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Abstract. The recent OWL 2 W3C recommendation includes the lightweigh
ontology language OWL EL which is semantically based on daresion of the
&L description logic (DL). It is widely assumed that inferemgiin OWL EL

is possible in polynomial time, but it is not obvious how tdend existing rea-
soning procedures fa@ L™ accordingly. We set out to close this gap by devel-
oping inferencing methods faSROEL(M, x) — a DL that subsumes the main
features of OWL EL. We present a framework for studying malisation cal-
culi based on datalog, and we use it to investigate the resaequirements for
inferencing. We can show that certa®ROE.L(M, x) feature combinations must
lead to increased space upper bounds in any materialiszglonlus, suggesting
that dficient implementations are easier to obtain for suitablysendragments
of SROEL(M, X).

1 Introduction

The recent OWL 2 W3C recommendation includes the lightweigiiology language
OWL EL [11] which is semantically based on an extension of &% description
logic (DL). It is widely assumed that inferencing in OWL EL p@ssible in polyno-
mial time, but it is not obvious how to extend existing redegrprocedures fo€L**
accordingly B]. In this paper, we set out to close this gap by developintablé in-
ferencing calculi for the DLSROEL(, x) which can be considered as an extension
of the tractable DLEL™ with local reflexivity (Self), conjunctions of roles, and con-
cept products. The latter two features generalise rol®idisjess, the universal (top)
role, and admissible range restrictions as introduced inL@A. Concrete domains
(datatypes) hardly interact with the additional featuresSROEL(m, x) and are not
considered in this paper, though the according mechanisetin P] could be lifted
to SROEL(M, x).

Our second main contribution is to assess éfficiencyof the proposed calculi.
Inferencing for&L-type DLs often suggests a materialisation-based (or cpeEsee-
driven) implementation, where all deductions are compsit@dltaneously in a bottom-
up fashion. The number of inferable facts is an importantsaeaof dficiency in this

* The results established herein have been published in:udatkdtzsch. Hicient Inferencing
for OWL EL. In Tomi Janhunen, llkka Niemela (eds.): Proceegdi of the 12th European
Confernce on Logics in Atrtificial Intelligence (JELIA10QNAI. Springer, 2010. To appear.



Table 1. Syntax and semantics SIROEL(1, x) concept expressions and axioms for an interpre-
tation 7 with domain4?

Concept constructor  |Syntax Semantics
top T A7
bottom 1 0
conjunction CcnD Cc'nD?
existential restriction |dRC (xedl |year:(xy)ye R, yeCl}
local reflexivity 3S.Self {(xe Al | (x,x) e ST}
nominal {a) {a’}
Axiom Syntax Semantics
concept assertion C(a) a’ eC’
role assertion R(a, b) @',blye Rl
concept inclusion (GCI)|C £ D cfcp’
role inclusion RCT R cT?
generalised role inclusi¢Ro SCT (X2 (XY e R (y,2 €S’ for somey} c T
role conjunction S1MS;CT|S NS, cT!
concept product CxDCT |[CfxDfcT’
RCCxD |TfcCfxD?

C,DeC,R,S(i),TeNR,a,beM |

case, and we present a formalisation of materialisatiocutigb relate it to the space
complexity of datalog reasoning. Since upper space bowrdiatalog are exponential
in thearity of inferred predicates, our goal is to find materialisatiattali where these
arities are low. We are able to show that there are limits thsaptimisation: some
inferencing tasks intrinsically require predicates of@garities than others.

We present four inferencing calculi: a materialisatiorcadls for instance checking
in SROEL(N, x) in Section3, and three calculi for classification $ROE.L(M, x) and
two of its fragments in SectioA. Thereafter, in Sectiob, we show that the arity of
inferred predicates is minimal for each of the presentecldial

2 Preliminaries

This section summarises the basic notions from DL and datdlat are used in this
paper. The main DL studied hereinSROE L(M, x) which subsumes all semantic fea-
tures of OWL EL that are not related to datatypes (concreteaiios). Readers without
basic acquaintance to description logics are advised ¢o tethe literature4]. Details
about relationship of OWL 2 to DLs are found i |

A signature of SROEL(, x) consists of three disjoint finite sets ofdividual
namesN,, concept nameBlc, androle named\g. Given such a signature, the set of
SROEL(N, x) concept expressiors is defined inductively to contain the expressions
in Tablel (top). The set oBROE L(, x) axiomsis then defined as in Table(bottom).
One may distinguish between axiomsABox(assertional axioms),Box(terminolog-
ical axioms: GCls), an&Box(axioms related to roles).

Knowledge bases are sets of axioms that satisfy some aulifiwoperties. Con-
sider a set KB ofSROEL(, x) axioms. We inductively define the set wén-simple



rolesof KB to contain all rolesT for which there is an axiorRo ST T € KB, or an
axiomR C T such thaR is non-simple. A role that is not non-simple is callsithple
Moreover, given a role nant, we defineran(R) to denote the set of concept expres-
sionsD € C for which KB contains axiomRLC S;,...,S,.1 C SpandS, C C x D for
someSy, ..., S, € Ng andn > 0. The set KB is @ROE.L(M, xX) knowledge basi the
following restrictions are satisfied:

— all rolesS occurring in expressionsS.Self € KB are simple,

— all rolesS3, S, occurring in axiomsS; M S, T T € KB are simple,

— for every axiomRo SC T € KB we haveran(T) C ran(S), and

— for every axiomS; M S, C T € KB we haveran(T) C ran(S;1) U ran(Sy).

Note that we do notimpose the structural restrictions of Rggularity here$] which
also apply to OWL DL (and hence to OWL EL) ontologies, sincesthare not needed
for efficient reasoning IBROEL(M, X).

The semantics aBROE L(M, x) is specified by defining interpretatiofis= (47, )
where4? is a non-empty set, and is an interpretation function that maps individuals
to elements of4?, concept names to subsets.6f, and role names to binary rela-
tions over4”. Interpretations are extended to concept expressions Eabie 1 (top).

A SROEL(N, x) axiom issatisfiedby an interpretatiod” if the according condition of
Tablel (bottom) holds satisfies a knowledge base KB, writtéri= KB, if it satisfies
all of its axioms. The models of an axiom or knowledge baséter@nterpretations that
satisfy it, and a semantic entailment relatjoiis defined as usual.

Concept products on the left-hand side allow us to define tihvetsal (top) roldJ
with an axiomT x T C U. Note that we can also define the empty (bottom) Mlesing
AN.T C L. Using the empty role, conjunctions of (simple) roles areaagalisation of
disjointness of (simple) roles: the axioRn S C N declaresS andR to be disjoint.
In the absence of other role conjunctions, our requirementsoncept products in
SROEL(N, x) knowledge bases agree with the known admissibility resméents for
range restrictions is L [3].

To simplify our investigations, we first observe that 88ROE L (M, x) knowledge
base can be converted into a normal form in a similar fashsootlaerE £L-type logics

2.

Definition 1. ASROEL(N, x) knowledge baskB is in normal formif it contains only
axioms of one of the following forms:

C@ R@b) Aci1L TCC Ac{c ({ajC{c}
ACC AmBCC 3JRACC AC3JdRB  3dJRSefc C  AC JRSelf
RCT RoSCT RNSCT AxXxBCR RZCxD

where AB,C,De N, RS, T eNg,andab,ceN,.

It is well-known that DL knowledge bases can often be tramséal into such nor-
mal forms in such a way that satisfiability is preserved. Here observe that one
actually obtains a stronger correspondence that is clastdyed to the notion of con-
servative extension:



CxDCR — {CCXXxDCR}

cxDcCR — {DCX,CxXCR}
Rc €CxD — {XzCRC XxD)
RC CxD > {XED,RCCxX}
ccbD — {CC X XCD}
ccrT — 0
1L ccC — 0

CnACB — {CC X, XMAC B}
AC CnD w— [ACC,ACD)}

JRCC A ~ {CCX,IRXC A}
AC IRC - {ACIRX XCC}
C(a) — {X(a),XC C}

A, B e Nc, X € N¢ a fresh concept name,
C,D,C,D e CwithC,D ¢ Nc, Re Ng

Fig. 1. Normal form transformation faBROE.L(1, X)

Proposition 1. For everySROEL(M, x) knowledge baskB, a SROEL(M, x) knowl-

edge bas&B’ over an extended signature can be computed in linear timle that all

axioms inKB’ are in normal form, and, for allSROE L(M, x) axiomsa that only use
signature symbols froidB, we find thakKB  « iff KB’ E «.

Proof. A transformation is only required for axioms with complexicept expressions,
since we already require most RBox axioms to be in normal floyrdefinition! The
transformation for axioms that are not in normal form yetdsamplished by exhaus-
tively applying the rules of Figl, where each rule describes the replacement of the
axiom on the right-hand side by the set of axioms on the laftehside. With dresh
concept name, we mean one that does not occur in any axiotit igeeasy to see that
only a linear number of transformation steps are requirderevit is important to note
that the rule forA C C 1 D is only applicable ifA is no compound expression, so that
the duplication ofA still leads to only a linear increase in size.

It is easy to see that, for each transformation rule, theltieguset of axioms has
the required semantic relation to the original axiom: Anteipretation that satisfies
the original axiom can be extended to an interpretation@fthnsformed axiom set by
interpreting each fresh concept naxies the least set of domain elements for which
the transformed set of axioms is valid (using the originéiipretation interpretation
for all other symbols). Conversely, any interpretation ettisfies the transformed set
of axioms necessarily satisfies the original axiom. Sinese¢hobservations are easily
verified for each transformation rule, the claim follows byiction. O

Roughly speaking, the previous result states that eS&®@E.L(1, x) knowledge
base is semantically equivalent “up to the interpretaticauxiliary signature symbols”
to a knowledge base in normal form.

1 This could be relaxed by allowing arbitrarily long role ahsivhich can easily be decomposed
into binary role chains as in our definition.



Our formalisation of inferencing calculi is based on thed®rule languagdata-
log [1]. A signatureof datalog is a tupléC, P), whereC is a finite set otonstantsand
P is a finite set ofpredicateswhere each predicae € P has a fixed arityar(p) > 0.
We assumé to be a disjoint uniorP; U P, of IDB predicates?; andEDB predicates
Pe.2 Throughout this paper, we uséto denote a countably infinite set vériables.
Elements ofC U V are callederms

A datalog atomover a signaturéC, P) is an expressiop(ty, ..., t,) wherep € P
with ar(p) = n,andtj e CuV fori = 1,...,n. An IDB (EDB) atom is one that uses an
IDB (EDB) predicate. Adatalog ruleis a formula of the fornB; A... A B — H where
B; andH are datalog atoms, ardlis an IDB atom. The premise of a rule is also called
its body, and the conclusion is called it®ad A datalog program Hs a set of datalog
rules. Afactis a ground, i.e. variable-free, rule with an empty body.

A ground substitutiorr for a signaturgC, P) is a functiono : V — C. Substi-
tutions are extended to datalog atoms by settiQp(ty, . . ., tn)) = p(o(ty),...,o(tn)),
ando(p(ty, ..., tn)) is called aground instancef p(ty, ..., t,) in this case.

A proof treefor a datalog prograrR is a structurgN, E, 1) whereN is a finite set
of nodesE € N x N is a set of edges of a directed tree, ang a labelling function
that assigns a ground datalog atom to each node, where theiftg holds: for each
noden € N, thereis aruleB; A ... A Bl —» H € P and a ground substitutiom such
thatA(n) = o(H) and the set of child noddm | (n,m) € E} is of the form{my, ..., m}
whered(m) = o(B;) foreachi = 1,...,1.

A ground atomH is aconsequencef a datalog prograrR if there is a proof tree
for P that hasH as the labeli(r) of its root noder.

Definition 2. Given a datalog signaturéC, Py, arenamingp is a functionp : C — C.
To extengb to ground datalog atoms we s&p(t, . . ., tn)) = plo(t),. .., o(tn)).

All renamings that occur in this paper are injective.

3 Instance Checking forSROEL(N, x)

We now introduce a calculus for solving the inference tasistance checking — de-
ciding if C(a) is entailed for anyC € N¢, a € N; — for SROEL(, x). In Section5
we show its optimality in the sense that no other materiadieacalculus can be bet-
ter in terms of certain characteristics. This requires aoete understanding of what a
materialisation calculus is, so we start this section witbrenalisation of this notion.
Our goal is to find a unified presentation for deduction calihdt have been pro-
posed forEL-type DLs before2,5]. Intuitively speaking, a materialisation calculus is
a system of deduction rules for deriving logical conseqesnehich — as opposed to a
complete inferencing algorithm — does not specify a corccentrol flow or process-
ing strategy for evaluating these rules. Deduction rulestmdenoted in many forms,
e.g. using textual if-then descriptior®,[in tabular form [L1,6], or as sequent calculus
style derivation rulesq]. Premises and conclusions of rules often consist of foasul

2 This terminology originates from the field of deductive dmtses where one distinguishes
extensionabndintensional data base



of the processed logic, but they may also contain auxiliapressions that are relevant
to the calculus. A deduction rule can then be viewed as a schema for deriving ne
expressions from a finite set of given expressions, and pficability is not dfected

by uniform renamings of signature symbols in premise anclcsion.

Deduction rules in this sense can conveniently be denotethtadog rules where
concrete logical sentences are represented as groundHatisse signature symbols
in term positions. For example, we can represent B assubclassO£(A, B), and in-
troduce a deduction ruleubclass0£(X, y) A subclass0£(y,z) — subclassO0£f(X, 2).
This unifies the presentation of diverse calculi, and allos/t exploit techniques from
deductive databases. For connecting datalog to DL, we meguiranslation from in-
dividual DL axioms to (sets of) datalog EDB facts. This tdatien is also defined for
signature symbols, since symbols must generally be “Icanitd datalog to be able
to derive conclusions about them, regardless of whethesytitdols occurred in input
axioms or not. Finally, another translation is used for fiigihe IDB fact that signifies
the logical entailment of a given axiom. All translation @tions can be partial if not
all types of axioms are supported by the calculus. Theseiderations motivate the
following definition.

Definition 3. A materialisation calculuK is a tuple K= (I, P,O) where | and O are
partial functions, and P is a set of datalog rules, such that

1. given an axiom or signature symhglI(«) is either undefined or a set of datalog
facts over EDB predicates,

2. given an axionw, O(«) is either undefined or a single datalog fact over an IDB

predicate,

. the set of EDB and IDB predicates used by I, P, and O is fixediarte,

. P contains no constant symbols,

5. all constant symbols used i) or O(a) for some axiom (or signature symbol)
a are either signature symbols that appear in (or are equalitpdr constants of
the form aug with i > 0, where all constant names guare mutually distinct and
unequal to any DL signature symifol,

6. | and O do not depend on concrete signature symbols, i.e. fienamingo of sig-
nature symbols that maps individg@nceptole names to individugdoncepftole

names, we find(b(a)) = p(1()) and Qp(a)) = p(O(a)) if p(aux’) = aux’.

We extend | to knowledge badeB by setting (KB) = [gexg |(8) if 1(B) is defined
for all 8 € KB and undefined otherwise. We extend | to sets of signaturecyr@bby
setting (S) = Uscs (s defined! (S)-

K induces arentailment relationx between knowledge bask8 and axiomsx
over a signaturéN,, N¢c, NRr), defined by settingB rx « whenever (KB) and Ql«)
are defined and(KB) U I (N; U N¢ UNR) U P E O(a).

We say that K isound (completelf KB +x a implies (is implied byKB E « for
all knowledge baselB and axiomsy for which I(KB) and Q) are defined.

H W

3 For instance, the calculus ig][uses auxiliary statemens~sg B for class name# andB.
4 When clear from the context, we will generally oraiand simply writeaux.



C(a) — {subClass(a, C)} R(a, b) —

T CC+ {top(C)} AC L+
{a} C C - {subClass(a, C)} AC {c}—
AC C {subClass(A C)} AnBCCw

{ subEx(a, R, b, b)} ae N, — {nom(a)}
{
{
{
JdRSelf C C — {subSelf(R,C)} AL JRSelf —»
{
{
{
{

bot(A)} A€ Nc - {cls(A)}
subClass(A, ¢)} Re Ngr — {rol(R)}
subConj(A, B,C)}

supSelf(A R)}

supEx(A, R, B,aux)}

subRChain(R, S, T)}

subProd(A, B, R)}

dRAL C {subEx(R A,C)} ACdRB~

RC T +— {subRole(R T)} RoSETH
RC Cx D {supProd(R,C,D)} AxXBLCR~
RMOSC T {subRConj(R S, T)}

P S e Y

Fig. 2. Input translation foiKins

This definition further extends the above intuition of a miatesation calculus by
explicitly introducing a datalog transformationhat is allowed to introduce arbitrarily
many auxiliary constantsux’. This can be utilised, for example, to perform a normal-
isation that introduces auxiliary concept names as pahefrtput translation. Yet, the
input translation is limited in its expressivity, since &mknds only on individual axioms
and signature symbols. In particular, this precludes cemghatalog translations as in
[12,13]. Note that we do not make any assumptions on the computabilcomplexity
of I andO, but both functions are typically very simple.

A noteworthy feature of materialisation calculi in the ab®ense is that they sug-
gest materialisation-based (or consequence-drivendn@ag approaches: after trans-
lating a knowledge base to datalog facts, all consequerfdbsse facts under the de-
duction rules can be computed in a bottom-up fashion, aneifghat the functio® is
easy to compute, or even invertible) all supported entaitsiean be checked thereafter
without further recursive computation. This contrastshwither reasoning principles
such as the tableaux method where just a single entailmeheisked in one run of the
algorithm.

It is not hard to formulate the deduction algorithms presérior EL-type logics
in [2] and [5] as materialisation calculi in the sense of Definiti@nThe calculus we
present here, however, is derived from a datalog redudtianttas originally been in-
troduced in LQ] for a rule language based @ **. This approach can be modified to
coverSROEL(M, x) but does not directly yield a materialisation calculus um sense
since the set of datalog rules ih{] is not fixed but generated during the translation.

Theorem 1. Consider the materialisation calculusip& = (linst, Pinsts Oinst) With linst
defined as in Fig2, Pt defined as in Fig3, and Qng defined as Qs(C(a)) =
inst(a,C) for C € N¢, a € N, and undefined otherwise. Thepdis sound and com-
plete, i.e. it provides a materialisation calculus for iaste checking faSROE L(1, x)
knowledge bases within which all axioms are normalised.

A proof of this theorem will be presented below. It is not her@btain an intuition
about the rules oPj,t. The IDB predicatednst, triple, andself correspond to
ABox axioms for atomic concepts, roles, and concéfRsself, respectively. Rulel(
serves as an initialisation rule that accounts for the finstt facts to be derived. Rule
(2) specifies the (only) case where reflexitsiple facts lead tself facts. The rules



() nom(x) — inst(X, x)

2) nom(X) A triple(x,V, X) — self(x,V)

3) top(2) A inst(X,Z) — inst(Xx,2)

4) bot(2) A inst(u,2) A inst(x,Z) A cls(y) — inst(x,y)

(5) subClass(Y, 2) A inst(X,y) — inst(X, 2)

(6) subConj(yi, Y2, 2) A inst(X,y1) A inst(X,Y2) — inst(X, 2)

@) SubEx(V, Y, 2) A triple(X,V, X') A inst(X,y) — inst(X,2)

(8) SubEx(V, Y, 2) A self(x,V) A inst(X,y) — inst(X,2)

9) supEx(Y,V,z X') A inst(X,y) — triple(x,V, X)
(10) supEx(y,V,z X') A inst(X,y) — inst(X, 2)

(12) subSelf(v,2) A self(x V) — inst(x, 2)

(12) supSelf(y,V) A inst(X,y) — self(x,V)

(13) subRole(v,W) A triple(x,V,X) — triple(x,w, X)
(14) subRole(V,W) A self(x, V) — self(x, w)

(15) subRChain(u,v,w) A triple(x, u,x') A triple(X,Vv, x”) — triple(x,w, X”)
(16) subRChain(u,Vv,w) A self(x U) A triple(X,Vv,X) — triple(x,w, X))
(17) subRChain(u,v,w) A triple(x, u, X') A self(X,Vv) — triple(x,w, X)
(18) subRChain(u,v,w) A self(x, u) A self(x,v) — triple(x, w,X)
(19) subRConj(vy, Vo, W) A triple(X, vy, X') A triple(X, Vo, X') — triple(x,w, X)
(20) subRConj(vi, Vo, W) A self(X, ;) A self(X, V) — self(X,w)

(21) subProd(yi, Y2, W) A inst(X,y1) A inst(X,Yy,) — triple(X, w, X)
(22) subProd(yi, Y2, W) A inst(X,y1) A inst(X,yz) — self(x, w)

(23) supProd(V, z;,2) A triple(X,V, X') — inst(X, z)

(24) supProd(Vv, z1, 2) A self(x, V) — inst(X, z)

(25) supProd(Vv, 21, %) A triple(X, Vv, X') — inst(X, 2)
(26) supProd(Vv, z;, %) A self(X, V) — inst(X, z)

27) inst(X,y) A nom(y) A inst(x, z) — inst(y, 2

(28) inst(X,y) A nom(y) A inst(y, 2) — inst(X,2)

(29) inst(X y) A nom(y) A triple(z u,X) — triple(z u,y)

Fig. 3. Deduction rule®ins

(3) to (26) capture expected derivations for each of the axiom typemnasded by the
EDB predicates. A special case is rul§ (vhich checks for global inconsistency. In
implementations, such rules are typically not materidlisece their &ect can easily
be taken into account when checking for entailments. R@ear{d (L0) make use of
the auxiliary constants we use for handling existentiatsudhly speaking, each such
constant represents the class of all role successors geddénathe axiom from which
it originates; Lemmad. below formalises this intuition. The remaining rul@g)to (29
encode equality reasoning that is relevant in the presehoerninals. In particular,
statementénst(a, b) with aandbindividuals encode equality @fandb. Most rules for
axiomatising equality are not needed: the property thategeire to hold is formalised
in Lemmaz2 below.

Axiom normalisation and the computationslgf; and Oyt can be accomplished
in linear time, and the time for reasoning in datalog is polyial w.r.t. the size of the
collection of ground facts. Together with the known P-hasiofEL** [2], we obtain
the following result, of which no formal proof seems to haeeb published so far:



Corollary 1. Instance checking i8ROEL(, x) and in OWL EL without datatype
properties isP complete w.r.t. the size of the knowledge base.

It is not hard to extend this result to OWL EL with datatypemedies along the
lines of datatype reasoning &L [2], but this is not a direct consequence of the
above theorem. The proof of Theordnis established by Lemnh(soundness) angl
(completeness) below. We start with the former since it®ppoovides some further
intuition on the meaning of datalog atoms derived in the Wdak While soundness
is easy to establish for most rules, the cases of rul@sgnd @5) are slightly more
intricate and make up most of the following proof.

Lemma 1. For a SROEL(M, x) knowledge bas&B in normal form, a class name
D € N¢, and an individual & N;, we find thakKB +, . D(a) impliesKB  D(a).

Proof. Let P be the datalog prograimsi(KB) U linst(N; UNc UNR) U Pinst. TO interpret
the IDB atoms that are derived ¢, we assign a concept expressiio) to each
constant of P as follows:

— if c e N, thenk(c) := {c},
— if c=aux for@ = AC IR B, thenk(c) := BN IR".A.

The concept used in the second case includes an inversgh®Eemantics of which is
defined by AR".A)Y = {e € 47 | (d,e) € R’,d € A’}. Inverse roles are not supported
by SROE L(M, x) but are convenient for formulating this proof.

Now we can assign meaning to ground IDB atom®afs follows:

inst(c, A) with A € Nc: KB E «(c) C A,
inst(c,d) withd € N;: KB E «(c) C {d},
triple(c, R d): KB [E «(c) C ARk(d),
self(c,R): KB [E «(c) C dR.Self,

and in each case KB implies the(c) is necessarily non-empty. Note that the second
constant in any derivedinst predicate must be ihNc U N, so the above definition
covers all cases. We claim that an IDB atom is entailedtonly if the corresponding
semantic conditions are satisfied by KB. In particular, gisves the overall claim.

We establish this claim by induction over the proof (treedioiDB atom. The claim
clearly holds for the base case of rulg $§ince nominals are necessarily non-empty. For
almost all other rules, it is easy to apply the induction hjesis immediately to the
body atoms to obtain the desired conclusion in combinatigh the axioms of KB
that the involved EDB atoms encode. This covers all rulegiet (19) and @5). The
required non-emptiness afc) is easy to derive, and it is explicitly needed only for
the conclusion in rule2(l) and @2). Note how the preconditioinst(x, Z) serves to
ensure non-emptiness &) for rules @) and @). It thus remains to show the claim for
the rules 19) and @5).

First consider the situation for rul2%). To establish the claim, we show that=
supProd(R,C, D) A triple(c,R d) implies KB E «(d) = D (note thatB is not a
nominal based on our normal form). Non-emptinesg(dj follows from the induction
hypothesis orP E triple(c, R, d). The assumptions implR C C x D € KB. Yet, the



claim is obvious only ifd € N,. For the casé ¢ N,, the statement cannot be concluded
from the meanings provided fariple above.

Thus we assume thalt = aux’ with @« = A C 3V.B and we prove the following
claim: if KB = RC C’ x D andP [ triple(c, R, d) then KB «(d) £ D. We proceed
by induction on the proof tree & = triple(c, R, d):

— Rule 0). ThenR = V and the claim is obvious sineéd) = BridR— Ais a subclass
of AR.T.

— Rule @3). Then there is an axiof® C R € KB. Thus we obtain KB= R C C x D,
to which we can apply the induction hypothesis to obtain KB(d) = D.

— Rule (@5). Then there is an axior®; o R, T R € KB. By the definition of
SROEL(N, x) knowledge bases, we findn(R) C ran(Ry), so KB contains ax-
iomsR, C S1,S1CS,,...,S1-1 C S, andS, C C’ x D € KB. We conclude that
KB E R, € C’ x D. Since the rule application requirs= triple(c’, Ry, d), we
obtain KB E «(d) C D by the induction hypothesis.

— Rule (16). This case is analogous to the case of ra).(

— Rule 7). We obtain KBE R, £ C’ x D as in the case of rulel). SinceP
self(d, Ry), we obtain KBE «(d) C 9R,.Self from the global induction hypothesis.
Overall, we thus conclude KB «(d) = D.

— Rule @8). This case is analogous to the case of rai@.(

— Rule (19). Then there is an axiorR; M R, C R € KB. By the definition of
SROEL(N, x) knowledge bases, we findn(R) € ran(R;) U ran(Ry), so there is
i € {1,2} such that KB contains axion® C S1, S1 C Sy, ...,Sh1 C Sy, and
Sn C C’ x D € KB. We conclude that KB= R © C’ x D. Since the rule appli-
cation require®  triple(c, R;, d), we obtain KBE «(d) C D by the induction
hypothesis.

— Rule 21). Then there is an axiore x F C R € KB. SinceP E inst(c, E) and
P E inst(d, F), we find that(c) is non-empty and KB= «(d) C F by the global
induction hypothesis. This shows that KB«(d) C dR".T so we conclude KB=
k(d)C D.

This concludes the inductive argument, since r@®) {s not relevant here sinak¢ N, .

It remains to show that the claim of the main induction hotwtsafpplications of rule
(19). To establish the claim, we show thHat= subRConj(R, S, T) A triple(c, R, d) A
triple(c, S, d) implies KB [ «(c) C dT.x(d). This is easy to see only for the case that
d € N;. For the casa ¢ N, the statement cannot be concluded from the meanings
provided fortriple above. To show that the claim holds in this case, asslimaux’
with @« = AC JV.B.

With these assumption, we consider the proof tree by wRi¢h triple(c, T, d)
is derived. We only require the “upper paffy, of this proof tree that is inductively
characterised as follow3y, contains the root node (labelled witlriple(c, T, d)); and
if Ty contains a node labelled with an atamiple(c, W.d) (W € Ng) thenT, also
contains all of its child nodes. So the partial proof tigemay have IDB atoms as
its leafs but has no leaf atoms of the fotmiple(c, W, d). The root ofT, is derived
with (a ground instance of) rulel). We find that the premisesriple(c, R, d) and



triple(c, S, d) of this rule can only be derived by rule9)( (13), (19), and @1). The

rules (L5) to (18) cannot occur sincR andS are simple, and the rul@9) cannot occur
sinced ¢ N,. Simplicity is propagated to roles in premises of rul&)(and (L9), so we

find that all rules applied throughotg are @), (13), (19), or (21).

Ty traces back the derivation of atomsiple(c, W, d). The base cases from which
such atoms can be derived are only the ru8safd @1). As a first case, consider the
sub-proof tree oftriple(c, R d) that T, contains, and assume that this tree does not
use rule 9). An easy induction shows that this implies KB«(c) x x(d) C R. Indeed,
the remaining base caselj is obvious, and the induction steps for rulé8)(and (L9)
are easy based on the induction hypothesis. Now from the imdirction hypothesis of
the lemme, we obtair(c) C 3S.«(d) andx(c) non-empty. Together witk(c) x x(d) C R
andRNS C T € KB this shows the claim KB= «(c) £ 3T.x(d) andk(c) non-empty. An
analogous argument is obtained if the prooffetiple(c, S, d) does not use rulej.

It remains to establish the claim for the case that the prodf®thtriple(c, R, d)
and triple(c, S,d) involve some application of ruled). For this case, we establish
the following auxiliary claim §): if the subtree off, for derivingtriple(c, R, d) uses
rule 9), and if KB E «(c) & 3A(V 1 W).x(d) for someW e Ng, then KB [ «(c) C
A(V W R).«(d) (where nested role conjunctions in concept expressianallowed
with the obvious semantics). Obviously, this statemerd alghsumes a similar claim
using S instead ofR. Intuitively speaking, f) states that role relations can be added
conjunctively to the basic relatiovi along the proof oftriple(c, R, d). We show this
claim by induction over the relevant rules occurring in tbaesidered subtree df:

— Rule @). ThenR = V and the claim is immediate.

— Rule @3). Then there is an axiolR C R € KB. By the induction hypothesis for
(#), we find that KBE «(c) £ 3(V N W n R).«(d), and these statements clearly
imply KB E «(c) £ (VN WnR mnR).«(d) and thus {).

— Rule (19). Then there is an axiomR; M R, C R € KB. By the assumption, at least
one of the proofs of the atomsiple(c, R, d) in T, uses rule9). Assume without
loss of generality that this is the case Ry. By the hypothesis fori) we find
KB E «(c) C A(V W Ry).«(d).

If the proof oftriple(c, Ry, d) does not use ruledf, we can apply our above rea-
soning for this case to obtain KB: «(c) x x(d) £ Ry, and we conclude KB=
k(c) € AV N W Ry M Ry).«(d). Together withRy MR, T R € KB we obtain
KB E «(c) C A(V nWn R).«(d) as required.

If the proof of triple(c, Ry, d) uses rule 9), then we can apply the induction
hypothesis of f) to R, with the premise KBE «(c) C A(V N W m Ry).«(d)
to find KB E «(c) € A(V N W n Ry 1 Ry).«(d). Again, we may thus conclude
KB E «(c) C A(V nWn R).«(d) as required.

— Rule 1). This case is not relevant in the induction: no proof tres Hatisfies the
assumptions fori{) uses this rule at its root (since it must use r@egomewhere),
so it is never encountered in the inductive argument.

Now the overall claim is easily established. Since the @gion oftriple(c, R, d)
uses rule9) which can only entalil triples fov (since this is the role occurring o), we
find P E triple(c,V, d). This entails KBE «(c) C 3V.k(d) andk(c) non-empty by the
global induction hypothesis. Thus we can applywith KB [ «(c) C 3(V nV).x(d) to



obtain KB E «(c) C A(V n R).«(d). Applying () a second time, we find KB- x(c) C
A(V N RN S).«(d). Together withRm S £ T e KB, this shows KBI= «(c) T 3T.«(d)
which establishes the claim. O

It remains to show the completeness of the calculus. Dueet@itbsence of nomi-
nals, diferent constant symbols in the datalog program useld;ymay represent the
same description logic individuals. To take this into acttpwe define an equivalence
relation on the Herbrand universe of such programs. To usestjuivalence for iden-
tifying elements in a model, we must ensure that the logicaperties of equivalent
elements are the same, i.e. that the equivalence relatiarc@gruence in a certain
sense. The following, slightly weaker propertyfistes in our case:

Lemma 2. For a SROEL(M, x) knowledge baskB in normal form, let P denote the
datalog program hsi(KB) Ulinst(N; UNc UNR)UPinst, and define an equivalence relation
~ on the Herbrand universe of P to be the reflexive, symmetainsitive closure of the
relation{(c,d) | P | inst(c,d),d € N;}.

Given a constant ¢ such that< a for some ae N;, we find that P inst(c, A)
(P E triple(c,R d), P E triple(d,R,c), P E self(c,R)) implies PE inst(a, A)
(PE triple(a,R,d), P triple(d,R a), P E self(a, R)).

Proof. First note that, for every constashtvith P | inst(d, b) andb € N;, we find that
P E inst(d, A) iff P E inst(b, A). This directly follows from the fact thay satisfies
the rules 27) and @8). Given the preconditions of the claim, this already allaygsto
conclude thaP E inst(c, A) iff P | inst(a, A) (). This statementf{) subsumes the
first part of the claim. MoreoveR  inst(a, a) and () imply P £ inst(c, a). We thus
can conclude tha®  triple(d, R, c) impliesP [ triple(d, R, a) using rule 29).

To show the remaining cases of the claim, consider a consegqueiple(c, R, d)
or self(c,R) of P. We show the claim by induction over the structure of the proo
(tree) of this consequence. First consider the possésliior derivingtriple(c, R, d).
The cases of rule®) and @1) follow from (}). The cases of ruled8), (15) to (19), and
(29) follow from the induction hypothesis. Now consider the gibdities for deriving
self(c,R). If rule (2) was used on a premisemn(c) A triple(c, R, ), we can conclude
triple(a, R c) from the induction hypothesis, anadiple(a, R, a) from (f). The claim
then follows sincewom(a) holds due ta € N,. The cases of ruled.4) and @0) follows
directly from the induction hypothesis. The cases of rulg3 and @2) follow again
from (7). O

We can now show the completenesKgk::

Lemma 3. For a SROEL(, x) knowledge bas&B in normal form, a class name
D € N¢, and an individual & N;, we find thakB = D(a) implieskB rg, . D(a).

Proof. Let P be the datalog programsi(KB) U linsf(N; U Nc U NR) U Pinst. We show
the contrapositive of the claimed implication. If K, D(a), thenP £ Oinsi(D(a)).

Then there is an Herbrand mod#l of P such thaty £ Oins(D(a)). We provide a
construction for a modéel of KB such thatZ }# D(a), which shows that KB£ D(a) as
required.



Consider the equivalence relatisras defined in Lemm2, and letf] := {d | d = ¢}
denote ther equivalence class af Let Auxbe the set of auxiliary constants of the form
auy’ that occur inP. The domain off is defined as

A = {dy,dy | d € Aux J [ inst(d, €) for somee, d # aforallae N,}Ju{[c] | c € N;}.

The indices 1 and 2 introduce two copies of each auxiliarystanmtd € Aux this is
important to handleself statements properly. For each element 47, we define a
projection:(e) to 47 as follows: ife is of the formd, then:(e) := d; if eis of the form
[c] then(e) := b for an arbitrary fixedb € [c]. We can now define the interpretation
function for 7. For eachc € Nj, setc’ := [c]. For eachA € N¢, setA! = {d € 47 |
J E inst((d), A)}. For eachR € Ng, we inductively defineR’ to be the smallest set
that contains the pairsl, d’) € R’ for which one of the following conditions holds:

— J E triple(«(d), R «(d)) andd # d’, or

— 7 E self((d),R) andd = d,

— there is an axion® C Re KB and(d,d’) € S,

— thereis an axion$ o T C Re KB and(d,e) € ST, (e,d’) € TZ for somee e 47,
— thereis an axionh x BC Re KB andd € A?, d’ € BY.

Observe that all pairgd,d’y € R? are such thayf E triple((d),R «(d)) or J E
self(:(d), R). This can be shown inductively for the last three cases®fthove defi-
nition, sinceJ satisfies rulesi(3) to (18), and 1) and @2).

Lemma2 shows that the definition df does not depend on the choice@€]) € [c].
Since we assumed thgt ¢ inst(a, D), we find thatZ (£ D(a). It remains to show that
I is a model of KB. We consider all axiom types that may occur B, Kvhere we
follow the cases of Fig2.

— T C C. ThendJ E top(C). For alld € 4%, we find 7 £ inst((d), €) for some
e: this is required ify(d) € Aux and it follows from rule 1) if «(d) € N,. Thus
J E inst(i(d), C) by rule @), and hencel € C’ as required.

— AC 1. ThendJ E bot(A). If d € AZ, thenJ E inst(i(d), A). Fora andD as in
the main claim, we also fing” E c1s(D), andJ E inst(a, a) (by rule 1)). Thus
J E inst(a, D) by rule @), contradicting our assumptions gfi. Thusd € A’
cannot be, and’ = 0 as required.

— {b} £ C. ThenJ [ subClass(b,C) andJ E nom(b). ThusJ E inst(b,b) (1),
andJ k inst(b,C) (5). Thenb’ = [b] € C’ follows from Lemma2.

— ALC {c}. ThenJ E subClass(A,c). If d € AZ, thenJ [k inst(«(d), A). By rule
(5), we thus find7 E inst(:(d), ¢) and thus(d) ~ candd = [c] = ¢’ as required.

— AC C.Thend E subClass(A,C). If d € AZ, thenJ [ inst(«(d), A). By rule
(5), we thus findJ  inst(.(d), C) and thusd € C* as required.

— AN BLC C. ThendJ k subConj(A, B,C). If d € A’ n B, thenJ E inst(:(d), A)
and J E inst(¢(d), B). By rule ), we thus findJ E inst(/(d),C) and thus
d e C asrequired.

— dRAC C. Thend E subEx(R A C). If d € (ARA) then there iz’ € AZ with
(d,d’) € RZ, hencedJ k inst(i(d’), A). Further, eithers = triple(i(d), R «(d")),
ord = d and¥ E self(/(d),R). Thusg E inst(«(d), C) by rule (7) or (8), and
thusd € C’ as required.



— AC JRB. ThenJ E supEx(A R B,aux). If d € A’, thenJ [ inst((d), A).
ThusJ E triple(i(d), R aux) (9) andJ E inst(aux, B) (10). We require an
elementd’ € 47 with ((d’) ~ aux and such thatd,d’) € R’ (the requirement
d’ € B’ then follows fromy(d’) ~ aux, J E inst(aux, B), and Lemma2). If
aux ~ c for somec € N;, we can usal = [c]. Indeed,(d,d’) € R? can be
concluded in this case: @ = d’, thenJ E triple(c, R c) by Lemma2, and thus
J E self(c,R) by rule ). Second, consider the case that # cforall c € N;.
Then there is some € {1, 2} such that # (aux),, sod’ = (aux), clearly satisfies
the claim, even if(d) = «(d’) should occur.

— JRSelf C C. Thend [ subSelf(R,C). Assume thatd,d) € R’. We showJ
self(:(d), R) by induction over the definition d®’, where the case of role chains
is not relevant sinc® must be simple. The first case of the definition is impossible
sinced = d, and the second case is trivial 3fC R € KB and(d, d) € SZ, then we
haveJ E self(i(d),S) (induction hypothesis) and the claim follows by rulef).

For the last case, assumex B C Randd € A’ n BY. ThenJ k inst(i(d), A) and
J E inst(«(d), B), and the claim follows from rule2@).

ThusJ E self(«(d),R) and we can apply rulelQl) to obtaing E inst(«(d),C),
which showsd € C? as required.

— AC JRSelf. ThenJ E supSelf(A R). If d € A, thenJ E inst(/(d), A). Thus
J E self(i(d), R) by rule 12). This showgd, d) € R? as required.

— RCT,RoSCT,AxBCR Immediate from the definition of.

— RMASCT.Thend E subRConj(R, S, T). Assume(d,e) € R' N S’. As a first
case, ifd = ethen we can shoW [ self(i(d),R) andJ E self(«(d),S) using
the same inductive argument as in the ca3R.Self C C” above sinceR andS
are simple. Thus we find thagf £ self((d), T) by rule 0), and we conclude
(d,d) e T as required.

As a second case, @f # e, then we can show thgf E triple((d), R, «(€)) (and

J E triple(i(d), S, (€))) using another inductive argument on the definition of
R? (S?). The first case of the definition is trivial, the second camrkeuded. The
third case is obtained from ruld ) using the induction hypothesis. The fourth
case can be excluded sinBe(S) is simple, and the last case follows from rule
(21). This completes the induction, and we can apply rd® o concludey E
triple(«(d), T, «(€)) from which we derive the required, e) € T~.

— RC Cx E. ThendJ E supProd(R,C,E). If (d,e) € R’ then we find eitheyy k&
triple((d), R «(€)),ord = eandJ E self(i(d), R). ThusJ kE inst(«(d), E) (by
rule (23) or (24)) andJ k= inst(.(e), E) (by rule 25) or (26)), and thusi € C* and
e e E’ as required.

— C(b). ThenJ E subClass(b, C), and we can apply the same arguments as for the
case {b} C C” above.

— R(b,¢). ThenJ E supEx(R b,c,c). By rule 1), J E inst(b,b). ThusJ E
triple(b,R c) (9). If b # c, then we find([b],[c]) € R (using Lemma2 to
showJ E triple(¢([b]), R ¢([c]))). Otherwise, ifb = c, thenJ [ self(b, R) by
rule (2), and we can also concludgb], [c]) € R. O



4 Classification of SROE L(MN, x) Knowledge Bases

The calculusKi,s; of Theoreml directly solves the instance checking problem for
SROEL(N, x). A materialisation calculus for checking satisfiabilitgrnceasily be ob-
tained by observing that aSiROE L(N, x) knowledge base is inconsistent if and only if
Kinst infers a factinst(x, 2) wherebot(z) holds. Another inference task is the compu-
tation of class subsumptions which is calleldssificationwhen done for all atomic
classes. Classification is the most important task in varitypical applications of
OWL EL, e.g. for the well-known ontology SNOMED CT that doest montain any
individual names. In this section, we therefore study nialisation calculi for solving
this inference problem faSROE L (M, X).

As a standard inference problem of DL, class subsumptiorbeareduced to in-
stance retrieval: to check a subsumptz B, one introduces a new individual name
¢ and adds an asserti@x{c) to the knowledge base; then the subsumption holds if the
modified knowledge base entaBéc). Yet, the calculuKns; cannot directly be adapted
for subsumption checking. The reason is that the reduatiamstance retrieval requires
the knowledge base to be modified, leading to new entailmpassibly even to global
inconsistency. Hence it is not feasible to introduce tedividualsc for all (atomic)
classes at load time so as to materialise all class subsumsgti parallel. Rather, one
would have to use the calculls,s; multiple times for computing subsumptions, where
one run is needed for each subclds® compute all entailments of the forfaC B.
SNOMED CT, for example, has around 300,000 classes, an@the sumber of com-
putation runs would be required to naively compute the suipgion hierarchy in this
case.

Although this approach may seem to be ratheffioent, it allows us to obtain a
sound and complete materialisation calculus for classwsuapson in SROEL(M, x),
based on which algorithmic optimisations can then be deesldor improving i-
ciency. To obtain this calculus, we simply “internalise&tharious runs oKj,st based
on assumptions of the forma(c). To this end, we extend all IDB predicates with one
additional parameter for storing a class hame, with the tyidg intuition that an ac-
cording IDB fact ofKj,s; is entailed under the assumption that this class is nonyempt
Note that the name of the constarih the test assertioA(c) is immaterial, so we will
generally re-use the datalog constAras the test instance of a class

Theorem 2. Consider the materialisation calculus&= (Isc, Psc, Ose) With s defined
like linst In Fig. 2, and Q. defined as @(A C B) = inst_sc(A, B, A) for A, B € N¢,
and undefined otherwise. The program onsists of the following rules:

— for each rule re Py (Fig. 3), a rule r obtained from r by adding a new body
atomcl1s(q), and replacing each IDB atomnst(X, Y) (triple(X,y, 2), self(X,Y))
by an atominst_sc(x,y, Q) (triple_sc(x Y, zQ), self_sc(xY,Q)), where qis a
variable not occurringinr,

— the additional rule(x) given bycls(q) — inst_sc(q, g, q).

Then K is sound and complete, i.e. it provides a materialisatioicwlas for subsump-
tion checking foSROE L(M, x) knowledge bases within which all axioms are in normal
form.



Proof. Immediate from the above discussion: the rtlle(q) — inst_sc(q, g, q) States
that each class nantgis assumed to contain an individugvhere this assumption is
called ‘q” (third parameter). All other rules apply to arbitrary dasames in the last
parameter of IDB predicates. Sast_sc(X,Y, q) can be derivedi the calculusKjngt
entailsinst_sc(x,y) using the additional assertidmst(q, g). Clearly, this yields the
same results as the assertig(e) for a new individualc (the assertiomom(c) is not
relevant in the deduction @ is new). So the claim follows from Theoren O

We already noted that this materialisation calculus is metigularly eficient since
deductions that are globally true are inferred under eacal lassumptiom indepen-
dently. Besides the redundancy in computation, this alsansehat the number of
globally derived facts can multiply by the number of classnea in the signature —
more than 300,000 in the case of SNOMED. Our formalisatiomaferialisation cal-
culi provides a direct measure of this increase: the maxamg} of IDB predicates
in Kgc is four while it had been only three iKi,s;, leading to potentially higher space
requirements for storing the materialised derivationsl Bnincreased upper bounds
for the steps needed to check for individual entailmentshduld be kept in mind that
implementations may achieve lower runtime bounds by usiriglsle optimisations;
yet many standard implementation techniques for datalaguding semi-naive ma-
terialisation and SLD resolution, are sensitive to the nendd parameters in derived
predicates. The arity of IDB predicates thus is an impona@asure for thefciency
of a materialisation calculus, and we will thus denote ttasameter as tharity of a
calculusand speak of binayternaryn-ary materialisation calculi.

The search for a moreffecient materialisation calculus thus can be given a pre-
cise meaning: develop a ternary or binary calculus that immécand complete for
SROEL(M, x) classification. As we will show in Sectiob, such a calculus cannot
exist. To illustrate that this is not clearpriori, we conclude this section by showing
that there are materialisation calculi of lower arities étassification in fragments of
SROEL(N, ).

A binary materialisation calculus for classification &L H — the SROEL(M, x)
fragment that only allows, 3, role and concept subsumptions — has been presented in
[5]. Here, we present an extension of this calculus that supgelf, role conjunction,
and concept products on the right of property inclusion meso\We begin, however, by
developing a ternary materialisation calculus that alqgpstis role chains. The input
translation can remain as in Figybut without the cases for, L, nominal classes, and
concept products on the left-hand side of RIAs. The EDB mageéistop, bot, and
subProd are no longer used.

A set of IDB rules can be developed by restricting the ruleKgfof Theorem2.
We use the numbers as in Figfor referring to the rules obtained froi,s;. Rules
(3), (4), (21), and @2) are no longer needed due to the restriction of EDB predicate
In the absence of nominal classes, we find that all derivatiaat_sc(X, y, g) are such
thaty is a DL class hame, oris a DL individual name and = y. This is not hard to
verify inductively by considering each rule, and the synshaled in relevant EDB facts.
This shows that rule2(), (28), and @9) are obsolete as well. The essential feature of
the remaining rule set is that the additional paramgtbat has been introduced i,
above is no longer required for obtaining a sound and completerialisation calculus:



Theorem 3. Consider the materialisation calculus$ = (lsco Psco Osco With lsec de-
fined like |nst in Fig. 2 but undefined for all axioms that use nominal classest, or
concept products on the left-hand side, and.@efined as Q{A C B) := inst(A, B)
if A, B € N¢, and undefined otherwise. The programdeonsists of the rulegl), (2),
(5)—(20), and(23)—(26) of Fig. 3 together with a new rulels(z) — inst(z 2) (x).

Then K. is sound and complete, i.e. it provides a ternary matergie calculus
for subsumption checking for normalis&®ROE L(, x) knowledge bases that contain
onlyr (for concepts and roles}, Self, o, and concept products on the right-hand side.

Proof. The above discussion already justifies the restriction éstlected rule set.
It remains to be shown that the auxiliary parameteised inKs is not needed here.
To this end, letk = (lgc P, Ose) denote the materialisation calculus using the input
function of K¢, the output function oKy, and the rules® obtained fromKs.. by
modifying/extending derivation rules as f&k. in Theoren? (equivalently, by deleting
the rules 8), (4), (22), (22), (27)—(29) from Ps(). Let+ denote the entailment relation of
Ksce We need to show that KB« iff KB rk a.

The “if” direction can immediately be obtained from an easguction to show
that inst_sc(X, Y, g)/triple_sc(X, Y, z g)/self_sc(x,y,q) is entailed byK only if
inst(x, y)/triple(x,Y, 2)/self(x,Y) is entailed byKs.. We detail the “only if” direc-
tion which is slightly more complicated. Consider a knovgedase KB, and |€®’ be
the datalog progranms(KB) U Is¢(N; U Nc U NR) U Psc.. We first define a family of
set Q(c)) for constantx occurring inP’. Intuitively, Q(c) contains exactly those class
nameg) that may occur in the last parameter in IDB atoms with the first parameter
that are entailed undé¢. We define the setQ(c) to be the smallest collection of sets
such that:

If ¢ € N¢, thenQ(c) = {c}.

If ce Ny, thenQ(c) = Nc.

If ¢ € Ng, thenQ(c) = 0.

If ¢ is an auxiliary constant introduced in an EDB faatpEx(A, R B, c), then
Q(C) = Uxep(c) Q(X) whereP(c) = {x | triple(X,Y, ) is entailed byKscd.

Note that the mutual interdependencies between theQg)sare monotone, so it is
indeed possible to find an assignment where all sets are minfarmally, we claim
that wheneveinst(x, y)/triple(X,y, 2)/self(x,Y) is entailed byK.. then we find that
inst_sc(X Y, q)/triple_sc(X, Y, z g)/self_sc(x Y, q) is entailed byK for everyq €
Q(X). This can be shown inductively by considering all derivatiules.

If rules (1) or (x) were used for deriving the fact in the condition of the claihe
claim follows immediately sinc& € Q(x) in both cases by definition. In ruleg)( (5),
(6), (8), (9), (1D)—(149), (16), (18—(20), (23), (24), and 6), the claim follows directly
from the induction hypothesis, since the same first variabtairs in all IDB atoms in
the rule.

For the remaining rules, first note that we h&¥€) 2 (U xep() Q(X) for all constants
¢ (). For auxiliary constants, this follows directly from thefghition of Q. Forc € N; it
is trivial. Moreover, it is easy to check thBfc) = 0 if c € Ng by noting that role names
can occur only in derived facts of the forariple(X,v,y) in thev position (as can be
formalised by a simple induction). This establishes thénclor ¢ € Ng. Similarly,



for c € N¢, we findP(c) C {c}. This is s0, sinc&gc entails factstriple(x, v, ¢) with

¢ € Nc only if ¢ = x, which can be readily seen by induction over the possiblefpro
trees for facts usingriple. Indeed, the only possible base cases for this induction are
rules @) and (L8), where only the later can lead entailiple(X, v, c) with ¢ € N¢.

Returning to the main induction, we find tha) {mpliesQ(x) € Q(x') for the rules
(7), (15), and (7), so the claim for these cases follows from the inductiondtlgpsis.

Now let inst(X/, 2) be the fact derived by rulelQ), and letq € Q(x’). From the
inductive definition ofQ(x’), we conclude that there must be a chain of derived facts
triple(Xo, Vo, X1), ..., triple(Xn, Vn, X') wherexg € N; U N¢, all x; fori > 0 are aux-
iliary individualsx; ¢ N; U Nc U Ng, andq € Q(x;) for all i > 0. Moreover, we can
assume that all facts in this chain have been derived by 8uld kis follows since only
rules @) and (L8) introduce newtriple facts without requiring the prior existence of
(chains of) such facts, and since facts derived by i@ ¢an clearly be discarded from
the chain. Thus, also the fattiple(Xy, Vn, X') was derived by rule9) andq € Q(x,).
Since the premises of rule8)@nd (L0) are the same, the derivationtafiple(Xy, Vi, X)
can be changed into a derivationiafst(x’, Z). The premisenst(x, y’) which is then
used for applying rule9) is such thag € Q(x,). Applying our overall inductive ar-
gument to this premise shows thiatst_sc(x,, Y, ) can be derived i, so that also
inst_sc(X,z q) can indeed be derived.

Finally, consider ruleZ5) and some) € Q(X). If X' € N, then alsax € N; since no
other case is possible in the absence of nominals, so wefin@(x) as required for
applying the induction hypothesis. For the case N¢, we already argued in the proof
of (t) above thaP(x’) C {xX'}, so we find thak = X’ which shows the claim. Similarly,
the cased € N can again be excluded.

As the last remaining case, assume tkiag N; U Nc U Ng is an auxiliary con-
stant, lettriple(x, Vv, X’) be the atom in the premise of the considered application
of rule 25), and consider somg € Q(x'). Using an inner induction on the deriva-
tion of triple(x,Vv, X’), we show the following claim: ik € ran(v) andKgc derives
triple(x, v, X), thenK derivesinst_sc(X, 2, q). Clearly, this subsumes the overall
claim for rule @5) as a special case.

First assume thatriple(x, v, X') was derived using rulej. Using an argument as

for the case of rulel(0) above, we find a chaitriple(Xg, Vo, X1), . . ., triple(Xn, Va, X)
of facts which are derived by rul®), and whereq € Q(x) for all i > 0. Sincex
uniquely determines the role name that is used in rdewe find thatv = vy, so rule
(25) is applicable totriple(xy,V, X') for which we already have showe € Q(Xy).
Sincez, € Q(v) there are axioms8 C vi,...,Vh1 C Vs andv, C C x 2 in KB. Due to
rule (13) Kgcc derivestriple(Xn, Vn, X'). By the global induction hypothesik, derives
triple(Xy, Vi, X, Q), SO the claim follows byZ5).

If triple(x,Vv, X’) was derived based on an axiamC v using rule (3), then we
find z; € ran(V'), so the claim follows by the inner induction. Analogoudiyule (15)
or (16) was used for an axionm o v, C Vv, thenz € ran(vz) due to the structural
restrictions on axioms of the formc z x z in SROEL(M, xX) knowledge bases. The
case for rule 19) is also analogous.



(1) nom(x) — inst(X, X)

&) cls(y) — inst(y.y)
3) rol(v) — srole(v,V)
4) supEx(y, Vv, z X) — inst(X,2)
(5) nom(X) A supEx(y, Vv, z X') A inst(X,y) A inst(X, X) — self(X,V)
(6) subClass(Y,2) A inst(X,y) — inst(X,2)
©) subConj(yi, Y2, 2) A inst(X, Y1) A inst(X,Y,) — inst(X, 2)
(8) supEx(y,V, z X') A subEx(V, Y, Z) A inst(X,Y) A srole(v,V') A inst(X,Yy) — inst(X, Z)
9) subEx(V, Y, 2) A self(X,V) A inst(X,y) — inst(X,2)
(20) subSelf(v,2) A self(X,Vv) — inst(Xx, 2)
(11) supSelf(y,V) A inst(X,y) — self(x,V)
(12) subRole(v,w) A srole(u,Vv) — srole(u,w)
(13) subRole(v,w) A self(x,V) — self(x,w)
(14) subRConj(vi, V2, W) A srole(u, V) A srole(u,V,) — srole(u,w)
(15) subRConj(u,v,w) A self(x, u) A self(x,v) — self(x,w)
(16) supProd(V, z;, ) A supEx(Y, U,z X') A inst(X,Y) A srole(u,v) — inst(X, z)
(17) supProd(V, z;, ) A self(x, V) — inst(X, z)
(18) supProd(V, z1, o) A supEx(y, U,z X') A srole(u,Vv) — inst(X,z)
(29) supProd(V, z;, ) A self(x,V) — inst(X, 2)

Fig. 4. Deduction rule$s..

If (17) or (18) was used witlv; o v» C v, thenx = X’ and, as above, € ran(v;). So
there are axioms, C v%, .. .,vg‘l C v; andv;) C C x 2 in the knowledge base. Using
rules (L4) and @6) sufices to establish the claim sin€¥x) = Q(X'). O

In terms of OWL 2, the DL of the previous theorem covers all OBIL ontologies
without datatype properties and the constreets: Thing, owl : topObjectProperty,
owl:Nothing, owl :bottomObjectProperty, objectHasValue andobjectOneOf.
Note how the reasoning used for obtaining this calculusatgpbur datalog-based de-
scription of materialisation calculi, which allows us toneeniently argue about possi-
ble derivations.

It is not hard to further simplifyKsc for the case that no role chains occur in the
knowledge base. The main observation here isthaple atoms then can only be in-
ferred by existential quantifiers on the right-hand sidel, lapnapplying role hierarchies
and role conjunctions. Thefect of the latter two features can be integrated using a new
predicate that encodes inferred subrole relations, usileg similar to the ones for sub-
class and class conjunction. With this change, a statenrépfl e(x, w, ') is equivalent
to the conjunctiorsubEx(Y,V, z, X') A inst(X,y) A srole(v,w) A inst(X/,Z), and we
can use this conjunction in all rules that includeiple in their bodies. Some further
simplifications apply if not all arguments atiple are relevant to some rule applica-
tion. Note that rule 10) of Fig. 3 is still needed, but since we consider a case where all
classes can be assumed to be non-empty (i.e. wiergy, y) holds for all classey),
we can simplify this rule as well. We thus obtain the follog/imaterialisation calculus
that extends the binary classification calculus8d&i7H as presented irp].

Theorem 4. Consider the materialisation calculussK = (lsc., Psc, Osc.) With I de-
fined like |nst in Fig. 2 but undefined for all axioms that use nominal classes,, role



chainso, or concept products on the left-hand sidg¢Eefined as in Fig4, and Q..
defined as Q@ (AC B) := inst(A, B) if A, B € N¢, and undefined otherwise.

Then K. is sound and complete, i.e. it provides a binary materidgi@acalculus
for subsumption checking for normalis8ROE L(M, x) knowledge bases that contain
only 1 (for concepts and roles}), Self, and concept products on the right-hand side.

Note that the DL of the previous theorem still is a significartension ofELH
since it allows role conjunction (and thus role disjoinsjetocal reflexivity Gelf), and
EL-admissible range restrictions (expressed as concegtpts on the right).

5 Minimal Arities of Materialisation Calculi

The materialisation calculi we discussed for reasoningROE.L(M, x) above fea-
tured various arities: while some reasoning problems cbeldolved by binary and
ternary calculi, the presented classification calculusSlBOE L(M, x) is 4-ary. Higher
arities lead to increased upper bounds on the number of quesees that are in-
ferred, and hence increase the potential space requireanentomputation time for
materialisation-based implementations. It is theref@srdble to develop materialisa-
tion calculi of minimal arity. In this section, we establiklwer bounds on the arity of
materialisation calculi for various reasoning problems.

Our general proof strategy is as follows. For a contradictwee suppose that there
is a materialisation calculus of lower arity that solves\aegireasoning problem. We
then consider a particular instance of that problem, givera tiknowledge base KB
from which a relevant consequeneemust follow. Since the calculus is assumed to
be complete, we obtain an according datalog derivation wittorresponding proof
tree. This proof tree is then modified by renaming constéedsling to a variant of the
proof tree that is still valid for the given materialisatioalculus, but that is based on
different (renamed) assumptions. The modified assumptionsspannd to a modified
knowledge base KBand by our construction we find that the materialisatiocualk
still computes the entailment efon the input KB. We then show that is not entailed
by KB’, so that the calculus is proven to be unsound. Sincei&Based on the modified
proof tree, some graph theoretic arguments are requirestablesh this last step.

A central notion of this proof strategy is the following méidation of proof trees.

Definition 4. Consider a materialisation calculus K (I, P, O) and a knowledge base
KB such that (KB) is defined, and a proof tree (N, E, 1) for I(KB) U I(N; UNc U
NRr) U P. We say that a DL signature symhobccursin a ground atom F if F contains
o as a constant, or if F contains some auxiliary constant’asuch that- occurs ina.
Theinterfaceof a node re N is the set of signature symbols that occun(n).

The (labels of) T can béiversifiedby the following recursive construction:

— replace all signature symbols s that do not occur in the iises of the root node
by a fresh symbol’ ghat has not yet been used in T or in this construction,
— recursively diversify the subtrees below each of the dichitl nodes of the root.



nl inst (4,C)

2: subCl (B‘C) 3\ t (4.8")
n2: subClass / n3: ins
n4: subEx (R®C™B") n5: trlple (A,R™ qux "S*#C")  n6: inst (quxERC;Cm)
) n8: inst (4,4) ) nl0: inst (4,4)
n7: supEx (4,R™ C™ aux=*"c") | n9: supEx (4,R™ C™aux'=*"c")
nll: cls (4) nl2: cls (4)

Fig. 5. Diversification of aKs.. proof for{AC dRC,AJRCC B,.BC C}F ACC

We tacitly assume that the datalog signature contains gliled new constant names.
Note that the renaming mayfact auxiliary constants by renaming symbols in the ax-
ioms that are part of their name. The diversification is thhtained by replacing some
signature symbols with fresh symbols. This replacementroglye uniform throughout
the tree, and we usé' $0 denote the symbol by which s is replaced in node n.

Intuitively speaking, the above renaming removes any eeafsconstant names
throughout the proof tree that is not strictly necessargfiplying the rules oP. What
s “strictly necessary” is captured by tierfaceof each node: constants that are not
in the interface of a rule application can be renamed unifpimall descendants of
the current node withoutiecting the correctness of the proof tree. This creates atdire
connection between the arity of a calculus and the amoun¢rdiming that can be
accomplished when diversifying a proof tree.

Figure5 shows an example diversification based on the cald€usof Theorens,
where we use the notation from Definitidrfor denoting renamed symbols. Note how
C is renamed t&€" in some but not in all labels. Also note that no further rerayai
occur below the nodes5 andn6 since all relevant symbols occur in their interface
due to the auxiliary constant. As expected, the diversiioas again a proof tree for a
knowledge base that contains suitably renamed axioms:

The diversification corresponds to a proof tree for a knogéelase that contains
renamed axioms:

Definition 5. Consider a materialisation calculus K, knowledge b&% and proof
tree T as in Definitior. Let A’ denote a diversified labelling for T.

Let me N be a leaf node with(m) € I(«) for somea € KB. By Definition3, one
can rename symbols im to obtain an axionw’ such that’(m) € I(a’). Concretely,
o’ is obtained fromx be replacing all symbols s in the interface of m % and by
replacing all other symbols t by some fresh symbabt used anywhere yet. We select
one such axiomy, for each such node m.

Thediversification KB of KB is the knowledge bad¢B’ = {a}, | n € N,n a leaf.
The tree structure of T can be used to repres€Bt as a set of nested sef$ for
n € N, recursively defined by settidg, := {a}, | (n,M) € E,maleaf U {l'm | {n,m) €
E, m not a leaf. We say that an axiom or setli®lowa setl, if it is either an element
of Iy, orif itis (recursively) below some element/of

For Fig.5, the diversified knowledge base{is C IR™.C™ IR™.C" C B™, B C
C} and we havd 'y, = {B™ C C,{IR®.C™ £ B™, {A c JR®.C™}}}. Since the un-
derlying calculus is correct, the conclusion still follofwsm the diversified knowledge



base, and the diversified proof tree is still correct. Belosvuge diversification to con-
struct proof trees with invalid conclusions for calculi insuficient arities. But first
let us note that diversification does indeed always lead tevaproof tree that can be
constructed based on the diversified knowledge base.

Lemma 4. Consider a materialisation calculus K, knowledge bE& and proof tree
T as in Definitiord. The diversification Tof T is a proof tree for (KB") U1 (N; UNc U
NRr) U P whereKB’ is the diversification okKB.

Proof. It is easy to see that the conditions on proof trees are satifir all non-leaf
nodes ofT’. All leafs of T are labelled with EDB atoms d{KB) U I (N; U N¢ U NR).
Sincel is assumed to be independent of concrete signature symbefmition 3),

we find that for all EDB atom& € I(N; U Nc U NR) there is a corresponding atom
p(a) € 1(N; U N¢ U Ng) for any renaming, since all symbols used by renamings are
part of the signature. Finally, ih € N is a leaf node witl(m) € I («) for somex € KB,
then by Def5 there isa}, € KB’ such thatt’(n) € 1(a},). O

By the construction in DefinitioB, if | is the maximal number of premises in rules
of K, then each sef,, has at most elements. Moreover, if',, € I',,, then the DL
signature symbols that occur in axioms belbyy either belong to the interface of
or occur only in axioms of KBthat are below,,. Since the interface includes all DL
symbols that occur in the ground datalog atom that is dertelcertain node of the
proof tree, the use of auxiliary constants can require thkigion ofall symbols of a
given input axiom into the interface. Yet, the arity cledityits the number of axioms
for which this may be the case: for a calculus of adtythe interface of any node
can comprise no more than the set of DL symbols that occararioms of the input
knowledge base. These observations can also be intergyetptically based on the
dependency grapbf KB’ which encodes the sharing of signature symbols in axioms:

Definition 6. Thedependency grapdf a knowledge badéB is the graph that has the
signature symbols ilKB as its nodes, and, for each axiom KB that has exactly n
signature symbols, an n-ary hyperedge connecting thesmhdag.

The sets of axioms,, can be viewed as subgraphs of a dependency graph, where the
interface of the noda describes the nodes that this subgraph is allowed to shéne wi
the remaining graph. In our subsequent proofs, we will athaéthe interface that a
calculus of a certain arity allows a node to have is necdggad small for establishing
this connection between such a subgraph and the rest ofihe dependency graph.
For this argument to work, it is important that the subgrajgscribed by axioms below
a setl", can be assumed to befBaiently distinct from the rest. For example, subgraphs
I'y that contain only single axioms can always be connectedafuiliary constant for
this axiom occurs in(n); conversely, the same applies to subgraphs that contdintal
a single axiom. Since axioms i, play the role of leafs in the underlying proof tree,
the next lemma helps us to find subgraphshat have the right amount of axioms:

Lemma 5. Consider a finite tree structure T with nodes N and edges E thatteach
node of T has at most k children. Ligf denote the set of leafs of the subtree of T which
has ne N as its root, and let | denote the total number of leafs in Tr. &wy number



d> 1with | > (k+ 1)(d — 1), there must be a nodeenN such that’, contains at least
d and at most + d elements.

Proof. Assume that there is a noae € N for which I',, contains at leadt—d + 1
elements, but for which all childrem’ of m are such that’y, < d — 1. Thenl, can
contain at mosk(d — 1) elements. Therefore, a node likecan only existiff —d+1 <
k(d-1),i.e.ifl < (k+1)(d-1). The precondition of the claim states that this is not the
case. Hence every nodg of T with at least — d + 1 leafs below it has a child nodg
with [y, | > d - 1. If Iy, | > 1 —d + 1, there is a chilah, of n; with |I'y,| > d — 1. Since

T does not contain an infinite chamg, ny, nom. . ., this construction ends with a node

as required in the claim. The overall claim follows sificeontains a node with more
thanl — d + 1 leafs below it: its root. O

As a first application of this machinery, we show a result fdrsRhat are much
weaker tharSROE L(M, x).

Theorem 5. Let £ be a DL with GCls, existential quantification, and role chai&v-
ery materialisation calculus that is sound and completedassification or instance
retrieval in £ has arity three or more.

Proof. We first consider the classification problem. For a conttamtic suppose that
there is a binary materialisation calculds = (I, P,O) such thatl is defined on all

axioms of £, andO is defined for all axioms of the forrA C B. Let| be the maximal
number of body atoms in any rule f and consider some> 2(I + 1). A knowledge

base KB is defined to contain the following axioms:

— D C 3S;.Dj,q foralli € {0,...,k},
- Dk+l c EIRk+l~B'

— SioR,1CRforallie{0,...,k},
— dRy,.BC B.

Then KB entaildDg C B. Thus, by the assumption & there is a proof tre& for deriv-
ing O(Dy C B) for the program (KB) UT(N; UNc UNR)UP. LetT” = (N, E, ') be the
diversified proof tree obtained frofih by using renamed symbo#8 as in Definition4,

and let KB be the according diversified knowledge base.

We claim that KB has a model that does not satisfpo C B. Defined?’ := {D}" |
0<i<k+1neN}u{B"|ne N} The interpretation for role and concept names
is defined as follows, whemg m € N are nodes of’, andd, r;, 5, b denote arbitrary
signature symbols where the names are chosen to hint attilel agmbols they may
represent based on the given conditions:

— (DM = (DM foralli=0,....k+1,

(Sn)I (d,,dHl) | d C 38” d|+1 € KB’ }

— (R}, = {dke1,b) | dss C ARG, b € KB},

—fori = k+1,...,1 recursively defineR )’ = ((di_1,b) | Scaor C rig €
KB’, (di- 1,d) € S,Il,(d.,b) erl),

- (B :={B"u{d e 4? | (d,B") e r] anddre.B" C B" € KB'}.



Fig. 6. Dependency graphs for the proofs of Theorg(feft) and6 (right)

It is easy to see thaf is a model of KB. It remains to show thaDg ¢ B. By the
construction off, we see thab, € B? only if KB’ contains the following axioms:

— chains of axiomsly C s5.dy,...,0¢ C S.Oksp @ndspory Crg, ..., S0 1 C i
where we finddy = Do, di = D for someo € N, s = SP for someo € N, and
ri = R? for someo € N,

- dk+1 C B,

— drg.BC B.

For a contradiction, suppose that K&ntains a set KB of axioms of the above form.
The dependency graph of KBs depicted in Fig6. Based on the construction of KB
the axioms of KB must be distributed over setEd)ocn as in Definitions. By Lemmab
and our choice ok, there is a node € N such thatl’, has three axioms of the form
di C ds.di;1 below it, and such that three other axioms of this form arebaddw it
(to obtain this from Lemm&, we simply consider the subtree ©f that is induced by
removing all leafs that do not correspond to axioms of thisnfo

Now I, induces a subgraph of the dependency graph of K&nceK has arity
2, the maximal amount of symbols in the interfaceoaé the set of symbols used in
two axioms of KB’ (the interface may also contain less symbols, e.g. two iddal
symbols if no auxiliary constants are used, but this caselisiamed). It is not hard
to see that the subgraph induced hymust share more symbols with the rest of the
dependency graph. First note that the interface miust contain at least one symtabl
with i < k+ 1 since some axiom involving such a symbol does not occumbElp

Moreover, there are three axioms of the fadnt 3s.di.1 belowl,, but not all of
the involved three symboks can be in the interface af(since no two of them belong to
the same axiom of KB). Thus, an axiom of the forrg orj,1 C ri must be below,. But
the dependency graph of KBontains a cycle through the nodgsry, ..., re.1, B, ro.
The interface ofl’, can contain two nodes from this cycle only if they belong te th
same axiom in KB (since the interface already contains a ndderhich certainly is
not in any axiom together with some node in the cycle). Thua@t one axiom from
this chain could not be below,, while all other axioms must be beloli,. But by
construction three axioms of the fordh C 1s.d;,.1 are not below’,, so the involved
symbolss must belong to the interface ofwhenever the according axiogori,1 C r;
is below I',. Hence this is the case for at least two symb®lsvhich do not occur
together in an axiom, and which do not occur in an axiom thatlires the symbod];
that we reasoned to be part of the interface as well. Thusust have symbols from
three distinct axioms in its interface, which cannot be.



Summing up/, cannot exist, and thus KBcannot be contained in KBSoZ does
not satisfyDg C B, and thus the latter is not a consequence of .kK¥nceT’ is a proof
tree forl (KB") U I(N; UNc UNR) U P by Lemmad4, K derivesDg C B. SoK cannot be
sound, contradicting our assumption of its existence.

The result for instance retrieval is obtained by extendiiywith an axiomDy(a),
and using an analogous argument to showga} is not entailed by any diversification
of this knowledge base on a materialisation calculus of &rit O

Next, we consider a case where classification turns out taneg higher arity than
instance retrieval.

Theorem 6. Let £ be a DL with GCls, existential quantification, and nominalsdes.
Every materialisation calculus that is sound and completecfassification in£ has
arity three or more.

Proof. The steps of the proof are similar to the proof of Theofer8uppose that there
is a binary materialisation calculi&s = (I, P, O) such that is defined for all axioms of
L, andO is defined for all axioms of the forrA C B. Let| be the maximal number of
body atoms in any rule d?, and consider some> 2(1 + 1). A knowledge base KB is
defined to contain the following axioms:

— D C 3S;.Dj,q foralli€{0,...,k},
— D1 C {a},

— 3S;.Bi,s C Biforallie€{0,...,k},
— DoC dRA AC {a}, AC By1.

Then KB entaildDg C By. Thus there is a proof trek for derivingO(Dg C By) for the
programl (KB) U I(N; UNc UNR) U P. Let T’ = (N, E, 2’) be the diversified proof tree
obtained fromT by using renamed symbof§ as in Definition4, and let KB be the
according diversified knowledge base.

We claim that KB has a model that does not satisfipy T By. The definition
of such a model is not dicult but somewhat unwieldy due to th&exts of nominals,
which may force some individuals to be identified in a moded &¢count for this by
first defining~ to be the least equivalence relation on the (ggiy{a", A", Dy, ,} for
which we find:

— if A"C {a"} € KB’, thenA" ~ a",

— if Dy,, C {a"} € KB’, thenDy,, ~ a".

We use {l] for denoting~ equivalence classesl][ := {e | e ~ d}. We now define a
model7 of KB’ over the domaimt? := Unen(([@", [A"], [D,,]} U (D" | 0 < i < K}).
The interpretation is defined as follows:
- (@) =[a",
— (D§)? = {Do} if D§ = Do; and O)” := 0 otherwise,
(D”)f {DM} for| =1,....k and OF,,)" = {[Dg, 1},
(Sn)I <dlvd, o | dic EIS .Ois1 € KB’ andd' € {dh1, [dia]} na’y,
(A”)I = [A”] if there ism ¢ N such thatA® = A", (DF)Y # 0, andDJ' C
IRM.A™ € KB’; and A")! := 0 otherwise,



— (R =47 x A7,
- (BY,)” = {[AM | (AMT # 0 andA™ C B" € KB'},
- fori=k+1,..., 1recursively define ;)" := Uagngrcer eke'(3SB) .

It is not hard to check thaf is indeed a model of KB It remains to show thaf does
not entailDg C By. To this end, note thabg € Bg holds only if KB’ contains the
following axioms:

— chains of axiom®ly C s5.ds,...,dk C S.dke1 anddsg.by C by, ..., Ascbes1 T by
where we finddy = Do, di = D for someo € N, § = SP for someo € N, by = By,
andb; = B for someo € N,

— DogCIR.A, A C{a'}, A CB,dg1C{a}.

For a contradiction, suppose that K&ntains a set KB of axioms of the above form.
As in the proof of TheorerB, we find a nod® € N such that, has three axioms of the
formd; C ds.di,; below it, and such that three other axioms of this form areoetdw
it. The dependency graph for KEsee Fig6) is very similar to the one constructed for
the proof of Theoren, and the arguments used for showing thgicannot exist due
to the restrictions on the size of the interfaceaire analogous to the ones given in the
earlier proof.

As before, we conclude that KBcannot be contained in KBsoJ does not satisfy
Do C By, and thus the latter is not a consequence of.KBnceT’ is a proof tree for
I(KB")UI(N; UNc UNR)UP by Lemmad, K derivesDg C By. SoK cannot be sound,
contradicting our assumption of its existence. O

It is interesting to note that the previous result does ntdrekto instance retrieval.
The proofindicates why this is the case. The cyclic pathwrzst required to exist in the
dependency graph involves the axi@y & IR .A” which ensures non-emptinessAsf
whenevemDy is non-empty. If this axiom was present in another form, By IR A’
with Dy # Do, the result could not be concluded. The according instaatréeval
problem, in contrast, includes an input axidg(c) from which the conclusioy(c)
must follow. In this case, the cyclic dependency is not ndeday classDj must be
non-empty if the axionD{(c") is present, and we do not neB = Do to obtain the
result. This explains on an intuitive level why we cannoeext Theoren6 to instance
retrieval like Theorend. To prove that a materialisation calculus of arity two would
really sufice in this case, an according calculus would need to be spebeithis is easy
to do by eliminating the 4-aryriple_sc predicate fronKs. using the same methods
as in the case df.. in Sectiord.

Now we are ready to show that the arity of the materialisatedoulus of Theorer@d
is optimal.

Theorem 7. Let £ be a DL with GCls, existential quantification, role chainsganomi-
nal classes. Every materialisation calculus that is sound @omplete for classification
in £ has arity four or more.

Proof. The steps of the proof are again similar to the proofs of Téexd and6. Sup-
pose that there is a ternary materialisation calctlus (I, P, O) such that is defined
on all axioms ofZ£, andO is defined for all axioms of the formA C B. Let| be the



Fig. 7. Dependency graph for the proof of Theor&m

maximal number of body atoms in any rule Bf and consider somie > 3(I + 1). A
knowledge base KB is defined to contain the following axioms:

— D C 3S;.Dj,q foralli €{0,...,k},

— Do C dT.A AC {a}, Di;1 C {a}, ACC,
— CC dR1.B,
—SioRg1CRforallielo,...,k},

— JdRy.BC B.

Then KB entailsDg C B. Thus there is a proof trek for derivingO(Do C B) for the
programl (KB) U I(N; UNc UNR) U P. LetT’ = (N, E, ") be the diversified proof tree
obtained fromT by using renamed symbof§ as in Definition4, and let KB be the
according diversified knowledge base.

Combining the techniques of Theor&mand6, it is not hard to construct a modél
of KB’ in such a way thal = Do C B holds only if KB’ contains the following axioms:

— DoC T A,

- A C {&},

- ALCC,

— chains of axiomsly C s5.dy,...,0¢ C S.Oksr @andspory Corg, ..., S0 1 C g
where we finddy = Do, di = Df for someo € N, s = S? for someo € N, and
ri = R? for someo € N,

— C' Cry1.B,

- dk+l £ {a/}'

— dro.BC B.

Constructing the according modgis not dificult along the lines of the earlier proofs,
and we omit the details here. For a contradiction, suppagad’ contains a set KB

of axioms of the above form, the dependency graph of whickesaled in Fig.7. By
Lemma5 and our choice ok, we can again find a nodee N such thatl, has four
axioms of the fornd; C 3s.di,.1 below it, and such that four other axioms of this form
are not below it.

The proof thatl, cannot exist is very similar to the argument used in Thedsem
SinceK has arity 3, the maximal amount of symbols in the interface sfthe set of
symbols used in three axioms of KBTo show that this dftices, we note that the depen-
dency graph of Figt now features two cyclic chains with nod#sd, . . ., dk,1, @, A, do



andro, r1,..., 1, B, ro. Asin the proof of Theorer, we can argue that either of these
chains has some (two or more) but not all (not even all but oh#$ axioms below’ .
Thus two end nodes for the fragments of either chain mushigetio the interface ob.
Clearly, no two of those four nodes occur together in a siagiem, so the interface
would have to be larger than possible for a ternary mateattin calculus.

Summing up', cannot exist, and thus KBcannot be contained in KBSoZ does
not satisfyDy C B, and thus the latter is not a consequence of KEBnceT’ is a proof
tree forl (KB") U (N} UN¢c UNR) U P by Lemmad4, K derivesDy C B. SoK cannot be
sound, contradicting our assumption of its existence. O

Just like Theorend, the previous result again applies to classification omigiekd,
Theoreml shows that a ternary instance retrieval calculus exista ok that includes
existentials, nominals, and role chains.

Theorem7 may be surprising, given that the calculus proposed®]rfdr E£**
would be ternary in our notation. The explanation is thad #lgorithm is incomplete
for classification; the proof of Theorertan be used to find a suitable counter example.
However, we do not need to use quite as many axioms as for treg@ease considered
in the theorem:

— Do E 3S.Dy, Do EAT.A,
— AC{a}, D1 C {a},
— dSACA

This knowledge base entail3y T A but the algorithm in 2] does not derive this.
The reason is that the algorithm’s derivation rule (CR6)as$ able to inferD; = A
since this is not universally true. Indeed, one can onlyrifif3;y C A wheneverDg

is non-empty” but this statement cannot be represented éyltjorithm in P]. The
algorithm features an auxiliary relatida ~»g F that signifies that F must be non-
empty whenevekE is” but in our example, we only gddy ~r A andDgy ~g D;
but notD; ~g A as would be required for applying (CR6). Theor@nshows that
this shortcoming cannot be overcome by introducing furgpecial cases (e.g., one
could allow (CR6) to apply in a situation with three classe#eaour counter example):
we can always find a larger counter example that is not covdiee only solution
is to “contextualise” all derivations by conditions of thaiin “if Dg is non-empty...”
which corresponds to an increase of the arity of derive@stants by one. Note that the
problem does not occur when restricting to instance retti@e. subsumption checking
where the subsumed class is a nominal) since the auxilifajior ~g always takes
all nominal classes into account. In our exampl&dfwould be replaced bjdo}, then
the relationE ~»g Ais derived for any clasg, especially forE = Dy, so{dp} C Ais
inferred.

6 Summary and Conclusions

The focus of this work has been the study of inferencing diflou SROE L (M, x) and
its fragments, and especially this paper is — to the best pkonowledge — the first to
present a sound and complete polynomial time calculus fer@éncing in a DL that is



so closely related to the OWL EL ontology language. For itigasing properties of
such calculi, we presented a simple framework for exprgssiaterialisation calculi
in terms of datalog. This revealed the arity of IDB predisa&s an interesting mea-
sure for the worst-case space requirements of materialishaised algorithms. While
SROEL(N, x) fragments without role chains and nominals admit clasgific calculi
based on binary IDB predicates, the inclusion of eitheruieaincreases the required
arity by one. Having both featureSROEL(M, x) thus does not admit any sound and
complete classification calculus of arity below four.

We are thus able to fierentiate variouSROEL(N, x) fragments and inferencing
tasks based on a measure that relates toffteeamcy of actual implementations. Indeed,
our findings agree with practical experiences that esggaiaminals and role chains
are harder to implemenfiiciently than basi& £ features Computational complexity
has not been able to provide an explanation for such disooégs since all reasoning
problems we consider are P-complete. In addition, our salsly shows that various
other features are not harder to implement than some of ts¢ Ioasic ones, thus pro-
viding guidance for deciding which features to implementoouse in an application.

Although there are standard implementation strategiesldtalog reasoning, our
study is independent of actual algorithms. A promising 1séep thus is to develop con-
trol strategies for implementing our calculi in a “pay-asdygo” algorithm that min-
imises the potential negative impact of the occurrence dbiefeatures. Moreover,
we conjecture that our results about datalog arity can lbdustrengthened to obtain
more direct statements about space complexity of almogtamnpmonotone calculi.

Acknowledgementd he author thanks Yevgeny Kazakov for his valuable input, an
the anonymous reviewers for helpful comments. This work stggported by DFG in
projectExpresSTand by EPSRC in proje€@onDOR(EP/G02085X1).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databa. Addison Wesley (1994)

2. Baader, F.,, Brandt, S., Lutz, C.: Pushing &thé envelope. In: Kaelbling, L., Shotti, A.
(eds.) Proc. 19th Int. Joint Conf. on Atrtificial Intelligen@JCAI'05). pp. 364—369. Profes-
sional Book Center (2005)

3. Baader, F.,, Brandt, S., Lutz, C.: Pushing &£ envelope further. In: Clark, K.G., Patel-
Schneider, P.F. (eds.) Proc. OWLED 2008 DC Workshop on OWipeEences and Direc-
tions. CEUR Workshop Proceedings, vol. 496. CEUR-WS.o0982

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, Deglf&thneider, P. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Agations. Cambridge Univer-
sity Press, second edn. (2007)

5. Delaitre, V., Kazakov, Y.: Classifyingg£LH ontologies in SQL databases. In: Patel-
Schneider, P.F., Hoekstra, R. (eds.) Proc. OWLED 2009 Wakon OWL: Experiences
and Directions. CEUR Workshop Proceedings, vol. 529. CEMR-org (2009)

6. Hayes, P. (ed.): RDF Semantics. W3C Recommendation (ffu&e 2004), available at
http://www.w3.org/TR/rdf-mt/

5 Based on the author’s experience implementing (klgnd personal communication with
developers of DBY] and CEL http://lat.inf.tu-dresden.de/systems/cel/).


http://lat.inf.tu-dresden.de/systems/cel/

10.

11.

12.

13.

14.

. Hitzler, P., Krétzsch, M., Rudolph, S.: Foundations affaatic Web Technologies. Chapman

& Hall/CRC (2009)

. Horrocks, 1., Kutz, O., Sattler, U.: The even more irrésis SROZQ. In: Doherty, P., My-

lopoulos, J., Welty, C.A. (eds.) Proc. 10th Int. Conf. omEeiples of Knowledge Represen-
tation and Reasoning (KR'06). pp. 57—67. AAAI Press (2006)

. Krotzsch, M., Mehdi, A., Rudolph, S.: Orel: Databasereini reasoning for OWL 2 profiles.

In: Haarslev, V., Toman, D., Weddell, G. (eds.) Proc. 23rd \korkshop on Description
Logics (DL'10) (2010)

Krétzsch, M., Rudolph, S., Hitzler, P.: ELP: Tractahlées for OWL 2. In: Sheth et al1H],
pp. 649-664

Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Foko#e, Lutz, C. (eds.): OWL 2
Web Ontology Language: Profiles. W3C Recommendation (28l@&¢ct2009), available at
http://www.w3.org/TR/owl2-profiles/

Motik, B., Sattler, U.: A comparison of reasoning tecjuds for querying large description
logic ABoxes. In: Hermann, M., Voronkov, A. (eds.) Proc. H3nt. Conf. on Logic for
Programming, Artificial Intelligence, and Reasoning (LPBR. LNCS, vol. 4246, pp. 227—
241. Springer (2006)

Rudolph, S., Krétzsch, M., Hitzler, P.: Descriptionitbgeasoning with decision diagrams:
Compiling SHIZQ to disjunctive datalog. In: Sheth et al4], pp. 435-450

Sheth, A., Staab, S., Dean, M., Paolucci, M., MaynardEDin, T., Thirunarayan, K. (eds.):
Proc. 7th Int. Semantic Web Conf. (ISWC’08), LNCS, vol. 53%8ringer (2008)


http://www.w3.org/TR/owl2-profiles/

	Efficient Inferencing for the Description Logic Underlying OWL EL
	1 Introduction
	2 Preliminaries
	3 Instance Checking for SROEL(n,x)
	4 Classification of SROEL(n,x) Knowledge Bases
	5 Minimal Arities of Materialisation Calculi
	6 Summary and Conclusions


