
A MOF-based Metamodel and UML Syntax for
Networked Ontologies

Saartje Brockmans, Peter Haase, Rudi Studer

Institute AIFB, Universität Karlsruhe (TH), Germany
{brockmans, haase, studer}@aifb.uni-karlsruhe.de

Abstract. Next generation semantic applications will be characterized
by a large number of networked ontologies; as a consequence the com-
plexity of semantic applications increases. In this paper we present a
metamodel and a UML syntax for the specification of networked ontolo-
gies. For the specification of the metamodel, we follow the metamodeling
approach of Model Driven Architecures.

1 Introduction

Ontologies provide a key technology to support interoperability on the web and
to enable semantic integration of both data and processes. A decade after the
notion of ontology was first proposed by Tom Gruber [7], ontologies have come
of age, and we are now entering a new phase, one in which ontologies are being
produced in larger numbers and exhibit greater complexity than ever before.
Next generation semantic applications will be characterized by a large number
of ontologies, some of them constantly evolving. As the complexity of semantic
applications increases, more and more knowledge will be embedded in applica-
tions, typically drawn from a wide variety of sources. This new generation of
applications will thus reflect the fact that new ontologies are embedded in a
network of already existing ontologies. In contrast with the current model of
semantic integration, future applications will rely on networks of contextualized
ontologies, which are usually locally, but not globally consistent. Thus, we are
now facing both new opportunities and new challenges. Specifically, we now have
the opportunity to build systems exhibiting a level of complexity qualitatively
superior to the previous generation of semantic systems, by integrating a variety
of large, reusable semantic resources. At the same time, we also face a challenge:
current methodologies and technologies are simply not sophisticated enough to
support the whole application development lifecycle for the envisaged semantic
applications. In the current situation, ontologies are distributed over the web,
sometimes available directly, sometimes hidden within corporate networks. These
ontologies are related to each others, but this remains difficult to assess: some
are simple copies of other ones (it is hard to know which one is the master copy),
some are versions of others (it is hard to know which one came first), some are
used jointly with others (this information is hidden in applications), some are
imported by others. A comprehensive understanding of the complex relation-
ships between ontologies in a network is key to be able to model, represent and

manage networked ontologies within an ontology infrastructure. Thus, in this
paper we provide a definition and formalization of networked ontologies. We fo-
cus on three of the main entities that are manipulated in networked ontologies:
(1) Ontologies themselves, where we rely on the Web Ontology Language OWL
[11], which has by now been well-established in the context of the Semantic Web,
(2) Rules, that extend the expressiveness of Description Logics-based ontologies
with the capability to model knowledge in the form of horn-like implications, and
(3) Mappings, which express relations between ontologies that can be processed
by applications (e.g., for importing data or translating messages).

To achieve flexibility and applicability, we define the networked ontology
model using a metamodeling approach: The metamodeling features of Model
Driven Architecture (MDA, [12]) provide the means for the specification of mod-
eling languages in a standardized, platform independent manner. In short, the
Meta Object Facility (MOF, [14]) provides the language for creating metamod-
els, UML [6] defines the language for creating models corresponding to specific
metamodels. Defining the networked ontology model in terms of a MOF compli-
ant metamodel yields a number of advantages:

Interoperability with Software Engineering approaches In order for the networked
ontology model to be widely adopted by users and to succeed in real-life applica-
tions, it must be well integrated with mainstream software trends. This includes
in particular interoperability with existing software tools and applications to put
it closer to ordinary developers. MDA is a solid basis for establishing such inter-
operability. With the networked ontology model defined in MOF, we can utilize
MDA’s support in modeling tools, model management and interoperability with
other MOF-defined metamodels.

Reuse of UML for modeling With respect to interoperability with other meta-
models, UML is of particular importance. UML is a well established formalism
for visual modeling and recently has been proposed as a visual notation for
knowledge representation languages as well [1]. While UML itself lacks specific
features of KR languages, the extension mechanisms, UML profiles, allow to
tailor the visual notation to the specific required needs.

Independence of particularities of specific formalisms The metamodeling ap-
proach of MDA and MOF allows to define the networked ontology model in an
abstract form independent of the particularities of specific logical formalisms.
This enables to be compatible with currently competing formalisms (e.g. in the
case of mapping languages), for which no standard exists yet. Language map-
pings, also called groundings, define the relationship with particular formalisms
and provide the semantics for the networked ontology model. Further, the ex-
tensibility capabilities of MOF allow to add new modules to the metamodel if
required in the future.

The remainder of the paper is structured as follows: In Section 2 we provide
an overview of related work. In Section 3 we introduce the metamodeling features
of MOF and how they are used for the specification of the networked ontology

model. In Section 4 we present the specification of the networked ontology model,
namely the metamodel of OWL DL, which serves as the core of the model, the
rules metamodel, which provides support for defining rules on top of ontologies,
and the mapping metamodel, which describes how ontologies in a network of
ontologies are related via ontology mappings. For a full reference to the complete
specification, we refer the reader to [3]. We conclude the paper in Section 5.

2 Related Work

There exists a number of related works for the specification of ontology, rule and
mapping languages. However, there currently exist no approaches that allow
for the specification of networked ontologies in an integrated manner. The most
relevant thread of related work are the efforts of the OMG to standardize an
Ontology Definition Metamodel (ODM). As a response to the original call of
the OMG for an Ontology Definition Metamodel [15], the OMG has received a
number of diverse proposals. The various proposals have been merged into one
submission [10] that covers several metamodels for RDF, OWL, Common Logic,
and Topic Maps, as well as mappings between them. Our proposed metamodel
departs from this approach as it strictly focuses on OWL DL and is tailored to
its specific features. Further, rule extensions have been considered important for
the ODM, but have not been addressed so far. Also, no other proposals so far
has considered OWL ontology mappings. Currently, our work is being aligned
with the OMG standardization efforts. To the best of our knowledge, our work
presents the first MOF-based metamodel and UML profile for rule-extended
OWL ontologies together with OWL ontology mappings.

3 Metamodeling with MOF

This section introduces the essential ideas of MOF and shows how a metamodel
and a UML profile for networked ontologies fit into this more general picture.

The methodology, tools and technology of MOF and UML seem to be an ad-
equate approach for supporting the development and maintenance of networked
ontologies. The general idea of using MOF-based metamodels and UML profiles
for this purpose is depicted in Figure 1: A metamodel for networked ontologies
as well as a UML profile are grounded in MOF, in that they are defined in terms
of the MOF meta-metamodel, explained further in this section. The UML pro-
file mechanism is an extension mechanism to tailor UML to specific application
areas. Our proposed UML profile defines a visual notation for optimally sup-
porting the specification of ontologies, rules and ontology mappings. This visual
syntax is based on the metamodel and is independent from a concrete mapping
formalism. Mappings in both directions between the metamodel and the profile
have to be established.

OWL DL ontologies, rules, and ontology mappings in a concrete language
instantiate the metamodel. The constructs of the specific languages have a direct
correspondence with those of the metamodel. Analogously, specific UML models

Fig. 1. How a metamodel and a UML profile for networked ontologies fit into the
picture of the Meta Object Facility framework

instantiate the UML profile. Within the MOF framework, the UML models are
translated into definitions based on the above mappings between the metamodel
and the UML profile. In case of ontology mappings, the decision about a concrete
mapping formalism is taken in this translation step, so after the visual modeling
of the ontology mappings. This decision is based on the types of the mappings
which were modeled.

3.1 Meta Object Facility

MOF - Meta-metamodel

MetaClass, MetaAttr, ...

Metamodel:

MetaClass(“Class“), MetaClass(“Property“), ...

Model:

Class(“Wine“), Class(“Region“), ...

Information:

Wine: ElyseZinfandel, Region: NapaRegion

Fig. 2. OMG Four-Layer Metadata Architecture

The Meta Object Facility (MOF) is an extensible model driven integration
framework for defining, manipulating and integrating metadata and data in a
platform independent manner. The goal is to provide a framework that sup-
ports any kind of metadata and that allows new kinds to be added as required.

MOF plays a crucial role in the four-layer metadata architecture of the Object
Management Group (OMG) shown in Figure 2. The bottom layer of this archi-
tecture encompasses the raw information to be described. For example, Figure 2
contains information about a wine called ElyseZinfandel and about the Napa
region, where this wine grows. The model layer contains the definition of the
required structures, e.g. in the example it contains the classes used for grouping
information. Consequently, the classes Wine and Region are defined. If these
are combined, they describe the model for the given domain. The metamodel
defines the terms in which the model is expressed. In our example, we would
state that models are expressed with classes and properties by instantiating the
respective meta classes. Finally, the MOF constitutes the top layer, also called
the meta-metamodel layer. Note that the top MOF layer is hard wired in the
sense that it is fixed, while the other layers are flexible and allow to express
various metamodels such as the UML metamodel or the metamodel for OWL
DL ontologies, rules and ontology mappings.

3.2 Ontology Metamodel and UML Profile

The ontology metamodel as well as a UML profile are grounded in MOF, in that
they are defined in terms of the MOF meta-metamodel. The UML profile mech-
anism is an extension mechanism to tailor UML to specific application areas.
UML profiles define a visual notation for optimally supporting the specification
of networked ontology models. This visual syntax is based on the metamodel.
Mappings in both directions between the metamodel and the profile have to be
established.

However, the OWL ontology metamodel is just one part of the networked on-
tology model. The metamodel consists of several modules. The core module, i.e.
the OWL metamodel, is extended by different modules that provide additional
features, e.g. rules or mappings. In many application scenarios, only particular
aspects of the networked ontology model are needed. In these cases, only the
relevant modules need to be supported and used.

While the OWL ontology metamodel has a direct grounding in the OWL
ontology language, the extensions have a generic character in that they are for-
malism independent and allow a grounding in different formalisms.

4 The Networked Ontology Metamodel

In this section, we present the networked ontology metamodel and a correspond-
ing UML profile. We build it incrementally starting with the OWL DL ontology
metamodel and UML profile. Secondly we introduce the metamodel and UML
profile for SWRL rules, extending these for OWL DL. Finally, we present the
metamodel and UML profile for OWL ontology mappings, allowing to model
mappings in a formalism-independent way, which is based on the ontology and
rules metamodels. In the metamodel figures, darker grey classes denote existing
classes from the underlying metamodels. All metamodels are augmented with

constraints specifying invariants that have to be fulfilled by all models that
instantiate the metamodels. These constraints are expressed in the Object Con-
straint Language [17], a declarative language that provides constraint and object
query expressions on object models that cannot otherwise be expressed by di-
agrammatic notation. Since the UML profile mechanism supports a restricted
form of metamodeling, our proposed UML profiles contain a set of extensions
and constraints to UML2. This tailors UML2 such that models instantiating the
metamodels can be defined. Extensions to UML2 consist of custom UML stereo-
types, which usually carry the name of the corresponding language element, and
dependencies. For a complete reference of the formal correspondence between
the metamodels and the languages, the relationship between the UML profiles
and the metamodels, and the OCL constraints for the metamodels, we refer the
reader to [3].

4.1 A Metamodel and UML Profile for Ontologies

A Metamodel for OWL Ontologies Our ontology metamodel [4] defines a
metamodel for OWL ontologies. This metamodel is built on the MOF framework.
A metamodel for a language that allows the definition of ontologies naturally
follows from the modeling primitives offered by the ontology language. The pro-
posed metamodel has a one-to-one mapping to the abstract syntax of OWL DL
and thereby to the formal semantics of OWL. It primarily uses basic well-known
concepts from UML.

Figure 3 shows the main elements of the ontology metamodel. Every element
of an ontology is defined as a subclass of OntologyElement and hence as a
member of an Ontology.

For a full representation of all other elements of the OWL DL metamodel,
we refer to [4].

A UML Profile for OWL Ontologies The UML ontology profile describes a
visual UML syntax to model ontologies. We provide a UML profile that is faithful
to both UML2 and OWL DL, with a maximal reuse of UML2 features and OWL
DL features. Our UML profile has a basic mapping, from OWL class to UML
class, from OWL property to binary UML association, from OWL individual to
UML object, and from OWL property filler to UML object association.

Figure 4 shows a small example of an ontology depicted using the UML pro-
file. It contains the definition of classes Article, Book and Thesis as subclasses
of Publication. The first two are defined to be disjoint, using an appropri-
ate stereotype on the dependency between both classes. Moreover, the ontology
contains a class Person and its subclass Researcher. An association between
Publication and Person denotes the object property authorOf, from which
domain and range are defined via an association class. Furthermore, the ontol-
ogy defines an object property between Publication and Topic. Finally, the
ontology contains some instances of its classes and object properties.

Ontology

AnnotatableElement

-uri:URI

OntologyElement

OntologyProperty

AnnotationProperty

Property

Class

Individual

DataRange

Fig. 3. Main Elements of the Ontology Metamodel

Another small ontology of the same domain is presented in Figure 5. For a
discussion of all details of the UML profile for OWL DL ontologies, we refer the
reader to [4].

4.2 A Metamodel and UML Profile for Rules

A Metamodel for SWRL Rules We propose a metamodel for rules as a
consistent extension of the metamodel for OWL DL ontologies which we de-
scribed in the previous section. In particular, we focus on SWRL rules, which is
currently the most prominent proposal for a rule extension of OWL. It also sub-
sumes other proposals such as DL-safe rules [13]. Figure 6 shows the metamodel
for SWRL rules. We discuss the metamodel along the SWRL specifications. In-
terested readers may refer to the specifications [9] for a full account of SWRL.

SWRL defines rules as part of an ontology. Like that, the SWRL metamodel
defines Rule as a subclass of OntologyElement. OntologyElement is defined in
the OWL DL metamodel (Figure 3) as an element of an Ontology, via the com-
position link between NamedElement and Ontology. As can also be seen in Fig-
ure 3, the class OntologyElement is a subclass of the class AnnotatableElement,
which defines that rules can be annotated. As annotations are modeled in the
ontology metamodel, a URI reference can be assigned to a rule for identification.

Moreover, as Figure 6 shows, a rule consists of an antecedent and a conse-
quent, also referred to as body and head of the rule, respectively. The multi-
plicities of the association between Antecedent and Atom and of the association

<< owl::Ontology >>

OntologyA

Publication Person

Researcher

authorOf

FowlerUML: Book Fowler: Researcher

authorOf

Book

<< owl::ObjectProperty >>

authorOf

Article

<< owl::disjointWith >>

<< rdfs::range>> << rdfs::domain>>

Topic
isAbout

Thesis

name

Fig. 4. A first sample ontology depicted using the UML profile for OWL ontologies

between Consequent and Atom define that an antecedent and a consequent can
hold zero or more atoms. The multiplicity in the other direction defines that the
same atom can appear in several antecedents or consequents. According to the
SWRL specifications, every Variable that occurs in the Consequent of a rule
must occur in the Antecedent of that rule, a condition referred to as ”safety”.
We defined this condition in the metamodel as one of the OCL constraints.

The atoms of the antecedent and the consequent consist of predicate sym-
bols and terms. According to SWRL, they can have different forms. The first
three, OWL description, data range and property, were already provided in
the OWL ontology metamodel, namely as metaclasses Class, DataRange and
Property, respectively. As can be seen in Figure 6, the predicates Class,
DataRange, Property and BuiltIn are all defined as subclasses of the class
PredicateSymbol, which is associated to Atom. The remaining two atom
types, sameAs and differentFrom, are represented as specific instances of
PredicateSymbol.

To define the order of the atom terms, we put a class TermList in between
Atom and Term. This UML association class connects atoms with terms and
defines the term order via the attribute order.

A UML Profile for Rules In this section, we introduce a UML profile for
SWRL rules which is consistent with the design considerations taken for the
UML profile for OWL ontologies. Figure 7 shows an example of a rule, which
defines that when an author does not like the topic of his publication, he is a
bad author.

As can be seen in the Figure, a rule is depicted by two boxes connected
via a dependency with the stereotype rule. All atoms of the antecedent are
contained in the box at the origin of the dependency, whereas the box at the
end contains the consequent. This way, antecedent and consequent can easily be

<< owl::Ontology >>

OntologyB

Entry Author
creatorOf

MartinFowler: Author

Article

<< owl::ObjectProperty >>

creatorOf

<< rdfs::domain >><< rdfs::range >>

subject

PhDThesisMasterThesis

Fig. 5. A second sample ontology depicted using the UML profile for OWL ontologies

distinguished, and it also allows to distinguish between the rule atoms and the
OWL DL facts which are depicted in similar ways. The left box of our example
contains the three variable definitions and the three properties that are defined
between these variables. The consequent-box on the right contains the definition
of the variable X from which it is known which class it belongs to.

Although the existing ontology UML profile already comprises a visual syntax
for individuals and data values, namely by applying the UML object notation,
it does not include a notation for variables since OWL DL ontologies do not
contain variables. We decided to depict variables in the UML object notation as
well, since a variable can be seen as a partially unknown class instance or data
value. We provide a stereotype variable to distinguish a variable.

Finally, we now discuss the representation of the different SWRL predicate
symbols. For atoms with a class description as its predicate symbol, the UML
profile for OWL DL provided a notation for individuals as instances of class
descriptions already. An atom with a class description and a variable as its
term, is illustrated similarly. An appropriate stereotype is added. An example
of this can be seen in the consequent in Figure 7. Similarly, a visual construct
for a data range definition using individuals is contained in the UML profile for
OWL DL as well, namely represented in the same way as class individuals. Data
range constructs containing variables are also depicted in a similar fashion.

Object properties are depicted as directed associations between the two in-
volved elements. A datatype property is pictured as a UML attribute. These
notations were provided for properties of individuals by the UML profile for
OWL DL, and we follow them to depict properties of variables. The antecedent
of the rule in Figure 7 contains three such object properties between variables,
authorOf, dislikesTopic and isAbout.

OntologyElement

Rule

Antecedent Consequent

Atom

PredicateSymbol

Class DataRange Property BuiltIn

−builtInID:URI

Term

Variable Constant

TermList

−order:int

DataVariable IndividualVariable Individual DataValue

hasConsequenthasAntecedent

containsAtomcontainsAtom

hasPredicateSymbol

1 1

* *

* *

* *

*

1 1

1

1
1

Fig. 6. The Rule Metamodel

<< variable >>

X

<< variable >>

Y

<< variable >>

Z

<< variable >>

X:BadAuthor

authorOf
isAbout

dislikesTopic

<<rule>>

Fig. 7. BadAuthor(x) ← dislikesTopic(x, y) ∧ authorOf(x, z) ∧ isAbout(z, y)

According to the UML profile for OWL DL, equality and inequality between
objects are depicted using object relations. Because of the similarity between in-
dividuals and variables, as shortly mentioned before, we propose to use the same
visual notation for sameAs and differentFrom relations between two variables
or between a variable and an object.

The last possible predicate symbol in SWRL rules is Built-in. For the
visual representation of built-in relations, we use usual associations to all
participating variables and data values, similar to the owl:AllDifferent
concept provided in the UML profile for OWL DL. To denote the
built-in relation, we provide the stereotype built-in together with the
specific built-in ID. The names of the associations denote the or-
der of the arguments, by numbers. For the six most basic built-ins,
swrlb:equal, swrlb:notEqual, swrlb:lessThan, swrlb:lessThanOrEqual,
swrlb:greaterThan and swrlb:greaterThanOrEqual, we provide an alterna-
tive notation. Instead of depicting the stereotype and the name of the built-in,
an appropriate icon can be used.

4.3 A Metamodel and UML Profile for Ontology Mappings

A Metamodel for OWL Ontology Mappings In typical use cases such as
data translation, data integration, etc. mappings between different rule-extended
ontologies would have to be defined. We propose a formalism-independent meta-
model for OWL ontology mappings ([2], [8], [5]).The metamodel is a consistent
extension of our metamodels for OWL DL ontologies and SWRL rules.

Figure 8 shows the metamodel for mappings. The central class in the meta-

Mapping

−uri:URI

−uniqueNameAssumption :Boolean

−inconsistencyPropagation :Boolean

−domainAssumption :String ={overlap, soundContainment,

completeContainment, equivalence}

Ontology

MappingAssertion

SemanticRelation

−interpretation:String ={intensional, extensional}

−negated :Boolean

Equivalence Containment

−direction:String ={sound. complete}

Overlap

MappableElement

OntologyElement

* sourceOntology

* targetOntology

*
targetElement

* sourceElement

Query

hasSemanticRelation

1

1

1

1

1

Fig. 8. The Ontology Mapping Metamodel

model is the class Mapping, having four attributes, of which uri allows to
uniquely identify a mapping and refer to it as a first-class object.

A mapping is always defined between two ontologies. An ontology is repre-
sented by the class Ontology in the OWL DL metamodel. Two associations from
Mapping to Ontology, sourceOntology and targetOntology, specify the source
respectively the target ontology of the mapping. Cardinalities on both associa-
tions denote that to each Mapping instantiation, there is exactly one Ontology
connected as source and one as target.

A mapping consists of a set of mapping assertions, denoted by the MOF ag-
gregation relationship between the two classes Mapping and MappingAssertion.
The elements that are mapped in a MappingAssertion are defined by
the class MappableElement. A MappingAssertion is defined through ex-
actly one SemanticRelation, one source MappableElement and one target
MappableElement. This is defined through the three associations starting from
MappingAssertion, and their cardinalities.

We define four semantic relations along with their logical negation to be
defined in the metamodel. Equivalence and Overlap are directly contained
in the metamodel as subclassesof the class SemanticRelation. The other two,
containment in either direction, are defined through the subclass Containment
and its additional attribute direction, which can be sound or complete.

The negated versions of all semantic relations are specified through the
boolean attribute negated of the class SemanticRelation. For example, a
negated Overlap relation specifies the disjointness of two elements. The other
attribute of SemanticRelation, interpretation, defines whether the mapping
assertion is assumed to be interpreted intentionally or extensionally. Please note
that the metamodel in principle supports all semantic relations for all mappable
elements, including individuals.

A mapping assertion can connect two mappable elements, which may be on-
tology elements or queries. To support this, MappableElement has two subclasses
OntologyElement and Query. The former is previously defined in the OWL DL
metamodel, as shown in Figure 3. The class Query reuses constructs from the
SWRL rules metamodel (Section 4.2). The reason for reusing large parts of the
rule metamodel lies in the fact that conceptually, rules and queries are of very
similar nature [16]: A rule consists of a rule body (antecedent) and rule head
(consequent), both of which are conjunctions of logical atoms. A query can be
considered as a special kind of rule with an empty head. The distinguished vari-
ables specify the variables that are returned by the query. Informally, the answer
to a query consists of all variable bindings for which the grounded rule body is
logically implied by the ontology.

A UML Profile for OWL Ontology Mappings This section describes the
UML profile for specifying ontology mappings. Our goal is to allow the user to
specify mappings without having decided yet on a specific mapping language
or even on a specific semantic relation. This is reflected in the proposed visual
syntax which is, like the metamodel, independent from a concrete mapping for-
malism. After specifying the mappings, the decision on the specific mapping
formalism is being taken. The UML profile is consistent with the design consid-
erations taken for the previously defined UML profiles for OWL ontologies and
SWRL rules.

<<mapping>>

source

target

<<owl::Ontology>> <<owl::Ontology>>

SampleMapping

{uniqueNameAssumption}
{soundContainment}

<<mapping>>

Ontology A Ontology B

Fig. 9. Visual notation for a mapping between two ontologies

First of all, users specify two ontologies between which they want to define
mappings. The visual notation for this as defined in our profile, is presented in
Figure 9. Just as for ontologies as collections of ontology elements, we apply the
UML grouping construct of a package to represent mappings as collections of
mapping assertions. Attributes of the mapping, like the domain assumption, are
represented within curly brackets.

In Figure 10, a source concept Publication is defined to be more specific
than the target concept Entry.

Publication Entry

<<target>><<source>>

Fig. 10. Sample containment relation between two concepts

Both source and target elements of mapping assertions are represented in
a box, connected to each other via a dependency with the corresponding sym-
bol of the semantic relation. In the first step of the process, when users just
mark elements being semantically related without specifying the type of seman-
tic relation, the dependency does not carry any relation symbol. Stereotypes
in the two boxes denote source- and target ontology. Like defined in the meta-
model, these mapped elements can be any element of an ontology (metaclass
OntologyElement) or a query (metaclass Query). They are represented like de-
fined in the UML profile for OWL and rules. The parts of the mappable elements
which are effectively being mapped to each other, are denoted via a double-lined
box, which becomes relevant if the mapped elements are more complex con-
structs, as explained in the following.

PhDThesis MasterThesis

Thesis

<<source>>

<<target>>

Fig. 11. Sample equivalence relation between complex class descriptions

A more complex example mapping assertion is pictured in Figure 11. The
example defines that the union of the classes PhDThesis and MasterThesis, is
equivalent to the class Thesis. Figure 12 shows an example of an equivalence
relation between two queries. The first query is about a Publication X with
a Topic Y named Z. The target query is about an Entry X with subject Z.
The mapping assertion defines the two queries to be equivalent. The effective
correspondences are established between the the two distinguished variables X
and Z, which are again denoted with a double-lined box.

<< variable >>

X:Publication

isAbout

<< variable >>

Y:Topic

<< variable >>

X:Entry

<< variable >>

Z

subject

<< variable >>

Z

name

<<source>>

<<target>>

Fig. 12. Sample equivalence relation between two queries

5 Conclusion

Next generation semantic applications will be characterized by a large number of
networked ontologies; as a consequence the complexity of semantic applications
increases. In this paper we have presented a metamodel for the specification of
networked ontologies. We have followed the metamodeling approach of Model
Driven Architecures for the specification of the metamodel. Specifically, we have
presented three modules of the metamodel:

1. The OWL metamodel serves as the core of our networked ontology model,
2. the rule metamodel extends the ontology language with the expressiveness

to model horn-like rules, and
3. the mapping metamodel allows to specify ontology mappings that describe

correspondences between ontology elements in a network of ontologies.

The specification of the metamodel only is a first step. Future Work will include:

– Extensions and refinements of the current metamodel to deal with additional
aspects of networked ontologies, such as an explicit representation of context.

– The alignment of our metamodel with standardization activities of the OMG.
As mentioned before, first steps in this direction have been taken.

– The alignment with future results of the W3C Rule Interchange Format
(RIF) Working Group1. Currently, we support SWRL as one of the RIF
proposals.

– The implementation of components to support the individual phases of the
lifecycle of networked ontologies, including modeling, maintaining, and evolv-
ing networked ontologies.

Acknowledgments

The work reported in this paper was partially funded by the European Union
in the IST projects NeOn (IST-2006-027595, http://www.neon-project.org/)
and Sekt (IST-2003-506826, http://www.sekt-project.com/) and the German
Research Foundation (DFG) in scope of Graduate School Information Manage-
ment and Market Engineering.
1 http://www.w3.org/2005/rules/

References

1. K. Baclawski, M. Kokar, Kogut P., Hart J., Smith J., Holmes W., J. Letkowski, and
Aronson M. Extending UML to Support Ontological Engineering for the Semantic
Web. In 4th International Conference on UML, Toronto, Canada, October 2001.

2. P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidt.
C-OWL: Contextualizing ontologies. In Second International Semantic Web Con-
ference ISWC’03, volume 2870 of LNCS, pages 164–179. Springer, 2003.

3. S. Brockmans and P. Haase. A Metamodel and UML Profile for Net-
worked Ontologies – A Complete Reference. Technical report, Universität Karl-
sruhe, April 2006. http://www.aifb.uni-karlsruhe.de/WBS/sbr/publications/
ontology-metamodeling.pdf.

4. S. Brockmans, R. Volz, A. Eberhart, and P. Loeffler. Visual Modeling of OWL DL
Ontologies using UML. In F. van Harmelen, S. A. McIlraith, and D. Plexousakis,
editors, The Semantic Web – ISWC 2004, pages 198–213. Springer-Verlag, 2004.

5. D. Calvanese, G. De Giacomo, and M. Lenzerini. Description logics for informa-
tion integration. In A. Kakas and F. Sadri, editors, Computational Logic: Logic
Programming and Beyond, volume 2408 of LNCS, pages 41–60. Springer, 2002.

6. Martin Fowler. UML Distilled. Addison-Wesley, third edition, 2004.
7. T. R. Gruber. Towards Principles for the Design of Ontologies Used for Knowl-

edge Sharing. In N. Guarino and R. Poli, editors, Formal Ontology in Conceptual
Analysis and Knowledge Representation, Deventer, The Netherlands, 1993. Kluwer
Academic Publishers.

8. Peter Haase and Boris Motik. A mapping system for the integration of OWL-DL
ontologies. In In Proceedings of the ACM-Workshop: Interoperability of Heteroge-
neous Information Systems (IHIS05), November 2005.

9. Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, and Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL
and RuleML. World Wide Web Consortium, May 2004. W3C Member Submission,
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

10. IBM, Sandpiper Software Inc. Ontology Definition Metamodel, Sixth Revised Sub-
mission to OMG, June 2006.

11. D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview.
Technical report, World Wide Web Consortium (W3C), August 2003. Internet:
http://www.w3.org/TR/owl-features/.

12. Stephen J. Mellor, Scott Kendall, Axel Uhl, and Dirk Weise. MDA Distilled.
Addison-Wesley Pub Co, March 2004.

13. B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules.
In S. A. McIlraith, D. Plexousakis, and F. van Harmelen, editors, International
Semantic Web Conference, volume 3298 of Lecture Notes in Computer Science,
pages 549–563. Springer, 2004.

14. Object Management Group. Meta Object Facility (MOF) Specification. Technical
report, Object Management Group (OMG), April 2002. http://www.omg.org/

docs/formal/02-04-03.pdf.
15. Object Management Group. Ontology definition metamodel – request for proposal,

March 2003. http://www.omg.org/docs/ontology/03-03-01.rtf.
16. S. Tessaris and E. Franconi. Rules and queries with ontologies: a unifying logical

framework. In I. Horrocks, U. Sattler, and F. Wolter, editors, Description Logics,
volume 147 of CEUR Workshop Proceedings. CEUR-WS.org, 2005.

17. J. Warmer and A. Kleppe. Object Constraint Language 2.0. MITP Verlag, 2004.

