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Abstract

In this paper we present integrated MOF compliant metamodels and UML pro-
files for OWL DL, the Semantic Web Rule Language (SWRL) and Ontology
Mappings. Based on these metamodels and profiles, UML tools can be used for
visual modeling of rule-extended ontologies and ontology mappings.
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Chapter 1

Metamodeling for
Ontologies

1.1 Motivation

The metamodeling features of Model Driven Architecture (MDA) provide the
means for the specification of modeling languages in a standardized, platform in-
dependent manner. In short, the Meta Object Facility (MOF, [Obj02]) provides
the language for creating metamodels, UML defines the language for creating
models corresponding to specific metamodels. Defining the networked ontology
model in terms of a MOF compliant metamodel yields a number of advantages:

Interoperability with Software Engineering approaches In order for
semantic technologies to be widely adopted by users and to succeed in real-
life applications, it must be well integrated with mainstream software trends.
This includes in particular interoperability with existing software tools and ap-
plications to put it closer to ordinary developers. MDA is a solid basis for
establishing such interoperability. With the networked ontology model defined
in MOF, we can utilize MDA’s support in modeling tools, model management
and interoperability with other MOF-defined metamodels.

Reuse of UML for modeling With respect to interoperability with other
metamodels, UML is of particular importance. UML is a well established for-
malism for visual modeling and recently has been proposed as a visual notation
for knowledge representation languages as well . While UML itself lacks specific
features of KR languages, the extension mechanisms, UML profiles, allow to
tailor the visual notation to the specific required needs.

Independence of particularities of specific formalisms The metamodel-
ing approach of MDA and MOF allows to define the networked ontology model
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in an abstract form independent of the particularities of specific logical for-
malisms. This enables to be compatible with currently competing formalisms
(e.g. in the case of mapping languages), for which no standard exists yet. Lan-
guage mappings, also called groundings, define the relationship with particular
formalisms and provide the semantics for the networked ontology model. Fur-
ther, the extensibility capabilities of MOF allow to add new modules to the
metamodel if required in the future.

1.2 Metamodeling with MOF

This section introduces the essential ideas of MOF and shows how a metamodel
and a UML profile for networked ontologies fit into this more general picture.
The need for a dedicated visual ontology modeling language stems from the ob-
servation that an ontology cannot be sufficiently represented in UML [HEC+04].
The two representation mechanisms share a set of core functionalities such as
the ability to define classes, class relationships, and relationship cardinalities.
But despite this overlap, there are many features which can only be expressed in
OWL, and others which can only be expressed in UML. Examples for this dis-
jointness are transitive and symmetric properties in OWL or methods in UML.
For a full account of the conceptual differences we refer the reader to [IBM05].

UML methodology, tools and technology, however, seem to be a feasible
approach for supporting the development and maintenance of ontologies, rules
and ontology mappings. The general idea of using MOF-based metamodels
and UML profiles for this purpose is depicted in Figure 1.1 : A metamodel
for rule-extended ontologies and ontology mappings as well as a UML profile
are grounded in MOF, in that they are defined in terms of the MOF meta-
metamodel, explained further in this section. The UML profile mechanism is an
extension mechanism to tailor UML to specific application areas. Our proposed
UML profile defines a visual notation for optimally supporting the specification
of ontologies, rules and ontology mappings. This visual syntax is based on the
metamodel and is independent from a concrete mapping formalism. Mappings
in both directions between the metamodel and the profile have to be established.

OWL DL ontologies, SWRL rules and ontology mappings in a concrete lan-
guage instantiate the metamodel. The constructs of the specific languages have
a direct correspondence with those of the metamodel. Analogously, specific
UML models instantiate the UML profile. Within the MOF framework, the
UML models are translated into definitions based on the above mappings be-
tween the metamodel and the UML profile. In case of ontology mappings, in
this translation step, so after the visual modeling of the ontology mappings, the
decision about a concrete mapping formalism is taken, based on the types of
the mappings which were modeled.
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Figure 1.1: How a metamodel and a UML profile for ontologies fit into the
picture of the Meta Object Facility framework

1.2.1 Meta Object Facility

The Meta Object Facility (MOF) is an extensible model driven integration
framework for defining, manipulating and integrating metadata and data in
a platform independent manner. The goal is to provide a framework that sup-
ports any kind of metadata and that allows new kinds to be added as required.
MOF plays a crucial role in the four-layer metadata architecture of the Object
Management Group (OMG) shown in Figure 1.2. The bottom layer of this
architecture encompasses the raw information to be described. For example,
Figure 1.2 contains information about a wine called ElyseZinfandel and about
the Napa region, where this wine grows. The model layer contains the definition
of the required structures, e.g. in the example it contains the classes used for
grouping information. Consequently, the classes Wine and Region are defined.
If these are combined, they describe the model for the given domain. The meta-
model defines the terms in which the model is expressed. In our example, we
would state that models are expressed with classes and properties by instanti-
ating the respective meta classes. Finally, the MOF constitutes the top layer,
also called the meta-metamodel layer. Note that the top MOF layer is hard
wired in the sense that it is fixed, while the other layers are flexible and allow
to express various metamodels such as the UML metamodel or the metamodel
for OWL DL ontologies, SWRL rules and ontology mappings.

1.2.2 Ontology Definition Metamodels

The general idea of using MOF-based metamodels and UML profiles for the
purpose of engineering ontologies is depicted in Figure 1.1 for the OWL ODM:
The ODM as well as a UML profile are grounded in MOF, in that they are
defined in terms of the MOF meta-metamodel, explained further in this section.
The UML profile mechanism is an extension mechanism to tailor UML to specific
application areas. UML profiles define a visual notation for optimally supporting
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MOF - Meta-metamodel

MetaClass, MetaAttr, ...

Metamodel:

MetaClass(“Class“), MetaClass(“Property“), ...

Model:

Class( “Wine“ ), Class(“Region“ ), ...

Information:

Wine: ElyseZinfandel, Region: NapaRegion

Figure 1.2: OMG Four Layer Metadata Architecture

NeOn Networked Ontology MetamodelNeOn Networked Ontology Metamodel

OWL MetamodelOWL Metamodel

Rule MetamodelRule Metamodel
Mapping

Metamodel

Mapping

Metamodel

Modularization

Metamodel

Modularization

Metamodel

extends

Ontology Languages / Formalisms

OWL

SWRL

F-Logic

E-

Connections

C-OWL …

…

Language Mappings / Groundings

Figure 1.3: Modules of the Ontology Definition Metamodel and possible ground-
ings in ontology languages

the specification of networked ontology model. This visual syntax is based on
the metamodel. Mappings in both directions between the metamodel and the
profile have to be established.

However, the OWL ODM is just one part of the networked ontology model.
Additional modules extend the OWL ODM with specific features of networked
ontologies, as shown in Figure 1.3. While the OWL ODM has a direct grounding
in the OWL ontology language, the extensions have a generic character in that
they are formalism independent and allow a grounding in different formalisms .

1.3 Design Considerations

Modularization The metamodel consists of several modules. The core mod-
ule, i.e. the OWL metamodel, is extended by different modules that provide
additional features, e.g. modularization, mappings, etc. In many application
scenarios, only particular aspects of the networked ontology model are needed.
In these cases, only the relevant modules need to be supported and used.
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Compatibility with standards In terms of the metamodel, two aspects of
standards are relevant: The first aspect relates to the fact that we are using a
standard formalism - namely the Meta Object Facility - to describe the meta-
model. The second aspect relates to the metamodel of networked ontologies
itself: A major design goal is compatibility with existing ontology languages.
With the Web Ontology Language OWL we have a standard for representing
ontologies, therefore we provide a metamodel of OWL directly, with a one-
to-one translation. For the other aspects of networked ontologies (mappings,
versioning, ... ) no such standards exist yet. In favor of general applicability
we therefore provide generic metamodels for these extensions that allow trans-
lations to different formalisms, as shown in Figure 1.3 .
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Chapter 2

The OWL Metamodel

2.1 Design considerations

A metamodel for a language that allows the definition of ontologies naturally
follows from the modelling primitives offered by the ontology language. OWL
ontologies themselves are RDF documents. They instantiate the RDF data
model, and use URIs to name entities. The formal semantics of OWL is derived
from Description Logics (DL), an extensively researched KR formalism. Hence,
most primitives offered by OWL can also be found in a Description Logic. Three
species of OWL have been defined. One variant called OWL Full can represent
arbitrary RDF components inside of OWL documents. This allows, for example,
to combine the OWL language with arbitrary other representation languages.
From a conceptual perspective a metamodel for OWL Full necessarily has to
include elements for the representation of RDF.

Another variant called OWL DL states syntactic conditions on OWL docu-
ments, which ensure that only the primitives defined within the OWL language
itself can be used. OWL DL closely corresponds to the SHOIN(D) descrip-
tion logic and all language features can be reduced1 to the primitives of the
SHOIN(D) logic. Naturally, a metamodel for OWL DL is smaller and less com-
plex than a metamodel for OWL Full. Similarly, an OWL DL metamodel can
be built in a way such that all elements can be easily understood by people fa-
miliar with description logics. A third variant called OWL Lite disallows some
constructors of OWL DL, specifically number restrictions are limited to arities 0
and 1. Furthermore, the oneOf class constructor is missing. Other constructors
such as class complement, which are syntactically disallowed in OWL Lite, can
nevertheless be represented via the combination of syntactically allowed con-
structors [Vol04][Corollary 3.4.1]. Hence, a metamodel for OWL DL necessarily
includes OWL Lite.

1Some language primitives are shortcuts for combinations of primitives in the logic.
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Ontology

AnnotatableElement

-uri:URI

OntologyElement

OntologyProperty

AnnotationProperty

Property

Class

Individual

Rule

DataRange

Figure 2.1: Main Elements of the Ontology Definition Metamodel

2.2 An ODM for OWL DL

The rest of this section will provide a summary of the OWL language whilst in-
troducing our metamodel. Interested readers may refer to the specifications [Mv03]
for a full account of OWL. Our metamodel for OWL DL ontologies ([BVEL04])
has a one-to-one mapping to the abstract syntax of OWL DL and thereby to
its formal semantics. It primarily uses basic well-known concepts from UML2.
Additionally, the metamodel is augmented with constraints, expressed in the
Object Constraint Language ([WK04]), specifying invariants that have to be
fulfilled by all models that instantiate the metamodel. The metamodel is aug-
mented with several OCL constraints. Constraints are given in footnotes.

Ontologies

URIs are used to identify all objects in OWL. Figure 2.1 shows the central part
of the OWL DL metamodel. Among others, it shows that every element of an
ontology is a subclass of the class OntologyElement and hence a member of an
Ontology.

Properties

Properties represent named binary associations in the modeled knowledge do-
main. OWL distinguishes two kinds of properties, so called object properties
and datatype properties. Figure 2.2 shows that both are generalized by the ab-
stract metaclass Property. Properties can be functional, i.e. their range may
contain at most one element. Their domain is always a class. Object properties
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−deprecated :Boolean =false

−functional:Boolean =false

ObjectProperty

−transitive :Boolean =false

−symmetric :Boolean =false

−inverseFunctional :Boolean =false

−/complex:Boolean

DatatypeProperty DataRange

 

 

 

domain*

range

*

range

inverseOf

*

*

Figure 2.2: Properties

Property

*

equivalentProperty

*

subPropertyOf

Figure 2.3: Property axioms

may additionally be inverse functional, transitive, symmetric or inverse to an-
other property. Their range is a class2, while the range of datatype properties
is a datarange.

Users can relate properties by using two axioms, modeled as in Figure
2.3. Property subsumption (subPropertyOf)3 specifies that the extension of
a property is a subset of the related property. Similarly, property equivalence
(equivalentProperty) defines extensional equivalence. OWL DL disallows
that object and datatype properties are related via axioms.

Ontology properties

Ontologies themselves can have properties, which are represented via the
OntologyProperty metaclass. For example, the ontology property owl:imports
allows to logically include the elements of one ontology in another ontology.
OWL DL predefines several ontology properties and allows users to define fur-
ther ontology properties. A concrete instance of an ontology property is repre-

2OWL DL mandates that no complex role may be transitive: complex=functional or

inverseFunctional or NumberRestriction. allInstances()->exists(onProperty=self)

or inverseOf->exists(complex) or subPropertyOf->exists(complex) and complex

implies not transitive.
3This association is transitive: Property.allInstances()->

forAll(r,s,t|(r.subPropertyOf->includes(s) and s.subPropertyOf->includes(t)

implies r.subPropertyOf->includes(t))).
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AnnotationProperty

AnnotationPropertyValue

AnnotateableElement

Annotation

DataValue << primitive >>

URI

Individual

subject

object

type

Figure 2.4: Annotations

sented through OntologyPropertyValue, which instantiates a certain type of
OntologyProperty and is a reference between two ontologies.

Annotation properties

Given elements of an OWL ontology can be annotated with metadata. Several
annotation properties, e.g. owl:versionInfo, are predefined and users can
define further annotation properties. We treat annotation properties similarly
to ontology properties. However, the subject of an AnnotationPropertyValue
is an AnnotateableElement and the object is a Annotation, which can be either
a DataValue, a URI or an Individual (cf. Figure 2.4).

Class Constructors

In comparison to UML, OWL DL does not only allow to define simple named
classes. Instead, classes can be formed with several class constructors (cf. Fig-
ure 2.5). One can conceptually distinguish the boolean combination of classes,
restrictions and enumerated classes. EnumeratedClass is only available in OWL
DL and is defined through a direct enumeration of named4 individuals. Boolean
combinations of classes are provided through Complement5, Intersection and
Union.

Restrictions are class constructors that restrict the range of a property for the
context of the class (cf. Figure 2.6). Restrictions can be stated on datatype and
object properties. Accordingly they limit the value to a certain datatype or class
extension6. UniversalRestriction provides a form of universal quantification

4oneOf->forAll(name.notEmpty())
5combinationOf->size()=1
61. toClass->size()=1 xor toDatatype->size()=1 2.

onProperty.ocllsKindOf(DatatypeProperty) implies toDatatype->size()=1
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Class

ClassDescription AtomicClass

−deprecated :Boolean =false

BooleanCombination Restriction

Complement Intersection Union

EnumeratedClass

Individual

 

combinationOf

*

oneOf

*

Figure 2.5: Class constructors

Restriction

QualifiedNumberRestriction

−minCardinality :int

−maxCardinality :int

UniversalRestriction

NumberRestriction ExistentialRestriction

HasValue

Property

Class

Datatype

onProperty
0..1

toClass

0..1
toDatatype

Figure 2.6: OWL Restrictions
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Class

*

disjointWith

*

equivalentClass

*

subClassOf

Figure 2.7: Class axioms

that restricts the range of a class to the extension of a certain class or datatype7.
We introduce an abstract metaclass QualifiedNumberRestriction to relate

unqualified cardinality restrictions (which are available in OWL) and existential
restrictions. Obviously the minimum cardinality is by default 0 and may not be
negative8 while the maximum cardinality should not be smaller than the min-
imum cardinality9. Unqualified number restrictions (NumberRestriction) are
available in OWL and define how many elements the range of the given property
has to have while not restricting the type of the range10. ExistentialRestricion
can logically and semantically be seen as a special type of qualified number re-
strictions where the cardinality is fixed11. OWL also provides HasValue, which
is a special type of existential restriction where a given individual is by default
in the range of a property12.

Figure 2.7 shows that classes can be related with each other using class
axioms , such as class subsumption (subClassOf), class equivalence
(equivalentClass)13 and class disjointness (disjointWith). These relations
between classes are naturally modelled as associations.

Datatypes

The datatype system of OWL is provided by XML Schema, which provides a
predefined set of named datatypes (PrimitiveType), e.g. strings xsd:string.
Additionally users may specify enumerated datatypes (EnumeratedDatatype)
which consist of several data value of items (DataValue).

7The reader may note that this is logically not understood as a constraint but as an
entailment rule.

8minCardinality>=0
9Even though OWL allows this by making the class definition become inconsistent. We

disallow this situation through the constraint: maxCardinality>=minCardinality
10toClass=owl::Thing or toDatatype=rdfs::Literal
11minCardinality=1 and maxCardinality=*
12toClass.oclssTypeOf(EnumeratedClass) and toClass.oclAsType(

EnumeratedClass).oneOf->size()=1) or (toDatatype.ocllsTypeOf(EnumeratedDatatype)

and toDatatype.oclsAsType(EnumeratedDatatype).oneOf->size()=1)
13every equivalent class is trivially a superclass: subClassOf->includesAll(equivalentClass)
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Class Property

Individual PropertyValue

ObjectPropertyValue DatatypePropertyValue

DataType

DataValue

type type type

objectobject

subject

Figure 2.8: Knowledge Base Items

Individual AllDifferent
* distinctMembers

*

differentFrom

*

sameAs

Figure 2.9: Knowledge Base Axioms

Knowledge Base

OWL does not follow the clear conceptual separation between terminology (T-
Box) and knowledge base (A-box) that is present in most description logics and
in MOF, which distinguishes between model and information. The knowledge
base elements (cf. Figure 2.8) are part of an ontology. An Individual is an
instantiation of a Class and is the subject of a PropertyValue, which instanti-
ates a Property. Naturally, an ObjectPropertyValue relates its subject with
another Individual whilst a DatatypePropertyValue relates its subject with
a DataValue, which is an instance of a primitive datatype.

Individuals can be related via three axioms, as shown in Figure 2.9. The
sameAs association allows users to state that two individuals (with different
names) are equivalent. The differentFrom association specifies that two indi-
viduals are not the same14. AllDifferent is a simpler notation for the pairwise
difference of several individuals.

2.3 A UML-Profile for Ontologies

This section describes a UML profile which supports reusing UML notation for
ontology definition. Since the UML profile mechanism supports a restricted
form of metamodeling, our proposal contains a set of extensions and constraints
to the UML metamodel. This tailors UML such that models instantiating the

14The reader may note that OWL does not take the unique names assumption
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<< owl::imports >>

<<owl::Ontology>>

<<owl::Ontology>>

food

vin

{xmlns={http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#}}

{xmlns={http://www.w3.org/TR/2003/PR-owl-guide-20031209/food#}}

Figure 2.10: owl:imports

<< owl::DeprecatedClass >>

vin::JugWine

Figure 2.11: owl:DeprecatedClass

ODM can be defined. We heavily rely on the custom stereotypes, which usually
carry the name of the corresponding OWL language element.

2.3.1 Ontologies

Figure 2.10 shows that anNamespace is represented by a package, while a stereo-
type indicates an Ontology. Ontology properties correspond to appropriately
stereotyped UML dependencies. The deprecation of a given element, e.g. the
deprecated class JugWine in Figure 2.11, is achieved using a stereotype.

vin::Wine

Wine

vin::Wine

Wine

<< owl::equivalentClass >>

Figure 2.12: owl:EquivalentClass
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RedBurgundy

Burgundy RedWine

<< owl::intersectionOf >>

Figure 2.13: owl:intersectionOf

2.3.2 Classes

Atomic classes are depicted in the most trivial way, namely as UML classes.
The reader may note, that we only use the first segment of the UML class
notation, which contains the name of the class, stereotypes, and keyword-value
pairs. The second segment specifies concrete properties, while the third segment
is missing, since OWL does not contain methods. Class inclusion is depicted
using the UML generalization symbol, which is the most natural way.

Class equivalence could be expressed by two class inclusions. As a simpler
notation for two generalization arrows in the opposite direction next to each
other, the bi-directional generalization arrow is introduced. An example of this
notation is shown in Figure 2.12. Dependencies could also be used but are not
intuitive. Stereotyped UML associations to state class axioms does not translate
well to the UML object level. For these reasons, Class disjointness is depicted
as a bi-directional, stereotyped dependency.

For the representations of OWL class constructors, we use individual stereo-
types and the UML class notation. Dependencies to the classes which form the
complement, part of the union or part of the intersection of a class are depicted
as UML dependencies. We suggest specific pictograms to be used instead of
dependencies as allowed in UML. Figure 2.13 depicts alternative graphical no-
tations for a intersection of classes. An EnumeratedClass is connected to the
enumerated individuals by dependencies (cf. Figure 2.14). The reader may note
that UML associations can only be used between classes, an EnumeratedClass
can therefore not be consistently represented with associations, if the UML no-
tation for objects is used for individuals.

In general, a restriction is depicted by a class with a corresponding stereo-
type. If the property which participates in the restriction is an object property,
we depict it as an association to the participating class. Otherwise, in case of
a datatype property, it is depicted as an attribute. Figure 2.15 shows that car-
dinalities involved in restrictions are depicted in the standard UML notation,
viz. next to the attribute’s association. We mentioned that OWL has only
unqualified cardinality restrictions. Thus, the class participating in a cardinal-
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WineColor

White Rose Red

<< owl::oneOf >>

Figure 2.14: owl:oneOf

owl::Thing

hasVintageYear

<<owl::Restriction>>

1

Figure 2.15: owl:cardinality

ity restriction is always owl:Thing and attribute types are rdfs::Literal, which
means that they can have every data value.

ExistentialQuantification can and ValueRestriction have to be indi-
cated by a dedicated stereotype. Figure 2.16 demostrates the notation for an
existentially quantified restriction.

When modeling HasValue, no separate notation is introduced. If proper-
ties are represented as associations, the endpoints have to be classes. Under
these circumstances, combining existence restriction and enumeration is the
most compact notation conforming to the UML-metamodel. One could think
to model it more directly from the class which has the restriction, but an associ-
ation cannot be built between a class and an individual. Although our solution

Region

locatedIn

<< owl::someValuesFrom >>

Figure 2.16: owl:someValuesFrom

17



Wine WineGrapemadeFromGrape

   <<owl::ObjectProperty>>

    madeFromGrape

<<rdfs::domain>> <<rdfs::range>>

Figure 2.17: An ObjectProperty with domain and range

sounds quite complex, it keeps the consistency with restrictions.

2.3.3 Properties

Object properties are represented as UML n-ary associations15, while datatype
properties are represented as UML attributes. Since properties can have mul-
tiple domains and ranges, several associations with the same name are needed,
therefore our proposal uses an association class which is connected to the associ-
ation itself. If the domain is itself a restriction we end up with two associations
and it would be unclear which one counts for the restriction and which one
for the domain of the property. In this case, we provide a extended graphical
representation (cf. Figure 2.17).

Analogous to classes, specific properties are assigned a respective stereotype.
Figure 2.18 demonstrates the functionality and inverse functionality stereotype.
Naturally, Deprecation, transitivity and symmetry, are represented in the same
way. Figure 2.18 also shows how a property is connected to its inverse using a
bi-directional UML dependency.

Similar to classes, Property inclusion is depicted with a generalization arrow,
and property equality with a bi-directional generalization arrow.

2.3.4 Data Types

Data types are represented in the form of a stereotyped UML class. An EnumeratedDatatype
is depicted similar to the enumeration of individuals, viz. a stereotyped UML
class is connected to the enumerated data values through dependencies and we
provide a text-based shorthand notation (cf. Figure 2.19).

15This notation of associations is in fact provided by UML although rarely seen in practice.
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   <<owl::ObjectProperty>>

<<owl::FunctionalProperty>>

          hasMaker

<< owl::inverseOf >>

   <<owl::ObjectProperty>>

      producesWine

Figure 2.18: Property characteristics

<< >>

o:xsd::integer

owl::oneOf

5:xsd::integer 9:xsd::integer

Figure 2.19: Enumerated Datatypes
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:owl::AllDifferent

Red:WineColor

Rose:WineColor

White:WineColor

Figure 2.20: owl:AllDifferent

2.3.5 Individuals

Individuals are depicted in the object notation of UML, viz. in the form
’Object : Class’. We represent axioms specifying the equivalence or difference of
individuals are represented through stereotyped associations between individu-
als. We conclude with Figure 2.20, which shows our notation for AllDifferent.
Here, associations lead from an anonymous instance of owl::AllDifferent to those
individuals which are defined to be different.
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Chapter 3

The Rule Metamodel

3.1 Design Considerations

3.2 A Metamodel for SWRL Rules

We propose a metamodel for SWRL rules as a consistent extension of the meta-
model for OWL DL ontologies which we described in the previous section of
this paper. Figure 3.1 shows the metamodel for SWRL rules. We discuss the
metamodel step by step along the SWRL specifications. Interested readers may
refer to the specifications [HPSB+04] for a full account of SWRL. For a com-
plete reference of the formal correspondence between the metamodel and SWRL
itself and the OCL constraints for the rule metamodel, we refer the reader to
[BH06b].

3.2.1 Rules

SWRL defines rules as part of an ontology. The SWRL metamodel defines Rule
as a subclass of OntologyElement. OntologyElement is defined in the OWL DL
metamodel (Figure ??) as an element of an Ontology, via the composition link
between NamedElement and Ontology. As can also be seen in Figure ??, the
class OntologyElement is a subclass of the class AnnotatableElement, which
defines that rules can be annotated. As annotations are modeled in the ODM,
a URI reference can be assigned to a rule for identification.

A rule consists of an antecedent and a consequent, also referred to as body
and head of the rule, respectively. Both the antecedent and the consequent
consist of a set of atoms which can possibly be empty, as depicted by the multi-
plicity in Figure 3.1. Informally, a rule says that if all atoms of the antecedent
hold, then the consequent holds. An empty antecedent is treated as trivially
true, whereas an empty consequent is treated as trivially false.

The same antecedent or consequent can be used in several rules, as indicated
in the metamodel by the multiplicity on the association between Rule on the one
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hand and Antecedent or Consequent on the other hand. Similarly, the multi-
plicities of the association between Antecedent and Atom and of the association
between Consequent and Atom define that an antecedent and a consequent can
hold zero or more atoms. The multiplicity in the other direction defines that the
same atom can appear in several antecedents or consequents. According to the
SWRL specifications, every Variable that occurs in the Consequent of a rule
must occur in the Antecedent of that rule, a condition referred to as ”safety”.

3.2.2 Atoms, Terms and Predicate symbols

The atoms of the antecedent and the consequent consist of predicate symbols
and terms. According to SWRL, they can have different forms:

• C(x), where C is an OWL description and x an individual variable or an
OWL individual, or C is an OWL data range and x either a data variable
or an OWL data value;

• P (x, y), where P is an OWL individual valued property and x and y
are both either an individual variable or an OWL individual, or P is an
OWL data valued property, x is either an individual variable or an OWL
individual and y is either a data variable or an OWL data value;

• sameAs(x, y), where x and y are both either an OWL individual or an
individual variable;

• differentFrom(x, y), where x and y are both either an OWL individual or
an individual variable;

• builtIn(r, x, ...), where r is a built-in predicate and x is a data variable
or OWL data value. A builtIn atom could possibly have more than one
variable or OWL data value.

The first of these, OWL description, data range and property, were al-
ready provided in the ODM, namely as metaclasses Class, DataRange and
Property, respectively. As can be seen in Figure 3.1, the predicates Class,
DataRange, Property and BuiltIn are all defined as subclasses of the class
PredicateSymbol, which is associated to Atom. The remaining two atom types,
sameAs and differentFrom, are represented as specific instances of PredicateSymbol.

To define the order of the atom terms, we put a class TermOrder in between
Atom and Term. This UML association class connects atoms with terms and
defines the term order via the attribute order.

3.3 A UML Profile for Rules

UML provides an extension mechanism, the UML profile mechanism, to tailor
the language to specific application areas. The definition of such a UML exten-
sion is based on the standard UML metamodel. In this section, we propose a
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OntologyElement

Rule

Antecedent Consequent

Atom

PredicateSymbol

Class DataRange Property BuiltIn

−builtInID:URI

Term

Variable Constant

TermList

−order:int

DataVariable IndividualVariable Individual DataValue

hasAntecedent hasConsequent

hasPredicateSymbol

containsAtomcontainsAtom

* *

* *

* *
* *

1 1

1 1

1

*

Figure 3.1: The Rule Definition Metamodel

<< variable >>

X

<< variable >>

Y

<< variable >>

Z

<< variable >>

X:BadVintager

dislikes
hasMaker

ownsWinery

<<rule>>

Figure 3.2: BadVintager(x) ← ownsWinery(x, y) ∧ dislikesWine(x, z) ∧
hasMaker(z, y)

UML profile for modeling SWRL rules which is consistent with the design con-
siderations taken for the basic UML Ontology Profile. For a complete reference
of the relationship between the UML profile and the metamodel introduced in
Section 3.2, we refer the reader to [BH06b]. Figure 3.2 shows an example of
a rule, which defines that when a vintager does not like the wine made in his
winery, he is a bad vintager. We introduce the profile in an order based on the
SWRL metamodel introduced in Section 3.2.

3.3.1 Rules

As can be seen in Figure 3.2, a rule is depicted by two boxes connected via
a dependency with the stereotype rule. All atoms of the antecedent are con-
tained in the box at the origin of the dependency, whereas the box at the end
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<< variable >>

X

CabernetSauvignon 30:xsd::Integer

Figure 3.3: Terms

contains the consequent. This way, antecedent and consequent can easily be
distinguished, and it also allows to distinguish between the rule atoms and the
OWL DL facts which are depicted in similar ways. The left box of our example
contains the three variable definitions and the three properties that are defined
between these variables. The consequent-box on the right contains the definition
of the variable X from which it is known which class it belongs to. We explain
the specific design considerations of these concepts in the following subsections.

3.3.2 Terms

Although the existing UOP already comprises a visual syntax for individuals and
data values, namely by applying the UML object notation, it does not include
a notation for variables since OWL DL ontologies do not contain variables. We
decided to depict variables in the UML object notation as well, since a variable
can be seen as a partially unknown class instance. We provide a stereotype
variable to distinguish a variable. Figure 3.3 shows a simple example for a
variable, an individual and a data value.

3.3.3 Predicate Symbols in Atoms

Class description and data range.

A visual notation for individuals as instances of class descriptions is already
provided in the UOP for OWL DL. An atom with a class description and a
variable as its term, is illustrated similarly. An appropriate stereotype is added.
An example of this can be seen in the consequent in Figure 3.2. A visual
construct for a data range definition using individuals is contained in the UOP
for OWL DL as well, namely represented in the same way as class individuals.
Data range constructs containing variables are also depicted in a similar fashion.

Properties.

Object properties are depicted as directed associations between the two involved
elements. A datatype property is pictured as an attribute. These notations
were provided for properties of individuals by the UOP for OWL DL, and we
follow them to depict properties of variables. The antecedent of the rule in
Figure 3.2 contains three such object properties between variables, ownsWinery,
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<< built−in>>

swrlb:greatThan

<< variable >>

C

<< variable >>

D

1

2

Figure 3.4: Built-in predicates

dislikesWine and hasMaker. The other example rule, depicted in Figure 3.5,
contains amongst other things twice the datavalued property yearValue.

sameAs and differentFrom.

According to the UOP, equality and inequality between objects are depicted us-
ing object relations. Because of the similarity between individuals and variables,
as shortly explained in Section 3.3.2, we propose to use the same visual nota-
tion for sameAs and differentFrom relations between two variables or between
a variable and an object.

Built-in predicates.

For the visual representation of built-in relations, we use usual associations to
all participating variables and data values, similar to the owl:AllDifferent
concept provided in the basic UOP. To denote the built-in relation, we provide
the stereotype built-in together with the specific built-in ID. The names of
the associations denote the order of the arguments, by numbers. Figure 3.4
shows an example of a built-in relation swrlb:greaterThan, which is defined
to check whether the first involved argument is greater than the second one. For
the six most basic built-ins, swrlb:equal, swrlb:notEqual, swrlb:lessThan,
swrlb:lessThanOrEqual, swrlb:greaterThan and
swrlb:greaterThanOrEqual, we provide an alternative notation. Instead of
depicting the stereotype and the name of the built-in, an appropriate icon can
be used. Figure 3.5 depicts a rule example using this alternative notation for
built-in predicates. This rule states that if the year value of a wine (y) is greater
than the year value of another wine (x), then the second wine (x) is older than
the first one (y). Next to the built-in predicate, Figure 3.5 shows six variables
with the properties hasVintageYear, yearValue and olderThan.
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<< variable >>

X

<< variable >>

Y

<< variable >>

X

<< variable >>

Y

<< variable >>

B

<< variable >>

A

<< variable >>

D

<< variable >>

C

hasVintageYear

hasVintageYear

yearValue

yearValue

>

<<rule>>

olderThan

Figure 3.5: olderThan(x, y) ← hasVintageYear(x, u) ∧ hasVintageYear(y, v) ∧
yearValue(u,w) ∧ yearValue(v, z) ∧ swrlb:greaterThan(z, w)
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Chapter 4

The Mapping Metamodel

4.1 Ontology Mapping Formalisms

In contrast to the area of ontology languages where the Web Ontology Language
OWL has become a de facto standard for representing and using ontologies, there
is no agreement yet on the nature and the right formalism for defining mappings
between ontologies. In a recent discussion on the nature of ontology mappings,
some general aspects of mapping approaches have been identified [SU05]. We
briefly discuss these aspects in the following and clarify our view on mappings
that is reflected in the proposed metamodel with respect to these aspects.

4.1.1 What do mappings define ?

In this paper, we restrict our attention to declarative mapping specifications. In
particular, we see mappings as axioms that define a semantic relation between
elements in different ontologies.

A number of different kinds of semantic relations have been proposed. Most
common are the following kinds of semantic relations:

Equivalence (≡) Equivalence states that the connected elements represent the
same aspect of the real world according to some equivalence criteria. A
very strong form of equivalence is equality, if the connected elements rep-
resent exactly the same real world object.

Containment (v,w) Containment states that the element in one ontology
represents a more specific aspect of the world than the element in the
other ontology. Depending on which of the elements is more specific, the
containment relation is defined in the one or in the other direction.

Overlap (o) Overlap states that the connected elements represent different
aspects of the world, but have an overlap in some respect. In particular,
it states that some objects described by the element in the one ontology
may also be described by the connected element in the other ontology.

27



In some approaches, these basic relations are supplemented by their negative
counterparts. The corresponding relations can be used to describe that two ele-
ments are not equivalent ( 6≡), not contained in each other ( 6v) or not overlapping
or disjoint respectively (ø). Adding these negative versions of the relations leaves
us with eight semantic relations that cover all existing proposals for mapping
languages. In addition to the type of semantic relation, an important distinction
is whether the mappings are to be interpreted as extensional or as intensional
relationships.

Extensional In extensional mapping definitions, the semantic relations are in-
terpreted as set-relations between the sets of objects represented by ele-
ments in the ontologies. Intuitively, elements that are extensionally the
same have to represent the same set of objects.

Intensional In the case of intensional mappings, the semantic relations relate
the elements directly, i.e. considering the properties of the element itself.
In particular, if two elements are intensionally the same, they refer to
exactly the same real world object.

4.1.2 What do mappings preserve ?

It is normally assumed that mappings preserve the ’meaning’ of the two models
in the sense that the semantic relation between the intended interpretations of
connected elements is the one specified in the mapping. A problem with this as-
sumption is that it is virtually impossible to verify this property. Instead, there
are a number of verifiable formal properties that mappings can be required to
satisfy. Examples of such formal properties are the satisfiability of the overall
model, the preservation of possible inferences or the preservation of answers to
queries. Often, such properties can only be stated relative to a given applica-
tion context, such as a set of queries to be answered or a set of tasks to be solved.

The question of what is preserved by a mapping is tightly connected to the
hidden assumptions made by different mapping formalisms. A number of impor-
tant assumptions that influence this aspect have been identified and formalized
in [SSW05]. A first basic distinction concerns the relationship between the sets
of objects (domains) described be the mapped ontologies. Generally, we can
distinguish between a global domain and local domain assumption:

Global Domain It is assumed that both ontologies describe exactly the same
set of objects. As a result, semantic relations are interpreted in the same
way as axioms in the ontologies. There are special cases of this assumption,
where one ontology is regarded as a ’global schema’ and describes the set
of all objects, other ontologies are assumed to describe subsets of these
objects.

Local Domains It is not assumed that ontologies describe the same set of
objects. This means that mappings and ontology axioms normally have
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different semantics. There are variations of this assumption in the sense
that sometimes it is assumed that the sets of objects are completely dis-
joint and sometimes they are assumed to overlap each other.

These assumptions about the relationship between the domains is especially
important for extensional mapping definitions, because in cases where two on-
tologies do not talk about the same set of instances, the extensional interpre-
tation of a mapping is problematic as classes that are meant to represent the
same aspect of the world can have disjoint extensions. In such cases, e.g. in
C-OWL [BGvH+03], the relationship is not defined directly as a set relationship
between the extensions of the concepts, but can be defined in terms of domain
relations that connect the interpretation domains by codifying how elements in
one domain map into elements of the other domain.

Other assumptions made by approaches concerns the use of unique names
for objects - this assumption is often made in the area of database integration
- and the preservation of inconsistencies across mapped ontologies. In order to
make an informed choice about which formalism to use, these assumptions have
to be represented by the modeler and therefore need to be part of the proposed
metamodel.

4.1.3 What do mappings connect ?

In the context of this work, we decided to focus on mappings between ontologies
represented in OWL DL. This restriction makes it much easier to deal with this
aspect of ontology mappings as we can refer to the corresponding metamodel for
OWL DL specified in [BH06a]. In particular, the metamodel contains the class
OntologyElement, that represents an arbitrary part of an ontology specification.
While this already covers many of the existing mapping approaches, there are a
number of proposals for mapping languages that rely on the idea of view-based
mappings and use semantic relations between (conjunctive) queries to connect
models, which leads to a considerably increased expressiveness.

4.1.4 How are mappings organized ?

The final question is how mappings are organized. They can either be part
of a given model or be specified independently. In the latter case, the ques-
tion is how to distinguish between mappings and other elements in the models.
Mappings can be uni- or bidirectional. Further, it has to be defined whether a
set of mappings is normative or whether it is possible to have different sets of
mappings according to different applications, viewpoints or different matchers.

In this work, we use a mapping architecture that has the greatest level of
generality in the sense that other architectures can be simulated. In particular,
we make the following choices:

• A mapping is a set of mapping assertions that consist of a semantic relation
between mappable elements in different ontologies
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• Mappings are first-class objects that exist independent of the ontologies.
Mappings are directed and there can be more than one mapping between
two ontologies

These choices leave us with a lot of freedom for defining and using mappings.
Approaches that see mappings as parts of an ontology can be represented by
the ontology and a single mapping. If only one mapping is defined between two
ontologies, this can be seen as normative, and bi-directional mappings can be
described in terms of two directed mappings.

4.2 A Metamodel for Ontology Mappings

We propose a formalism-independent metamodel for OWL ontology mappings.
The metamodel is a consistent extension the metamodels for OWL DL ontologies
and rules. It has constraints defined in OCL [WK04] as well, which are specified
in footnotes.

Figure 4.1 shows the metamodel for mappings. In the figures, darker grey
classes denote classes from the metamodels of OWL DL and rule extensions.

Mapping

−uri:URI

−intensional :Boolean

−uniqueNameAssumption :Boolean

−inconsistencyPreservation :Boolean

−domainAssumption :String ={containmentinto, containmentonto, 

disjointness, equivalence}

Ontology

MappingAssertion

SemanticRelation

Equivalence

−negated :Boolean

ContainmentInto

−negated :Boolean

Disjointness

−negated :Boolean

MappableElement

OntologyElement

* sourceOntology

* targetOntology

*
targetElement

* sourceElement

Query

hasSemanticRelation

Equality

−negated :Boolean

ContainmentOnto

−negated :Boolean

1

1

1

1

1

Figure 4.1: Metamodel for ontology mappings

The central class in the metamodel is the class Mapping, having four at-
tributes. The URI, defined by the attribute uri, allows to uniquely identify a
mapping and refer to it as a first-class object. The assumptions about the use of
unique names for objects and the preservation of inconsistencies across mapped
ontologies, are defined through the boolean attributes uniqueNameAssumption
respectively inconsistencyPreservation. For the assumptions about the do-
main, we defined an attribute DomainAssumption. This attribute may take
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Query

Atom

PredicateSymbol

Class DataRange Property BuiltIn

−builtInID:URI

Term

VariableConstant

TermList

−order:int

DataVariable IndividualVariableIndividual DataValue

*

*

* *

*

1..*

*

1

1
1

containsAtom

hasDistinguishedVariable

Figure 4.2: Metamodel for ontology mappings - definition of a query

specific values that describe the relationship between the connected domains:
overlap, containment (in one of the two directions) or equivalence.

A mapping is always defined between two ontologies. An ontology is rep-
resented by the class Ontology in the OWL DL metamodel. Two associations
from Mapping to Ontology, sourceOntology and targetOntology, specify the
source respectively the target ontology of the mapping. Cardinalities on both
associations denote that to each Mapping instantiation, there is exactly one
Ontology connected as source and one as target.

A mapping consists of a set of mapping assertions, denoted by the MOF ag-
gregation relationship between the two classes Mapping and MappingAssertion.
The elements that are mapped in a MappingAssertion are defined by the
class MappableElement. A MappingAssertion is defined through exactly one
SemanticRelation, one source MappableElement and one target MappableElement.
This is defined through the three associations starting from MappingAssertion
and their cardinalities.

In Section 4.1.1, we have introduced four semantic relations along with their
logical negation to be defined in the metamodel. Two of these relationship types
are directly contained in the metamodel through the subclasses Equivalence
and Overlap of the class SemanticRelation. The other two, containment in ei-
ther direction, are defined through the subclass Containment and its additional
attribute direction, which can be sound (v) or complete (w).

The negated versions of all semantic relations are specified through the
boolean attribute negated of the class SemanticRelation. The other attribute
of SemanticRelation, interpretation, defines whether the mapping assertion
is assumed to be interpreted intentionally or extensionally.

As discussed in Section 4.1, a mapping assertion can connect two map-
pable elements, which may ontology elements or queries. To support this,
MappableElement has two subclasses OntologyElement and Query. The for-
mer is previously defined in the OWL DL metamodel, as shown in Figure ??.
The class Query reuses constructs from the SWRL metamodel. The reason for
reusing large parts of the rule metamodel lies in the fact that conceptually rules
and queries are of very similar nature [TF05]: A rule consists of a rule body
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<<mapping>>

source

target

<<owl::Ontology>> <<owl::Ontology>>

SampleMapping

{uniqueNameAssumption}
{soundContainment}

<<mapping>>

Ontology A Ontology B

Figure 4.3: Visual notation for a mapping between two ontologies

(antecedent) and rule head (consequent), both of which are conjunctions of log-
ical atoms. A query can be considered as a special kind of rule with an empty
head. The distinguished variables specify the variables that are returned by the
query. Informally, the answer to a query consists of all variable bindings for
which the grounded rule body is logically implied by the ontology. Figure 4.2
shows this connection and shows how a Query is composed. They depict how
atoms from the antecedent and the consequent of SWRL rules can be composed.
Similarly, a Query also contains a PredicateSymbol and some, possibly just
one, Terms. We defined the permitted predicate symbols through the subclasses
Class, DataRange, Property and BuiltIn. Similarly, the four different types
of terms are specified as well. The UML association class TermList between
Atom and Term allows to identify the order of the atom terms. Distinguished
variables of a query are differentiated through an association between Query
and Variable.

4.3 A UML Profile for Ontology Mappings

This section describes the UML profile as a visual notation for specifying on-
tology mappings, based on the metamodel discussed in Section 4.2. Our goal is
to allow the user to specify mappings without having decided yet on a specific
mapping language or even on a specific semantic relation. This is reflected in
the proposed visual syntax which is, like the metamodel, independent from a
concrete mapping formalism. The UML profile is consistent with the design con-
siderations taken for the previously defined UML profiles for OWL ontologies
and rule extensions.

First of all, users specify two ontologies between which they want to define
mappings. The visual notation for this as defined in our profile, is presented in
Figure 4.3. Just as for ontologies as collections of ontology elements, we apply
the UML grouping construct of a package to represent mappings as collections
of mapping assertions. Attributes of the mapping, like the domain assumption,
are represented between curly brackets.

In Figure 4.4, a source concept Publication is defined to be a special case of
the target concept Entry. Figure 4.5 models Researcher Fowler and Author
MartinFowler as two equivalent instances. The third example in Figure 4.6
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relates two properties authorOf and creatorOf using an extensional contain-
ment relationship. Both source and target elements of mapping assertions

Publication Entry

<<target>><<source>>

Figure 4.4: Sample containment relation between two concepts

Fowler:Researcher MartinFowler:Author
int

<<source>> <<target>>

Figure 4.5: Sample intensional equivalence relation between two individuals

<<source>> <<target>>

<< owl::ObjectProperty >>

authorOf
<< owl::ObjectProperty >>

creatorOf
ext

Figure 4.6: Sample extensional equivalence relation between two properties

are represented in a box, connected to each other via a dependency with the
corresponding symbol of the semantic relation. In the first step of the process,
when users just mark elements being semantically related without specifying
the type of semantic relation, the dependency does not carry any relation sym-
bol. Stereotypes in the two boxes denote source- and target ontology. Like
defined in the metamodel, these mapped elements can be any element of an
ontology (metaclass OntologyElement) or a query (metaclass Query). They are
represented like defined in the UML profile for OWL and rules. The parts of
the mappable elements which are effectively being mapped to each other, are
denoted via a double-lined box, which becomes relevant if the mapped elements
are more complex constructs, as explained in the following.

A more complex example mapping assertion is pictured in Figure 4.7. The
example defines that the union of the classes PhDThesis and MasterThesis, is
equivalent to the class Thesis.

Figure 4.8 shows another example of an equivalence relation between two ex-
pressions. It specifies that the class which is connected to the class Publication
via a property authorOf with the someValuesFrom restriction, is equivalent to
the class Author.

Figure 4.9 shows an example of an equivalence relation between two queries.
The first query is about a Publication X with a Topic Y named Z. The target
query is about an Entry X with subject Z. The mapping assertion defines the two
queries to be equivalent. The effective correspondences are established between
the the two distinguished variables X and Z, which are again denoted with a
double-lined box.
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PhDThesis MasterThesis

Thesis

<<source>>

<<target>>

Figure 4.7: Sample equivalence relation between complex class descriptions

Publication

authorOf

<< someValuesFrom >>
Author

<<source>>

<<target>>

Person

Figure 4.8: Sample equivalence relation between complex class descriptions

<< variable >>

X:Publication

isAbout

<< variable >>

Y:Topic

<< variable >>

X:Entry

<< variable >>

Z

subject

<< variable >>

Z

name

<<source>>

<<target>>

Figure 4.9: Sample equivalence relation between two queries
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