focus
on results performed on TAP. The proposed queries and their results for DBLP
and LUBM as well as the extended presentation of our experiments can be found
in the technical report [21] at http://g2semantic.apexlab.org/Pub/Q2Semantic-
TR.pdf.

6.2 Effectiveness Evaluation

For ranking query, precision and recall as applied for information retrieval can
not be used directly because only one of the computed query matches the mean-
ing of the keywords intended by the user. Hence, we introduce a new metric
called Target Query Position (TQP) to evaluate the effectiveness of query rank-
ing. Namely, TQP = 11 — Pigpget, Where Pigrgce¢ means the position of the in-
tended query in the ranked list. Note the higher the rank of the intended query,

12

Fig. 7. TQPs of different ranking schemes on TAP.

the higher its TQP score. If the rank of a query is greater than ten, its TQP is
simply 0. Thus, the TQP score of a query range from 0 to 10.

Since this metric is sensitive to the query rank, it can be used to evaluate
our approach for query construction and the different ranking schemes. For this,
We invite twelve graduate students to identify the query from a ranked list
computed by Q2Semantic, which corresponds to their interpretations of the given
keyword query. For each keyword query, we compute the final TQP score as an
average of the scores obtained for each participant. Fig. 7 illustrates results of
our experiments performed on TAP using the three different ranking schemes.

Note that the performance of R; is relatively good for Q1-Q4. This is because
keywords in these queries have little ambiguity, i.e. can be mapped exactly one
or two K-Nodes (e.g. “supergirl” in Q3). In these cases, the query length is very
effective in ranking the queries. When applying Rs, significant improvements
can be obtained for Q5-Q7. Keyword phrases in these queries are ambiguous,
i.e. mapped to many K-Nodes, resulting in a lot of queries having the same
path length. As Ry also considers the matching score of the keyword phrases to
K-Nodes, it helps to resolve this ambiguity. For instance, the query containing
K-Nodes with highest matching score for “Strip” and “Las Vegas” (Q5) is indeed
the one intended by the user. Finally, another improvement is obtained for Q8
and Q9 when using R3 to consider also the importance of nodes and edges. This
improvement comes from the usage of costs for nodes and edges, which guide
the traversal and the selection of the root note. Note that elements with higher
importance are preferred during expansions. For instance, in Q9, the author is
preferred over the book because it has higher importance (lower cost).

In summary, the results show that our approach offers high quality translation
of keywords to formal queries, especially when using Rj3 as the ranking scheme.
Our technical report also shows that the overall performance on all keyword
queries for LUBM is promising and the average TQP reaches 9.125 by using Rs.

6.3 Efficiency Evaluation

Table 2 compares the statistical information of the original RACK graphs and
the clustered RACK graphs (Bold numbers). The number of K-Node is the same
as that of A-Edge according to the fourth clustering rule. It is observed that the

13

180
160 +
140
120
100

&0 \ —b— inverted Indax{ME)
L —8— Graph indexXB)

407 Average Search Time{ms)
204

o+ -

~ 3 N 5 o
R R
& PLLE A

G &
e f 3 &

N
Kl
o =

Fig. 8. Index size and search time on different datasets.

Table 2. RACK graph versus Clustered RACK graph

R-Edge A-Edge C-Node K-Node
TAP 41914 |158| 87796 |666| 167656 [314| 87796 |666
LUBM(1,0) | 41763 |43 | 30230 |39 | 16221 |13 | 30230 |39
LUBM(20,0)|1127823| 43 | 815511 | 39 | 411815 | 13 | 815511 | 39
LUBM(50,0)|2788382| 43 | 2015672 | 39 {1018501| 13 | 2015672 | 39
DBLP 5619110| 19 [12129200| 23 [1366535| 5 |12129200| 23

sizes are largely reduced after clustering. That is, the relevant data space to
be explored in the query interpretation process is much smaller, which leads
faster query construction. This is indicated by the average time in Fig. 8, which
also shows the size of the inverted and the graph index for TAP, LUBM(1,0),
LUBM(20,0), LUBM(50,0) and DBLP. The average time ranges from 20ms to
160ms on all datasets. Since no evaluation has been carried out to measure
performance in previous approaches, we cannot make any comparative analysis.
However, the reduction in data space must have a positive effect on performance.

In this regard, we found out that the size of the clustered graph index depends
heavily on the schema structure of the original RDF graph. Namely, the simpler
the schema (number of T-Box axioms), the smaller the index size. For example,
the graph index size of DBLP and LUBM is smaller than that of TAP as TAP
contain much more concepts. Also the performance depends on the size of the
inverted index. This mainly depends on the number of literals in the ontology.

In summary, the experiments show promising performance. Besides the re-
duction of the original RDF graph, top-k query answering helps to terminate
even more quickly, i.e. avoid the calculation of all possible queries. Our technical
report provides more details on the impacts of the ranking mechanism, the top-k
parameter, and the penalty parameter on the performance.

7 Related Work

Translating keywords to formal queries is a line of research that has been carried
out in both the information retrieval and the database communities. Notably, [4,

14

5, 22] support keyword queries over databases while [6, 7] specifically tackle XML
data by translating keyword queries to XQuery expressions. However, none of
them can be directly applied to semantic search on RDF data since the under-
lying data model is a graph rather than relational or tree-shaped XML data.

[8] represents an attempt that specifically deals with keyword queries in se-
mantic search engines. There, keywords are map to elements of triple patterns
of predefined query templates. These templates fix the structure of the resulting
queries a priori. However, only some but not all interpretations of the keywords
can be captured by such templates. Also, since queries with more than two key-
words lead to a combinatorial explosion of different possible interpretations, a
large number of templates would be needed. These problems have been tack-
led recently by [9,10]. In [10], a more generic graph-based approach has been
proposed to explore all possible connections between nodes that correspond to
keywords in the query. This way, all interpretations that can be derived from
the underlying RDF graph can be computed.

With respect to these recent works [9,10], our approach is distinct in three
aspects. Firstly, we enrich RDF data with terms extracted from Wikipedia. Thus,
users can also use their own words because keywords can map also to Wikipedia
terms. Secondly, we extend the ranking mechanism in [10] to a more general
framework for query ranking, which can incorporate many factors besides the
query length. Most importantly, query construction has been relied on a large
number of A-Box queries that are performed on the original RDF graph. Our
approach greatly reduces this space to a summary graph, and thus scales to
large repositories. The additional support for top-k queries can further help to
terminate the translation even more quickly.

8 Conclusions and Future Work

In this paper, we propose a solution to translate keyword queries to formal
queries that can address drawbacks in current approaches. RDF Data is en-
riched with terms from Wikipedia to support also keywords specified in the user
own words. The RDF graph used for exploration is clustered down to a sum-
mary graph. Combined with top-k query answering, this increases scalability
and efficiency of the translation process. To improve effectiveness, a more gen-
eral ranking scheme is proposed that considers the query length, the element
matching score and the importance of the elements. Evaluation of the imple-
mented system Q2Semantic shows high quality translation of keyword queries
processed against datasets of different sizes and domains.

Currently, our approach support keywords that match literals and concepts
contained in the RDF data (where concepts are treated as special K-Nodes in the
current implementation). We will extend the current query capability to support
also keywords in the form of relations and attributes. Another future work is to
integrate query interpretation with query answering in a unified graph index as
one still need to use the original graph instead of the clustered RACK graph for
answering the translated queries from keywords.

15

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Tran, D.T., Bloehdorn, S., Cimiano, P., Haase, P.: Expressive resource descriptions
for ontology-based information retrieval. In: Proceedings of the 1st International
Conference on the Theory of Information Retrieval (ICTIR’07), 18th - 20th Octo-
ber 2007, Budapest, Hungary. (2007) 55-68

Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture
for storing and querying rdf and rdf schema. In: ISWC. (2002) 54-68

Lu, J., Ma, L., Zhang, L., Brunner, J.S., Wang, C., Pan, Y., Yu, Y.: Sor: A practical
system for ontology storage, reasoning and search. In: VLDB. (2007) 1402-1405
Hristidis, V., Papakonstantinou, Y.: Discover: Keyword search in relational
databases. In: VLDB. (2002) 670681

Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword
searching and browsing in databases using banks. In: ICDE. (2002) 431-440
Hristidis, V., Papakonstantinou, Y., Balmin, A.: Keyword proximity search on xml
graphs. In: ICDE. (2003) 367-378

Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: Xrank: Ranked keyword
search over xml documents. In: SIGMOD Conference. (2003) 16-27

Lei, Y., Uren, V.S., Motta, E.: Semsearch: A search engine for the semantic web.
In: EKAW. (2006) 238-245

Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y.: Spark: Adapting keyword query
to semantic search. In: ISWC/ASWC. (2007) 694-707

Tran, T., Cimiano, P., Rudolph, S., Studer, R.: Ontology-based interpretation of
keywords for semantic search. In: ISWC/ASWC. (2007) 523-536

Horrocks, I., Tessaris, S.: Querying the semantic web: a formal approach. In:
Proceedings of the ISWC 2002, Chia, Sardinia, Italy (2002) 177-191

Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E., Srinivas, K.: The summary
abox: Cutting ontologies down to size. In: ISWC. (2006) 343-356

Zhang, L., Liu, Q., Zhang, J., Wang, H., Pan, Y., Yu, Y.: Semplore: An ir approach
to scalable hybrid query of semantic web data. In: ISWC/ASWC. (2007) 652-665
Milne, D., Witten, I.H., Nichols, D.: A knowledge-based search engine powered by
wikipedia. In: Proc. of CIKM. (2007)

Fu, L., Wang, H., Zhu, H., Zhang, H., Wang, Y., Yu, Y.: Making more wikipedians:
Facilitating semantics reuse for wikipedia authoring. In: ISWC/ASWC. (2007)
128-141

He, H., Wang, H., Yang, J., Yu, P.S.: Blinks: ranked keyword searches on graphs.
In: SIGMOD Conference. (2007) 305-316

Ding, L., Pan, R., Finin, T.W., Joshi, A., Peng, Y., Kolari, P.: Finding and ranking
knowledge on the semantic web. In: ISWC. (2005) 156-170

Anyanwu, K., Maduko, A., Sheth, A.P.: Semrank: ranking complex relationship
search results on the semantic web. In: WWW. (2005) 117-127

Lehmann, J., Schiippel, J., Auer, S.: Discovering unknown connections - the dbpe-
dia relationship finder. In: Proc. of the 1st SABRE Conference on Social Semantic
Web (CSSW). (2007)

Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems.
J. Web Sem. 3(2-3) (2005) 158-182

Wang, H., Zhang, K., Liu, Q., Yu, Y.: Q2semantic: Adapting keywords to semantic
search. Technical report, APEX Data & Knowledge Management Lab (2007)
Balmin, A., Hristidis, V., Papakonstantinou, Y.: Objectrank: Authority-based
keyword search in databases. In: VLDB. (2004) 564-575

