
Efficient Inferencing for the Description Logic
Underlying OWL EL ⋆

Markus Krötzsch

Technical Report 3005
Institute AIFB, Karlsruhe Institute of Technology, DE

mak@aifb.uni-karlsruhe.de

Abstract. The recent OWL 2 W3C recommendation includes the lightweight
ontology language OWL EL which is semantically based on an extension of the
EL++ description logic (DL). It is widely assumed that inferencing in OWL EL
is possible in polynomial time, but it is not obvious how to extend existing rea-
soning procedures forEL++ accordingly. We set out to close this gap by devel-
oping inferencing methods forSROEL(⊓,×) – a DL that subsumes the main
features of OWL EL. We present a framework for studying materialisation cal-
culi based on datalog, and we use it to investigate the resource requirements for
inferencing. We can show that certainSROEL(⊓,×) feature combinations must
lead to increased space upper bounds in any materialisationcalculus, suggesting
that efficient implementations are easier to obtain for suitably chosen fragments
of SROEL(⊓,×).

1 Introduction

The recent OWL 2 W3C recommendation includes the lightweight ontology language
OWL EL [11] which is semantically based on an extension of theEL++ description
logic (DL). It is widely assumed that inferencing in OWL EL ispossible in polyno-
mial time, but it is not obvious how to extend existing reasoning procedures forEL++

accordingly [2]. In this paper, we set out to close this gap by developing suitable in-
ferencing calculi for the DLSROEL(⊓,×) which can be considered as an extension
of the tractable DLEL++ with local reflexivity (Self), conjunctions of roles, and con-
cept products. The latter two features generalise role disjointness, the universal (top)
role, and admissible range restrictions as introduced in OWL EL. Concrete domains
(datatypes) hardly interact with the additional features of SROEL(⊓,×) and are not
considered in this paper, though the according mechanisms used in [2] could be lifted
toSROEL(⊓,×).

Our second main contribution is to assess theefficiencyof the proposed calculi.
Inferencing forEL-type DLs often suggests a materialisation-based (or consequence-
driven) implementation, where all deductions are computedsimultaneously in a bottom-
up fashion. The number of inferable facts is an important measure of efficiency in this

⋆ The results established herein have been published in: Markus Krötzsch. Efficient Inferencing
for OWL EL. In Tomi Janhunen, Ilkka Niemelä (eds.): Proceedings of the 12th European
Confernce on Logics in Artificial Intelligence (JELIA’10),LNAI. Springer, 2010. To appear.

Table 1.Syntax and semantics ofSROEL(⊓,×) concept expressions and axioms for an interpre-
tationI with domain∆I

Concept constructor Syntax Semantics
top ⊤ ∆I

bottom ⊥ ∅

conjunction C ⊓ D CI ∩ DI

existential restriction ∃R.C {x ∈ ∆I | y ∈ ∆I: 〈x, y〉 ∈ RI, y ∈ CI}
local reflexivity ∃S.Self {x ∈ ∆I | 〈x, x〉 ∈ SI}
nominal {a} {aI}

Axiom Syntax Semantics
concept assertion C(a) aI ∈ CI

role assertion R(a,b) 〈aI,bI〉 ∈ RI

concept inclusion (GCI) C ⊑ D CI ⊆ DI

role inclusion R⊑ T RI ⊆ TI

generalised role inclusionR◦ S ⊑ T {〈x, z〉 | 〈x, y〉 ∈ RI, 〈y, z〉 ∈ SI for somey} ⊆ TI

role conjunction S1 ⊓ S2 ⊑ T SI1 ∩ SI2 ⊆ TI

concept product C × D ⊑ T CI × DI ⊆ TI

R⊑ C × D TI ⊆ CI × DI

C,D ∈ C, R,S(i),T ∈ NR, a, b ∈ NI

case, and we present a formalisation of materialisation calculi to relate it to the space
complexity of datalog reasoning. Since upper space bounds for datalog are exponential
in thearity of inferred predicates, our goal is to find materialisation calculi where these
arities are low. We are able to show that there are limits to such optimisation: some
inferencing tasks intrinsically require predicates of higher arities than others.

We present four inferencing calculi: a materialisation calculus for instance checking
in SROEL(⊓,×) in Section3, and three calculi for classification inSROEL(⊓,×) and
two of its fragments in Section4. Thereafter, in Section5, we show that the arity of
inferred predicates is minimal for each of the presented calculi.

2 Preliminaries

This section summarises the basic notions from DL and datalog that are used in this
paper. The main DL studied herein isSROEL(⊓,×) which subsumes all semantic fea-
tures of OWL EL that are not related to datatypes (concrete domains). Readers without
basic acquaintance to description logics are advised to refer to the literature [4]. Details
about relationship of OWL 2 to DLs are found in [7].

A signature ofSROEL(⊓,×) consists of three disjoint finite sets ofindividual
namesNI , concept namesNC, androle namesNR. Given such a signature, the set of
SROEL(⊓,×) concept expressionsC is defined inductively to contain the expressions
in Table1 (top). The set ofSROEL(⊓,×) axiomsis then defined as in Table1 (bottom).
One may distinguish between axioms ofABox(assertional axioms),TBox(terminolog-
ical axioms: GCIs), andRBox(axioms related to roles).

Knowledge bases are sets of axioms that satisfy some additional properties. Con-
sider a set KB ofSROEL(⊓,×) axioms. We inductively define the set ofnon-simple

rolesof KB to contain all rolesT for which there is an axiomR◦ S ⊑ T ∈ KB, or an
axiomR ⊑ T such thatR is non-simple. A role that is not non-simple is calledsimple.
Moreover, given a role nameR, we defineran(R) to denote the set of concept expres-
sionsD ∈ C for which KB contains axiomsR⊑ S1, . . . ,Sn−1 ⊑ Sn andSn ⊑ C × D for
someS1, . . . ,Sn ∈ NR andn ≥ 0. The set KB is aSROEL(⊓,×) knowledge baseif the
following restrictions are satisfied:

– all rolesS occurring in expressions∃S.Self ∈ KB are simple,
– all rolesS1,S2 occurring in axiomsS1 ⊓ S2 ⊑ T ∈ KB are simple,
– for every axiomR◦ S ⊑ T ∈ KB we haveran(T) ⊆ ran(S), and
– for every axiomS1 ⊓ S2 ⊑ T ∈ KB we haveran(T) ⊆ ran(S1) ∪ ran(S2).

Note that we do not impose the structural restrictions of RBox regularity here [8] which
also apply to OWL DL (and hence to OWL EL) ontologies, since these are not needed
for efficient reasoning inSROEL(⊓,×).

The semantics ofSROEL(⊓,×) is specified by defining interpretationsI = 〈∆I, ·I〉
where∆I is a non-empty set, and·I is an interpretation function that maps individuals
to elements of∆I, concept names to subsets of∆I, and role names to binary rela-
tions over∆I. Interpretations are extended to concept expressions as inTable1 (top).
A SROEL(⊓,×) axiom issatisfiedby an interpretationI if the according condition of
Table1 (bottom) holds.I satisfies a knowledge base KB, writtenI |= KB, if it satisfies
all of its axioms. The models of an axiom or knowledge base arethe interpretations that
satisfy it, and a semantic entailment relation|= is defined as usual.

Concept products on the left-hand side allow us to define the universal (top) roleU
with an axiom⊤×⊤ ⊑ U. Note that we can also define the empty (bottom) roleN using
∃N.⊤ ⊑ ⊥. Using the empty role, conjunctions of (simple) roles are a generalisation of
disjointness of (simple) roles: the axiomR⊓ S ⊑ N declaresS andR to be disjoint.
In the absence of other role conjunctions, our requirementson concept products in
SROEL(⊓,×) knowledge bases agree with the known admissibility requirements for
range restrictions inEL++ [3].

To simplify our investigations, we first observe that anySROEL(⊓,×) knowledge
base can be converted into a normal form in a similar fashion as otherEL-type logics
[2].

Definition 1. ASROEL(⊓,×) knowledge baseKB is in normal formif it contains only
axioms of one of the following forms:

C(a) R(a, b) A ⊑ ⊥ ⊤ ⊑ C A⊑ {c} {a} ⊑ {c}

A ⊑ C A⊓ B ⊑ C ∃R.A ⊑ C A⊑ ∃R.B ∃R.Self ⊑ C A⊑ ∃R.Self

R⊑ T R◦ S ⊑ T R⊓ S ⊑ T A× B ⊑ R R⊑ C × D

where A, B,C,D ∈ NC, R,S,T ∈ NR, and a, b, c ∈ NI .

It is well-known that DL knowledge bases can often be transformed into such nor-
mal forms in such a way that satisfiability is preserved. Here, we observe that one
actually obtains a stronger correspondence that is closelyrelated to the notion of con-
servative extension:

Ĉ × D ⊑ R 7→ {Ĉ ⊑ X,X × D ⊑ R}
C × D̂ ⊑ R 7→ {D̂ ⊑ X,C × X ⊑ R}

R ⊑ Ĉ × D 7→ {X ⊑ Ĉ,R⊑ X × D}
R ⊑ C × D̂ 7→ {X ⊑ D̂,R⊑ C × X}
Ĉ ⊑ D̂ 7→ {Ĉ ⊑ X,X ⊑ D̂}
C ⊑ ⊤ 7→ ∅

⊥ ⊑ C 7→ ∅

Ĉ ⊓ A ⊑ B 7→ {Ĉ ⊑ X,X ⊓ A ⊑ B}
A ⊑ C ⊓ D 7→ {A ⊑ C,A ⊑ D}

∃R.Ĉ ⊑ A 7→ {Ĉ ⊑ X,∃R.X ⊑ A}
A ⊑ ∃R.Ĉ 7→ {A ⊑ ∃R.X,X ⊑ Ĉ}
Ĉ(a) 7→ {X(a),X ⊑ Ĉ}

A, B ∈ NC, X ∈ NC a fresh concept name,
C,D, Ĉ, D̂ ∈ C with Ĉ, D̂ < NC, R ∈ NR

Fig. 1.Normal form transformation forSROEL(⊓,×)

Proposition 1. For everySROEL(⊓,×) knowledge baseKB, aSROEL(⊓,×) knowl-
edge baseKB′ over an extended signature can be computed in linear time such that all
axioms inKB′ are in normal form, and, for allSROEL(⊓,×) axiomsα that only use
signature symbols fromKB, we find thatKB |= α iff KB′ |= α.

Proof. A transformation is only required for axioms with complex concept expressions,
since we already require most RBox axioms to be in normal formby definition.1 The
transformation for axioms that are not in normal form yet is accomplished by exhaus-
tively applying the rules of Fig.1, where each rule describes the replacement of the
axiom on the right-hand side by the set of axioms on the left-hand side. With afresh
concept name, we mean one that does not occur in any axiom yet.It is easy to see that
only a linear number of transformation steps are required, where it is important to note
that the rule forA ⊑ C ⊓ D is only applicable ifA is no compound expression, so that
the duplication ofA still leads to only a linear increase in size.

It is easy to see that, for each transformation rule, the resulting set of axioms has
the required semantic relation to the original axiom: Any interpretation that satisfies
the original axiom can be extended to an interpretation of the transformed axiom set by
interpreting each fresh concept nameX as the least set of domain elements for which
the transformed set of axioms is valid (using the original interpretation interpretation
for all other symbols). Conversely, any interpretation that satisfies the transformed set
of axioms necessarily satisfies the original axiom. Since these observations are easily
verified for each transformation rule, the claim follows by induction. ⊓⊔

Roughly speaking, the previous result states that everySROEL(⊓,×) knowledge
base is semantically equivalent “up to the interpretation of auxiliary signature symbols”
to a knowledge base in normal form.

1 This could be relaxed by allowing arbitrarily long role chains which can easily be decomposed
into binary role chains as in our definition.

Our formalisation of inferencing calculi is based on the simple rule languagedata-
log [1]. A signatureof datalog is a tuple〈C,P〉, whereC is a finite set ofconstants, and
P is a finite set ofpredicates, where each predicatep ∈ P has a fixed arityar(p) ≥ 0.
We assumeP to be a disjoint unionPi ∪ Pe of IDB predicatesPi andEDB predicates
Pe.2 Throughout this paper, we useV to denote a countably infinite set ofvariables.
Elements ofC ∪ V are calledterms.

A datalog atomover a signature〈C,P〉 is an expressionp(t1, . . . , tn) wherep ∈ P
with ar(p) = n, andti ∈ C ∪ V for i = 1, . . . , n. An IDB (EDB) atom is one that uses an
IDB (EDB) predicate. Adatalog ruleis a formula of the formB1∧ . . .∧Bl → H where
Bi andH are datalog atoms, andH is an IDB atom. The premise of a rule is also called
its body, and the conclusion is called itshead. A datalog program Pis a set of datalog
rules. Afact is a ground, i.e. variable-free, rule with an empty body.

A ground substitutionσ for a signature〈C,P〉 is a functionσ : V → C. Substi-
tutions are extended to datalog atoms by settingσ(p(t1, . . . , tn)) ≔ p(σ(t1), . . . , σ(tn)),
andσ(p(t1, . . . , tn)) is called aground instanceof p(t1, . . . , tn) in this case.

A proof treefor a datalog programP is a structure〈N,E, λ〉 whereN is a finite set
of nodes,E ⊆ N × N is a set of edges of a directed tree, andλ is a labelling function
that assigns a ground datalog atom to each node, where the following holds: for each
noden ∈ N, there is a ruleB1 ∧ . . . ∧ Bl → H ∈ P and a ground substitutionσ such
thatλ(n) = σ(H) and the set of child nodes{m | 〈n,m〉 ∈ E} is of the form{m1, . . . ,ml}

whereλ(mi) = σ(Bi) for eachi = 1, . . . , l.
A ground atomH is aconsequenceof a datalog programP if there is a proof tree

for P that hasH as the labelλ(r) of its root noder.

Definition 2. Given a datalog signature〈C,P〉, a renamingρ is a functionρ : C → C.
To extendρ to ground datalog atoms we setρ(p(t1, . . . , tn)) ≔ p(ρ(t1), . . . , ρ(tn)).

All renamings that occur in this paper are injective.

3 Instance Checking forSROEL(⊓,×)

We now introduce a calculus for solving the inference task ofinstance checking – de-
ciding if C(a) is entailed for anyC ∈ NC, a ∈ NI – for SROEL(⊓,×). In Section5
we show its optimality in the sense that no other materialisation calculus can be bet-
ter in terms of certain characteristics. This requires a concrete understanding of what a
materialisation calculus is, so we start this section with aformalisation of this notion.

Our goal is to find a unified presentation for deduction calculi that have been pro-
posed forEL-type DLs before [2,5]. Intuitively speaking, a materialisation calculus is
a system of deduction rules for deriving logical consequences which – as opposed to a
complete inferencing algorithm – does not specify a concrete control flow or process-
ing strategy for evaluating these rules. Deduction rules can be denoted in many forms,
e.g. using textual if-then descriptions [2], in tabular form [11,6], or as sequent calculus
style derivation rules [5]. Premises and conclusions of rules often consist of formulae

2 This terminology originates from the field of deductive databases where one distinguishes
extensionalandintensional data base.

of the processed logic, but they may also contain auxiliary expressions that are relevant
to the calculus.3 A deduction rule can then be viewed as a schema for deriving new
expressions from a finite set of given expressions, and its applicability is not affected
by uniform renamings of signature symbols in premise and conclusion.

Deduction rules in this sense can conveniently be denoted asdatalog rules where
concrete logical sentences are represented as ground factsthat use signature symbols
in term positions. For example, we can representA ⊑ B assubclassOf(A, B), and in-
troduce a deduction rulesubclassOf(x, y) ∧ subclassOf(y, z) → subclassOf(x, z).
This unifies the presentation of diverse calculi, and allowsus to exploit techniques from
deductive databases. For connecting datalog to DL, we require a translation from in-
dividual DL axioms to (sets of) datalog EDB facts. This translation is also defined for
signature symbols, since symbols must generally be “loaded” into datalog to be able
to derive conclusions about them, regardless of whether thesymbols occurred in input
axioms or not. Finally, another translation is used for finding the IDB fact that signifies
the logical entailment of a given axiom. All translation functions can be partial if not
all types of axioms are supported by the calculus. These considerations motivate the
following definition.

Definition 3. A materialisation calculusK is a tuple K= 〈I ,P,O〉 where I and O are
partial functions, and P is a set of datalog rules, such that

1. given an axiom or signature symbolα, I(α) is either undefined or a set of datalog
facts over EDB predicates,

2. given an axiomα, O(α) is either undefined or a single datalog fact over an IDB
predicate,

3. the set of EDB and IDB predicates used by I, P, and O is fixed and finite,
4. P contains no constant symbols,
5. all constant symbols used in I(α) or O(α) for some axiom (or signature symbol)
α are either signature symbols that appear in (or are equal to)α, or constants of
the form auxαi with i ≥ 0, where all constant names auxαi are mutually distinct and
unequal to any DL signature symbol,4

6. I and O do not depend on concrete signature symbols, i.e. for a renamingρ of sig-
nature symbols that maps individual/concept/role names to individual/concept/role
names, we find I(ρ(α)) = ρ(I (α)) and O(ρ(α)) = ρ(O(α)) if ρ(auxαi) = auxρ(α)i .

We extend I to knowledge basesKB by setting I(KB) ≔
⋃
β∈KB I (β) if I (β) is defined

for all β ∈ KB and undefined otherwise. We extend I to sets of signature symbols S by
setting I(S) ≔

⋃
s∈S,I (s) definedI (s).

K induces anentailment relation⊢K between knowledge basesKB and axiomsα
over a signature〈NI ,NC,NR〉, defined by settingKB ⊢K α whenever I(KB) and O(α)
are defined and I(KB) ∪ I (NI ∪NC ∪ NR) ∪ P |= O(α).

We say that K issound (complete)if KB ⊢K α implies (is implied by)KB |= α for
all knowledge basesKB and axiomsα for which I(KB) and O(α) are defined.

3 For instance, the calculus in [2] uses auxiliary statementsA{R B for class namesA andB.
4 When clear from the context, we will generally omitα and simply writeauxi .

C(a) 7→ {subClass(a,C)} R(a,b) 7→ {subEx(a,R,b,b)} a ∈ NI 7→ {nom(a)}
⊤ ⊑ C 7→ {top(C)} A ⊑ ⊥ 7→ {bot(A)} A ∈ NC 7→ {cls(A)}
{a} ⊑ C 7→ {subClass(a,C)} A ⊑ {c} 7→ {subClass(A, c)} R ∈ NR 7→ {rol(R)}
A ⊑ C 7→ {subClass(A,C)} A⊓ B ⊑ C 7→ {subConj(A, B,C)}

∃R.Self ⊑ C 7→ {subSelf(R,C)} A ⊑ ∃R.Self 7→ {supSelf(A,R)}
∃R.A ⊑ C 7→ {subEx(R,A,C)} A ⊑ ∃R.B 7→ {supEx(A,R, B,aux1)}

R⊑ T 7→ {subRole(R,T)} R◦ S ⊑ T 7→ {subRChain(R,S,T)}
R⊑ C × D 7→ {supProd(R,C,D)} A× B ⊑ R 7→ {subProd(A, B,R)}
R⊓ S ⊑ T 7→ {subRConj(R,S,T)}

Fig. 2. Input translation forKinst

This definition further extends the above intuition of a materialisation calculus by
explicitly introducing a datalog transformationI that is allowed to introduce arbitrarily
many auxiliary constantsauxαi . This can be utilised, for example, to perform a normal-
isation that introduces auxiliary concept names as part of the input translation. Yet, the
input translation is limited in its expressivity, since it depends only on individual axioms
and signature symbols. In particular, this precludes complex datalog translations as in
[12,13]. Note that we do not make any assumptions on the computability or complexity
of I andO, but both functions are typically very simple.

A noteworthy feature of materialisation calculi in the above sense is that they sug-
gest materialisation-based (or consequence-driven) reasoning approaches: after trans-
lating a knowledge base to datalog facts, all consequences of these facts under the de-
duction rules can be computed in a bottom-up fashion, and (given that the functionO is
easy to compute, or even invertible) all supported entailments can be checked thereafter
without further recursive computation. This contrasts with other reasoning principles
such as the tableaux method where just a single entailment ischecked in one run of the
algorithm.

It is not hard to formulate the deduction algorithms presented forEL-type logics
in [2] and [5] as materialisation calculi in the sense of Definition3. The calculus we
present here, however, is derived from a datalog reduction that has originally been in-
troduced in [10] for a rule language based onEL++. This approach can be modified to
coverSROEL(⊓,×) but does not directly yield a materialisation calculus in our sense
since the set of datalog rules in [10] is not fixed but generated during the translation.

Theorem 1. Consider the materialisation calculus Kinst = 〈I inst,Pinst,Oinst〉 with Iinst

defined as in Fig.2, Pinst defined as in Fig.3, and Oinst defined as Oinst(C(a)) ≔
inst(a,C) for C ∈ NC, a ∈ NI , and undefined otherwise. Then Kinst is sound and com-
plete, i.e. it provides a materialisation calculus for instance checking forSROEL(⊓,×)
knowledge bases within which all axioms are normalised.

A proof of this theorem will be presented below. It is not hardto obtain an intuition
about the rules ofPinst. The IDB predicatesinst, triple, andself correspond to
ABox axioms for atomic concepts, roles, and concepts∃R.Self, respectively. Rule (1)
serves as an initialisation rule that accounts for the firstinst facts to be derived. Rule
(2) specifies the (only) case where reflexivetriple facts lead toself facts. The rules

(1) nom(x)→ inst(x, x)
(2) nom(x) ∧ triple(x, v, x)→ self(x, v)
(3) top(z) ∧ inst(x, z′)→ inst(x, z)
(4) bot(z) ∧ inst(u, z) ∧ inst(x, z′) ∧ cls(y)→ inst(x, y)
(5) subClass(y, z) ∧ inst(x, y)→ inst(x, z)
(6) subConj(y1, y2, z) ∧ inst(x, y1) ∧ inst(x, y2)→ inst(x, z)
(7) subEx(v, y, z) ∧ triple(x, v, x′) ∧ inst(x′, y)→ inst(x, z)
(8) subEx(v, y, z) ∧ self(x, v) ∧ inst(x, y)→ inst(x, z)
(9) supEx(y, v, z, x′) ∧ inst(x, y)→ triple(x, v, x′)
(10) supEx(y, v, z, x′) ∧ inst(x, y)→ inst(x′, z)
(11) subSelf(v, z) ∧ self(x, v)→ inst(x, z)
(12) supSelf(y, v) ∧ inst(x, y)→ self(x, v)
(13) subRole(v,w) ∧ triple(x, v, x′)→ triple(x,w, x′)
(14) subRole(v,w) ∧ self(x, v)→ self(x,w)
(15) subRChain(u, v,w) ∧ triple(x, u, x′) ∧ triple(x′, v, x′′)→ triple(x,w, x′′)
(16) subRChain(u, v,w) ∧ self(x,u) ∧ triple(x, v, x′)→ triple(x,w, x′)
(17) subRChain(u, v,w) ∧ triple(x,u, x′) ∧ self(x′, v)→ triple(x,w, x′)
(18) subRChain(u, v,w) ∧ self(x,u) ∧ self(x, v)→ triple(x,w, x)
(19) subRConj(v1, v2,w) ∧ triple(x, v1, x′) ∧ triple(x, v2, x′)→ triple(x,w, x′)
(20) subRConj(v1, v2,w) ∧ self(x, v1) ∧ self(x, v2)→ self(x,w)
(21) subProd(y1, y2,w) ∧ inst(x, y1) ∧ inst(x′, y2)→ triple(x,w, x′)
(22) subProd(y1, y2,w) ∧ inst(x, y1) ∧ inst(x, y2)→ self(x,w)
(23) supProd(v, z1, z2) ∧ triple(x, v, x′)→ inst(x, z1)
(24) supProd(v, z1, z2) ∧ self(x, v)→ inst(x, z1)
(25) supProd(v, z1, z2) ∧ triple(x, v, x′)→ inst(x′, z2)
(26) supProd(v, z1, z2) ∧ self(x, v)→ inst(x, z2)
(27) inst(x, y) ∧ nom(y) ∧ inst(x, z)→ inst(y, z)
(28) inst(x, y) ∧ nom(y) ∧ inst(y, z)→ inst(x, z)
(29) inst(x, y) ∧ nom(y) ∧ triple(z,u, x)→ triple(z, u, y)

Fig. 3.Deduction rulesPinst

(3) to (26) capture expected derivations for each of the axiom types asencoded by the
EDB predicates. A special case is rule (4) which checks for global inconsistency. In
implementations, such rules are typically not materialised since their effect can easily
be taken into account when checking for entailments. Rules (9) and (10) make use of
the auxiliary constants we use for handling existentials. Roughly speaking, each such
constant represents the class of all role successors generated by the axiom from which
it originates; Lemma1 below formalises this intuition. The remaining rules (27) to (29)
encode equality reasoning that is relevant in the presence of nominals. In particular,
statementsinst(a, b) with a andb individuals encode equality ofaandb. Most rules for
axiomatising equality are not needed: the property that we require to hold is formalised
in Lemma2 below.

Axiom normalisation and the computations ofI inst andOinst can be accomplished
in linear time, and the time for reasoning in datalog is polynomial w.r.t. the size of the
collection of ground facts. Together with the known P-hardness ofEL++ [2], we obtain
the following result, of which no formal proof seems to have been published so far:

Corollary 1. Instance checking inSROEL(⊓,×) and in OWL EL without datatype
properties isP complete w.r.t. the size of the knowledge base.

It is not hard to extend this result to OWL EL with datatype properties along the
lines of datatype reasoning inEL++ [2], but this is not a direct consequence of the
above theorem. The proof of Theorem1 is established by Lemma1 (soundness) and3
(completeness) below. We start with the former since its proof provides some further
intuition on the meaning of datalog atoms derived in the calculus. While soundness
is easy to establish for most rules, the cases of rules (19) and (25) are slightly more
intricate and make up most of the following proof.

Lemma 1. For a SROEL(⊓,×) knowledge baseKB in normal form, a class name
D ∈ NC, and an individual a∈ NI , we find thatKB ⊢Kinst D(a) impliesKB |= D(a).

Proof. Let P be the datalog programI inst(KB) ∪ I inst(NI ∪NC ∪NR)∪Pinst. To interpret
the IDB atoms that are derived byKinst, we assign a concept expressionκ(c) to each
constantc of P as follows:

– if c ∈ NI thenκ(c) ≔ {c},
– if c = auxαi for α = A ⊑ ∃R.B, thenκ(c) ≔ B⊓ ∃R−.A.

The concept used in the second case includes an inverse role,the semantics of which is
defined by (∃R−.A)I ≔ {e ∈ ∆I | 〈d, e〉 ∈ RI, d ∈ AI}. Inverse roles are not supported
bySROEL(⊓,×) but are convenient for formulating this proof.

Now we can assign meaning to ground IDB atoms ofP as follows:

– inst(c,A) with A ∈ NC: KB |= κ(c) ⊑ A,
– inst(c, d) with d ∈ NI : KB |= κ(c) ⊑ {d},
– triple(c,R, d): KB |= κ(c) ⊑ ∃R.κ(d),
– self(c,R): KB |= κ(c) ⊑ ∃R.Self,

and in each case KB implies thatκ(c) is necessarily non-empty. Note that the second
constant in any derivedinst predicate must be inNC ∪ NI , so the above definition
covers all cases. We claim that an IDB atom is entailed byP only if the corresponding
semantic conditions are satisfied by KB. In particular, thisproves the overall claim.

We establish this claim by induction over the proof (tree) ofan IDB atom. The claim
clearly holds for the base case of rule (1) since nominals are necessarily non-empty. For
almost all other rules, it is easy to apply the induction hypothesis immediately to the
body atoms to obtain the desired conclusion in combination with the axioms of KB
that the involved EDB atoms encode. This covers all rules butrule (19) and (25). The
required non-emptiness ofκ(c) is easy to derive, and it is explicitly needed only for
the conclusion in rules (21) and (22). Note how the preconditioninst(x, z′) serves to
ensure non-emptiness ofκ(x) for rules (3) and (4). It thus remains to show the claim for
the rules (19) and (25).

First consider the situation for rule (25). To establish the claim, we show thatP |=
supProd(R,C,D) ∧ triple(c,R, d) implies KB |= κ(d) ⊑ D (note thatB is not a
nominal based on our normal form). Non-emptiness ofκ(d) follows from the induction
hypothesis onP |= triple(c,R, d). The assumptions implyR ⊑ C × D ∈ KB. Yet, the

claim is obvious only ifd ∈ NI . For the cased < NI , the statement cannot be concluded
from the meanings provided fortriple above.

Thus we assume thatd = auxαi with α = A ⊑ ∃V.B and we prove the following
claim: if KB |= R⊑ C′ × D andP |= triple(c,R, d) then KB |= κ(d) ⊑ D. We proceed
by induction on the proof tree ofP |= triple(c,R, d):

– Rule (9). ThenR= V and the claim is obvious sinceκ(d) = B⊓∃R−.A is a subclass
of ∃R−.⊤.

– Rule (13). Then there is an axiomR′ ⊑ R ∈ KB. Thus we obtain KB|= R′ ⊑ C×D,
to which we can apply the induction hypothesis to obtain KB|= κ(d) ⊑ D.

– Rule (15). Then there is an axiomR1 ◦ R2 ⊑ R ∈ KB. By the definition of
SROEL(⊓,×) knowledge bases, we findran(R) ⊆ ran(R2), so KB contains ax-
iomsR2 ⊑ S1, S1 ⊑ S2, . . . ,Sn−1 ⊑ Sn, andSn ⊑ C′ × D ∈ KB. We conclude that
KB |= R2 ⊑ C′ × D. Since the rule application requiresP |= triple(c′,R2, d), we
obtain KB |= κ(d) ⊑ D by the induction hypothesis.

– Rule (16). This case is analogous to the case of rule (15).
– Rule (17). We obtain KB |= R2 ⊑ C′ × D as in the case of rule (15). SinceP |=
self(d,R2), we obtain KB|= κ(d) ⊑ ∃R2.Self from the global induction hypothesis.
Overall, we thus conclude KB|= κ(d) ⊑ D.

– Rule (18). This case is analogous to the case of rule (17).
– Rule (19). Then there is an axiomR1 ⊓ R2 ⊑ R ∈ KB. By the definition of
SROEL(⊓,×) knowledge bases, we findran(R) ⊆ ran(R1) ∪ ran(R2), so there is
i ∈ {1, 2} such that KB contains axiomsRi ⊑ S1, S1 ⊑ S2, . . . , Sn−1 ⊑ Sn, and
Sn ⊑ C′ × D ∈ KB. We conclude that KB|= Ri ⊑ C′ × D. Since the rule appli-
cation requiresP |= triple(c,Ri, d), we obtain KB|= κ(d) ⊑ D by the induction
hypothesis.

– Rule (21). Then there is an axiomE × F ⊑ R ∈ KB. SinceP |= inst(c,E) and
P |= inst(d, F), we find thatκ(c) is non-empty and KB|= κ(d) ⊑ F by the global
induction hypothesis. This shows that KB|= κ(d) ⊑ ∃R−.⊤ so we conclude KB|=
κ(d) ⊑ D.

This concludes the inductive argument, since rule (29) is not relevant here sinced < NI .

It remains to show that the claim of the main induction holds for applications of rule
(19). To establish the claim, we show thatP |= subRConj(R,S,T) ∧ triple(c,R, d) ∧
triple(c,S, d) implies KB |= κ(c) ⊑ ∃T.κ(d). This is easy to see only for the case that
d ∈ NI . For the cased < NI , the statement cannot be concluded from the meanings
provided fortriple above. To show that the claim holds in this case, assumed = auxαi
with α = A ⊑ ∃V.B.

With these assumption, we consider the proof tree by whichP |= triple(c,T, d)
is derived. We only require the “upper part”Tu of this proof tree that is inductively
characterised as follows:Tu contains the root node (labelled withtriple(c,T, d)); and
if Tu contains a node labelled with an atomtriple(c,W, d) (W ∈ NR) thenTu also
contains all of its child nodes. So the partial proof treeTu may have IDB atoms as
its leafs but has no leaf atoms of the formtriple(c,W, d). The root ofTu is derived
with (a ground instance of) rule (19). We find that the premisestriple(c,R, d) and

triple(c,S, d) of this rule can only be derived by rules (9), (13), (19), and (21). The
rules (15) to (18) cannot occur sinceRandS are simple, and the rule (29) cannot occur
sinced < NI . Simplicity is propagated to roles in premises of rule (13) and (19), so we
find that all rules applied throughoutTu are (9), (13), (19), or (21).

Tu traces back the derivation of atomstriple(c,W, d). The base cases from which
such atoms can be derived are only the rules (9) and (21). As a first case, consider the
sub-proof tree oftriple(c,R, d) that Tu contains, and assume that this tree does not
use rule (9). An easy induction shows that this implies KB|= κ(c) × κ(d) ⊑ R. Indeed,
the remaining base case (21) is obvious, and the induction steps for rules (13) and (19)
are easy based on the induction hypothesis. Now from the maininduction hypothesis of
the lemme, we obtainκ(c) ⊑ ∃S.κ(d) andκ(c) non-empty. Together withκ(c)× κ(d) ⊑ R
andR⊓S ⊑ T ∈ KB this shows the claim KB|= κ(c) ⊑ ∃T.κ(d) andκ(c) non-empty. An
analogous argument is obtained if the proof fortriple(c,S, d) does not use rule (9).

It remains to establish the claim for the case that the proofsof bothtriple(c,R, d)
andtriple(c,S, d) involve some application of rule (9). For this case, we establish
the following auxiliary claim (‡): if the subtree ofTu for derivingtriple(c,R, d) uses
rule (9), and if KB |= κ(c) ⊑ ∃(V ⊓ W).κ(d) for someW ∈ NR, then KB |= κ(c) ⊑
∃(V ⊓W⊓ R).κ(d) (where nested role conjunctions in concept expressions are allowed
with the obvious semantics). Obviously, this statement also subsumes a similar claim
usingS instead ofR. Intuitively speaking, (‡) states that role relations can be added
conjunctively to the basic relationV along the proof oftriple(c,R, d). We show this
claim by induction over the relevant rules occurring in the considered subtree ofTu:

– Rule (9). ThenR= V and the claim is immediate.
– Rule (13). Then there is an axiomR′ ⊑ R ∈ KB. By the induction hypothesis for

(‡), we find that KB |= κ(c) ⊑ ∃(V ⊓W ⊓ R′).κ(d), and these statements clearly
imply KB |= κ(c) ⊑ ∃(V ⊓W⊓R′ ⊓ R).κ(d) and thus (‡).

– Rule (19). Then there is an axiomR1 ⊓ R2 ⊑ R ∈ KB. By the assumption, at least
one of the proofs of the atomstriple(c,Ri, d) in Tu uses rule (9). Assume without
loss of generality that this is the case forR1. By the hypothesis for (‡) we find
KB |= κ(c) ⊑ ∃(V ⊓W⊓ R1).κ(d).
If the proof oftriple(c,R2, d) does not use rule (9), we can apply our above rea-
soning for this case to obtain KB|= κ(c) × κ(d) ⊑ R2, and we conclude KB|=
κ(c) ⊑ ∃(V ⊓ W ⊓ R1 ⊓ R2).κ(d). Together withR1 ⊓ R2 ⊑ R ∈ KB we obtain
KB |= κ(c) ⊑ ∃(V ⊓W⊓ R).κ(d) as required.
If the proof of triple(c,R2, d) uses rule (9), then we can apply the induction
hypothesis of (‡) to R2 with the premise KB |= κ(c) ⊑ ∃(V ⊓ W ⊓ R1).κ(d)
to find KB |= κ(c) ⊑ ∃(V ⊓ W ⊓ R1 ⊓ R2).κ(d). Again, we may thus conclude
KB |= κ(c) ⊑ ∃(V ⊓W⊓ R).κ(d) as required.

– Rule (21). This case is not relevant in the induction: no proof tree that satisfies the
assumptions for (‡) uses this rule at its root (since it must use rule (9) somewhere),
so it is never encountered in the inductive argument.

Now the overall claim is easily established. Since the derivation oftriple(c,R, d)
uses rule (9) which can only entail triples forV (since this is the role occurring ind), we
find P |= triple(c,V, d). This entails KB|= κ(c) ⊑ ∃V.κ(d) andκ(c) non-empty by the
global induction hypothesis. Thus we can apply (‡) with KB |= κ(c) ⊑ ∃(V ⊓ V).κ(d) to

obtain KB |= κ(c) ⊑ ∃(V ⊓ R).κ(d). Applying (‡) a second time, we find KB|= κ(c) ⊑
∃(V ⊓ R⊓ S).κ(d). Together withR⊓ S ⊑ T ∈ KB, this shows KB|= κ(c) ⊑ ∃T.κ(d)
which establishes the claim. ⊓⊔

It remains to show the completeness of the calculus. Due to the presence of nomi-
nals, different constant symbols in the datalog program used byKinst may represent the
same description logic individuals. To take this into account, we define an equivalence
relation on the Herbrand universe of such programs. To use this equivalence for iden-
tifying elements in a model, we must ensure that the logical properties of equivalent
elements are the same, i.e. that the equivalence relation isa congruence in a certain
sense. The following, slightly weaker property suffices in our case:

Lemma 2. For a SROEL(⊓,×) knowledge baseKB in normal form, let P denote the
datalog program Iinst(KB)∪I inst(NI∪NC∪NR)∪Pinst, and define an equivalence relation
≈ on the Herbrand universe of P to be the reflexive, symmetric, transitive closure of the
relation {〈c, d〉 | P |= inst(c, d), d ∈ NI }.

Given a constant c such that c≈ a for some a∈ NI , we find that P|= inst(c,A)
(P |= triple(c,R, d), P |= triple(d,R, c), P |= self(c,R)) implies P |= inst(a,A)
(P |= triple(a,R, d), P |= triple(d,R, a), P |= self(a,R)).

Proof. First note that, for every constantd with P |= inst(d, b) andb ∈ NI , we find that
P |= inst(d,A) iff P |= inst(b,A). This directly follows from the fact thatJ satisfies
the rules (27) and (28). Given the preconditions of the claim, this already allowsus to
conclude thatP |= inst(c,A) iff P |= inst(a,A) (†). This statement (†) subsumes the
first part of the claim. Moreover,P |= inst(a, a) and (†) imply P |= inst(c, a). We thus
can conclude thatP |= triple(d,R, c) impliesP |= triple(d,R, a) using rule (29).

To show the remaining cases of the claim, consider a consequencetriple(c,R, d)
or self(c,R) of P. We show the claim by induction over the structure of the proof
(tree) of this consequence. First consider the possibilities for derivingtriple(c,R, d).
The cases of rules (9) and (21) follow from (†). The cases of rules (13), (15) to (19), and
(29) follow from the induction hypothesis. Now consider the possibilities for deriving
self(c,R). If rule (2) was used on a premisenom(c)∧triple(c,R, c), we can conclude
triple(a,R, c) from the induction hypothesis, andtriple(a,R, a) from (†). The claim
then follows sincenom(a) holds due toa ∈ NI . The cases of rules (14) and (20) follows
directly from the induction hypothesis. The cases of rules (12) and (22) follow again
from (†). ⊓⊔

We can now show the completeness ofKinst:

Lemma 3. For a SROEL(⊓,×) knowledge baseKB in normal form, a class name
D ∈ NC, and an individual a∈ NI , we find thatKB |= D(a) impliesKB ⊢Kinst D(a).

Proof. Let P be the datalog programI inst(KB) ∪ I inst(NI ∪ NC ∪ NR) ∪ Pinst. We show
the contrapositive of the claimed implication. If KB0Kinst D(a), thenP 6|= Oinst(D(a)).
Then there is an Herbrand modelJ of P such thatJ 6|= Oinst(D(a)). We provide a
construction for a modelI of KB such thatI 6|= D(a), which shows that KB6|= D(a) as
required.

Consider the equivalence relation≈ as defined in Lemma2, and let [c] ≔ {d | d ≈ c}
denote the≈ equivalence class ofc. LetAuxbe the set of auxiliary constants of the form
auxαi that occur inP. The domain ofI is defined as

∆I ≔ {d1, d2 | d ∈ Aux,J |= inst(d, e) for somee, d 0 a for all a ∈ NI }∪{[c] | c ∈ NI }.

The indices 1 and 2 introduce two copies of each auxiliary constantd ∈ Aux; this is
important to handleSelf statements properly. For each elemente ∈ ∆I, we define a
projectionι(e) to ∆J as follows: ife is of the formdn thenι(e) ≔ d; if e is of the form
[c] then ι(e) ≔ b for an arbitrary fixedb ∈ [c]. We can now define the interpretation
function forI. For eachc ∈ NI , setcI ≔ [c]. For eachA ∈ NC, setAI ≔ {d ∈ ∆I |
J |= inst(ι(d),A)}. For eachR ∈ NR, we inductively defineRI to be the smallest set
that contains the pairs〈d, d′〉 ∈ RI for which one of the following conditions holds:

– J |= triple(ι(d),R, ι(d′)) andd , d′, or
– J |= self(ι(d),R) andd = d′,
– there is an axiomS ⊑ R ∈ KB and〈d, d′〉 ∈ SI,
– there is an axiomS ◦ T ⊑ R ∈ KB and〈d, e〉 ∈ SI, 〈e, d′〉 ∈ TI for somee ∈ ∆I,
– there is an axiomA× B ⊑ R∈ KB andd ∈ AI, d′ ∈ BI.

Observe that all pairs〈d, d′〉 ∈ RI are such thatJ |= triple(ι(d),R, ι(d′)) or J |=
self(ι(d),R). This can be shown inductively for the last three cases of the above defi-
nition, sinceJ satisfies rules (13) to (18), and (21) and (22).

Lemma2 shows that the definition ofI does not depend on the choice ofι([c]) ∈ [c].
Since we assumed thatJ 6|= inst(a,D), we find thatI 6|= D(a). It remains to show that
I is a model of KB. We consider all axiom types that may occur in KB, where we
follow the cases of Fig.2.

– ⊤ ⊑ C. ThenJ |= top(C). For all d ∈ ∆I, we findJ |= inst(ι(d), e) for some
e: this is required ifι(d) ∈ Aux, and it follows from rule (1) if ι(d) ∈ NI . Thus
J |= inst(ι(d),C) by rule (3), and henced ∈ CI as required.

– A ⊑ ⊥. ThenJ |= bot(A). If d ∈ AI, thenJ |= inst(ι(d),A). For a andD as in
the main claim, we also findJ |= cls(D), andJ |= inst(a, a) (by rule (1)). Thus
J |= inst(a,D) by rule (4), contradicting our assumptions onJ. Thusd ∈ AI

cannot be, andAI = ∅ as required.
– {b} ⊑ C. ThenJ |= subClass(b,C) andJ |= nom(b). ThusJ |= inst(b, b) (1),

andJ |= inst(b,C) (5). ThenbI = [b] ∈ CI follows from Lemma2.
– A ⊑ {c}. ThenJ |= subClass(A, c). If d ∈ AI, thenJ |= inst(ι(d),A). By rule

(5), we thus findJ |= inst(ι(d), c) and thusι(d) ≈ c andd = [c] = cI as required.
– A ⊑ C. ThenJ |= subClass(A,C). If d ∈ AI, thenJ |= inst(ι(d),A). By rule

(5), we thus findJ |= inst(ι(d),C) and thusd ∈ CI as required.
– A⊓ B ⊑ C. ThenJ |= subConj(A, B,C). If d ∈ AI ∩ BI, thenJ |= inst(ι(d),A)

andJ |= inst(ι(d), B). By rule (6), we thus findJ |= inst(ι(d),C) and thus
d ∈ CI as required.

– ∃R.A ⊑ C. ThenJ |= subEx(R,A,C). If d ∈ (∃R.A)I then there isd′ ∈ AI with
〈d, d′〉 ∈ RI, henceJ |= inst(ι(d′),A). Further, eitherJ |= triple(ι(d),R, ι(d′)),
or d = d′ andJ |= self(ι(d),R). ThusJ |= inst(ι(d),C) by rule (7) or (8), and
thusd ∈ CI as required.

– A ⊑ ∃R.B. ThenJ |= supEx(A,R, B, aux1). If d ∈ AI, thenJ |= inst(ι(d),A).
ThusJ |= triple(ι(d),R, aux1) (9) andJ |= inst(aux1, B) (10). We require an
elementd′ ∈ ∆I with ι(d′) ≈ aux1 and such that〈d, d′〉 ∈ RI (the requirement
d′ ∈ BI then follows fromι(d′) ≈ aux1, J |= inst(aux1, B), and Lemma2). If
aux1 ≈ c for somec ∈ NI , we can used′ = [c]. Indeed,〈d, d′〉 ∈ RI can be
concluded in this case: ifd = d′, thenJ |= triple(c,R, c) by Lemma2, and thus
J |= self(c,R) by rule (2). Second, consider the case thataux1 0 c for all c ∈ NI .
Then there is somen ∈ {1, 2} such thatd , (aux1)n, sod′ = (aux1)n clearly satisfies
the claim, even ifι(d) = ι(d′) should occur.

– ∃R.Self ⊑ C. ThenJ |= subSelf(R,C). Assume that〈d, d〉 ∈ RI. We showJ |=
self(ι(d),R) by induction over the definition ofRI, where the case of role chains
is not relevant sinceR must be simple. The first case of the definition is impossible
sinced = d, and the second case is trivial. IfS ⊑ R ∈ KB and〈d, d〉 ∈ SI, then we
haveJ |= self(ι(d),S) (induction hypothesis) and the claim follows by rule (14).
For the last case, assumeA× B ⊑ Randd ∈ AI ∩ BI. ThenJ |= inst(ι(d),A) and
J |= inst(ι(d), B), and the claim follows from rule (22).

ThusJ |= self(ι(d),R) and we can apply rule (11) to obtainJ |= inst(ι(d),C),
which showsd ∈ CI as required.

– A ⊑ ∃R.Self. ThenJ |= supSelf(A,R). If d ∈ AI, thenJ |= inst(ι(d),A). Thus
J |= self(ι(d),R) by rule (12). This shows〈d, d〉 ∈ RI as required.

– R⊑ T, R◦ S ⊑ T, A× B ⊑ R. Immediate from the definition ofTI.

– R⊓ S ⊑ T. ThenJ |= subRConj(R,S,T). Assume〈d, e〉 ∈ RI ∩ SI. As a first
case, ifd = e then we can showJ |= self(ι(d),R) andJ |= self(ι(d),S) using
the same inductive argument as in the case “∃R.Self ⊑ C” above sinceR andS
are simple. Thus we find thatJ |= self(ι(d),T) by rule (20), and we conclude
〈d, d〉 ∈ TI as required.

As a second case, ifd , e, then we can show thatJ |= triple(ι(d),R, ι(e)) (and
J |= triple(ι(d),S, ι(e))) using another inductive argument on the definition of
RI (SI). The first case of the definition is trivial, the second can beexcluded. The
third case is obtained from rule (13) using the induction hypothesis. The fourth
case can be excluded sinceR (S) is simple, and the last case follows from rule
(21). This completes the induction, and we can apply rule (19) to concludeJ |=
triple(ι(d),T, ι(e)) from which we derive the required〈d, e〉 ∈ TI.

– R ⊑ C × E. ThenJ |= supProd(R,C,E). If 〈d, e〉 ∈ RI then we find eitherJ |=
triple(ι(d),R, ι(e)), or d = eandJ |= self(ι(d),R). ThusJ |= inst(ι(d),E) (by
rule (23) or (24)) andJ |= inst(ι(e),E) (by rule (25) or (26)), and thusd ∈ CI and
e ∈ EI as required.

– C(b). ThenJ |= subClass(b,C), and we can apply the same arguments as for the
case “{b} ⊑ C” above.

– R(b, c). ThenJ |= supEx(R, b, c, c). By rule (1), J |= inst(b, b). ThusJ |=
triple(b,R, c) (9). If b , c, then we find〈[b], [c]〉 ∈ RI (using Lemma2 to
showJ |= triple(ι([b]),R, ι([c]))). Otherwise, ifb = c, thenJ |= self(b,R) by
rule (2), and we can also conclude〈[b], [c]〉 ∈ RI. ⊓⊔

4 Classification ofSROEL(⊓,×) Knowledge Bases

The calculusKinst of Theorem1 directly solves the instance checking problem for
SROEL(⊓,×). A materialisation calculus for checking satisfiability can easily be ob-
tained by observing that anSROEL(⊓,×) knowledge base is inconsistent if and only if
Kinst infers a factinst(x, z) wherebot(z) holds. Another inference task is the compu-
tation of class subsumptions which is calledclassificationwhen done for all atomic
classes. Classification is the most important task in various typical applications of
OWL EL, e.g. for the well-known ontology SNOMED CT that does not contain any
individual names. In this section, we therefore study materialisation calculi for solving
this inference problem forSROEL(⊓,×).

As a standard inference problem of DL, class subsumption canbe reduced to in-
stance retrieval: to check a subsumptionA ⊑ B, one introduces a new individual name
c and adds an assertionA(c) to the knowledge base; then the subsumption holds if the
modified knowledge base entailsB(c). Yet, the calculusKinst cannot directly be adapted
for subsumption checking. The reason is that the reduction to instance retrieval requires
the knowledge base to be modified, leading to new entailments, possibly even to global
inconsistency. Hence it is not feasible to introduce test individualsc for all (atomic)
classes at load time so as to materialise all class subsumptions in parallel. Rather, one
would have to use the calculusKinst multiple times for computing subsumptions, where
one run is needed for each subclassA to compute all entailments of the formA ⊑ B.
SNOMED CT, for example, has around 300,000 classes, and the same number of com-
putation runs would be required to naively compute the subsumption hierarchy in this
case.

Although this approach may seem to be rather inefficient, it allows us to obtain a
sound and complete materialisation calculus for class subsumption inSROEL(⊓,×),
based on which algorithmic optimisations can then be developed for improving effi-
ciency. To obtain this calculus, we simply “internalise” the various runs ofKinst based
on assumptions of the formA(c). To this end, we extend all IDB predicates with one
additional parameter for storing a class name, with the underlying intuition that an ac-
cording IDB fact ofKinst is entailed under the assumption that this class is non-empty.
Note that the name of the constantc in the test assertionA(c) is immaterial, so we will
generally re-use the datalog constantA as the test instance of a classA.

Theorem 2. Consider the materialisation calculus Ksc = 〈Isc,Psc,Osc〉 with Isc defined
like Iinst in Fig. 2, and Osc defined as Osc(A ⊑ B) ≔ inst_sc(A, B,A) for A, B ∈ NC,
and undefined otherwise. The program Psc consists of the following rules:

– for each rule r ∈ Pinst (Fig. 3), a rule r′ obtained from r by adding a new body
atomcls(q), and replacing each IDB atominst(x, y) (triple(x, y, z), self(x, y))
by an atominst_sc(x, y, q) (triple_sc(x, y, z, q), self_sc(x, y, q)), where q is a
variable not occurring in r,

– the additional rule(∗) given bycls(q)→ inst_sc(q, q, q).

Then Ksc is sound and complete, i.e. it provides a materialisation calculus for subsump-
tion checking forSROEL(⊓,×) knowledge bases within which all axioms are in normal
form.

Proof. Immediate from the above discussion: the rulecls(q)→ inst_sc(q, q, q) states
that each class nameq is assumed to contain an individualq where this assumption is
called “q” (third parameter). All other rules apply to arbitrary class names in the last
parameter of IDB predicates. Soinst_sc(x, y, q) can be derived iff the calculusKinst

entailsinst_sc(x, y) using the additional assertioninst(q, q). Clearly, this yields the
same results as the assertionq(c) for a new individualc (the assertionnom(c) is not
relevant in the deduction ifc is new). So the claim follows from Theorem1. ⊓⊔

We already noted that this materialisation calculus is not particularly efficient since
deductions that are globally true are inferred under each local assumptionq indepen-
dently. Besides the redundancy in computation, this also means that the number of
globally derived facts can multiply by the number of class names in the signature –
more than 300,000 in the case of SNOMED. Our formalisation ofmaterialisation cal-
culi provides a direct measure of this increase: the maximalarity of IDB predicates
in Ksc is four while it had been only three inKinst, leading to potentially higher space
requirements for storing the materialised derivations, and to increased upper bounds
for the steps needed to check for individual entailments. Itshould be kept in mind that
implementations may achieve lower runtime bounds by using suitable optimisations;
yet many standard implementation techniques for datalog, including semi-naive ma-
terialisation and SLD resolution, are sensitive to the number of parameters in derived
predicates. The arity of IDB predicates thus is an importantmeasure for the efficiency
of a materialisation calculus, and we will thus denote this parameter as thearity of a
calculusand speak of binary/ternary/n-ary materialisation calculi.

The search for a more efficient materialisation calculus thus can be given a pre-
cise meaning: develop a ternary or binary calculus that is sound and complete for
SROEL(⊓,×) classification. As we will show in Section5, such a calculus cannot
exist. To illustrate that this is not cleara priori, we conclude this section by showing
that there are materialisation calculi of lower arities forclassification in fragments of
SROEL(⊓,×).

A binary materialisation calculus for classification inELH – theSROEL(⊓,×)
fragment that only allows⊓, ∃, role and concept subsumptions – has been presented in
[5]. Here, we present an extension of this calculus that supports Self, role conjunction,
and concept products on the right of property inclusion axioms. We begin, however, by
developing a ternary materialisation calculus that also supports role chains. The input
translation can remain as in Fig.2 but without the cases for⊤, ⊥, nominal classes, and
concept products on the left-hand side of RIAs. The EDB predicatestop, bot, and
subProd are no longer used.

A set of IDB rules can be developed by restricting the rules ofKsc of Theorem2.
We use the numbers as in Fig.3 for referring to the rules obtained fromKinst. Rules
(3), (4), (21), and (22) are no longer needed due to the restriction of EDB predicates.
In the absence of nominal classes, we find that all derivationsinst_sc(x, y, q) are such
thaty is a DL class name, ory is a DL individual name andx = y. This is not hard to
verify inductively by considering each rule, and the symbols used in relevant EDB facts.
This shows that rules (27), (28), and (29) are obsolete as well. The essential feature of
the remaining rule set is that the additional parameterq that has been introduced forKsc

above is no longer required for obtaining a sound and complete materialisation calculus:

Theorem 3. Consider the materialisation calculus Kscc= 〈Iscc,Pscc,Oscc〉 with Iscc de-
fined like Iinst in Fig. 2 but undefined for all axioms that use nominal classes,⊤, ⊥, or
concept products on the left-hand side, and Oscc defined as Oscc(A ⊑ B) ≔ inst(A, B)
if A, B ∈ NC, and undefined otherwise. The program Pscc consists of the rules(1), (2),
(5)–(20), and(23)–(26) of Fig. 3 together with a new rulecls(z)→ inst(z, z) (∗).

Then Kscc is sound and complete, i.e. it provides a ternary materialisation calculus
for subsumption checking for normalisedSROEL(⊓,×) knowledge bases that contain
only⊓ (for concepts and roles),∃, Self, ◦, and concept products on the right-hand side.

Proof. The above discussion already justifies the restriction to the selected rule set.
It remains to be shown that the auxiliary parameterq used inKsc is not needed here.
To this end, letK ≔ 〈Iscc,P,Osc〉 denote the materialisation calculus using the input
function of Kscc, the output function ofKsc, and the rulesP obtained fromKscc by
modifying/extending derivation rules as forKsc in Theorem2 (equivalently, by deleting
the rules (3), (4), (21), (22), (27)–(29) from Psc). Let⊢ denote the entailment relation of
Kscc. We need to show that KB⊢ α iff KB ⊢K α.

The “if” direction can immediately be obtained from an easy induction to show
that inst_sc(x, y, q)/triple_sc(x, y, z, q)/self_sc(x, y, q) is entailed byK only if
inst(x, y)/triple(x, y, z)/self(x, y) is entailed byKscc. We detail the “only if” direc-
tion which is slightly more complicated. Consider a knowledge base KB, and letP′ be
the datalog programIsc(KB) ∪ Isc(NI ∪ NC ∪ NR) ∪ Psc. We first define a family of
set (Q(c)) for constantsc occurring inP′. Intuitively, Q(c) contains exactly those class
namesq that may occur in the last parameter in IDB atoms withc in the first parameter
that are entailed underK. We define the setsQ(c) to be the smallest collection of sets
such that:

– If c ∈ NC, thenQ(c) = {c}.
– If c ∈ NI , thenQ(c) = NC.
– If c ∈ NR, thenQ(c) = ∅.
– If c is an auxiliary constant introduced in an EDB factsupEx(A,R, B, c), then

Q(c) =
⋃

x∈P(c) Q(x) whereP(c) ≔ {x | triple(x, y, c) is entailed byKscc}.

Note that the mutual interdependencies between the setsQ(c) are monotone, so it is
indeed possible to find an assignment where all sets are minimal. Formally, we claim
that wheneverinst(x, y)/triple(x, y, z)/self(x, y) is entailed byKscc then we find that
inst_sc(x, y, q)/triple_sc(x, y, z, q)/self_sc(x, y, q) is entailed byK for everyq ∈
Q(x). This can be shown inductively by considering all derivation rules.

If rules (1) or (∗) were used for deriving the fact in the condition of the claim, the
claim follows immediately sincex ∈ Q(x) in both cases by definition. In rules (2), (5),
(6), (8), (9), (11)–(14), (16), (18)–(20), (23), (24), and (26), the claim follows directly
from the induction hypothesis, since the same first variableoccurs in all IDB atoms in
the rule.

For the remaining rules, first note that we haveQ(c) ⊇
⋃

x∈P(c) Q(x) for all constants
c (†). For auxiliary constants, this follows directly from the definition ofQ. Forc ∈ NI it
is trivial. Moreover, it is easy to check thatP(c) = ∅ if c ∈ NR by noting that role names
can occur only in derived facts of the formtriple(x, v, y) in thev position (as can be
formalised by a simple induction). This establishes the claim for c ∈ NR. Similarly,

for c ∈ NC, we findP(c) ⊆ {c}. This is so, sinceKscc entails factstriple(x, v, c) with
c ∈ NC only if c = x, which can be readily seen by induction over the possible proof
trees for facts usingtriple. Indeed, the only possible base cases for this induction are
rules (9) and (18), where only the later can lead entailtriple(x, v, c) with c ∈ NC.

Returning to the main induction, we find that (†) impliesQ(x) ⊆ Q(x′) for the rules
(7), (15), and (17), so the claim for these cases follows from the induction hypothesis.

Now let inst(x′, z) be the fact derived by rule (10), and letq ∈ Q(x′). From the
inductive definition ofQ(x′), we conclude that there must be a chain of derived facts
triple(x0, v0, x1), . . . , triple(xn, vn, x′) wherex0 ∈ NI ∪ NC, all xi for i > 0 are aux-
iliary individuals xi < NI ∪ NC ∪ NR, andq ∈ Q(xi) for all i ≥ 0. Moreover, we can
assume that all facts in this chain have been derived by rule (9). This follows since only
rules (9) and (18) introduce newtriple facts without requiring the prior existence of
(chains of) such facts, and since facts derived by rule (18) can clearly be discarded from
the chain. Thus, also the facttriple(xn, vn, x′) was derived by rule (9) andq ∈ Q(xn).
Since the premises of rules (9) and (10) are the same, the derivation oftriple(xn, vn, x′)
can be changed into a derivation ofinst(x′, z). The premiseinst(xn, y′) which is then
used for applying rule (9) is such thatq ∈ Q(xn). Applying our overall inductive ar-
gument to this premise shows thatinst_sc(xn, y′, q) can be derived inK, so that also
inst_sc(x′, z, q) can indeed be derived.

Finally, consider rule (25) and someq ∈ Q(x′). If x′ ∈ NI then alsox ∈ NI since no
other case is possible in the absence of nominals, so we findq ∈ Q(x) as required for
applying the induction hypothesis. For the casex′ ∈ NC, we already argued in the proof
of (†) above thatP(x′) ⊆ {x′}, so we find thatx = x′ which shows the claim. Similarly,
the casex′ ∈ NR can again be excluded.

As the last remaining case, assume thatx′ < NI ∪ NC ∪ NR is an auxiliary con-
stant, lettriple(x, v, x′) be the atom in the premise of the considered application
of rule (25), and consider someq ∈ Q(x′). Using an inner induction on the deriva-
tion of triple(x, v, x′), we show the following claim: ifz2 ∈ ran(v) andKscc derives
triple(x, v, x′), thenK derivesinst_sc(x′, z2, q). Clearly, this subsumes the overall
claim for rule (25) as a special case.

First assume thattriple(x, v, x′) was derived using rule (9). Using an argument as
for the case of rule (10) above, we find a chaintriple(x0, v0, x1), . . . , triple(xn, vn, x′)
of facts which are derived by rule (9), and whereq ∈ Q(xi) for all i ≥ 0. Sincex′

uniquely determines the role name that is used in rule (9), we find thatv = vn, so rule
(25) is applicable totriple(xn, v, x′) for which we already have shownq ∈ Q(xn).
Sincez2 ∈ Q(v) there are axiomsv ⊑ v1, . . . , vn−1 ⊑ vn andvn ⊑ C × z2 in KB. Due to
rule (13) Kscc derivestriple(xn, vn, x′). By the global induction hypothesis,K derives
triple(xn, vn, x′, q), so the claim follows by (25).

If triple(x, v, x′) was derived based on an axiomv′ ⊑ v using rule (13), then we
find z2 ∈ ran(v′), so the claim follows by the inner induction. Analogously,if rule (15)
or (16) was used for an axiomv1 ◦ v2 ⊑ v, thenz2 ∈ ran(v2) due to the structural
restrictions on axioms of the formv ⊑ z1 × z2 in SROEL(⊓,×) knowledge bases. The
case for rule (19) is also analogous.

(1) nom(x)→ inst(x, x)
(2) cls(y)→ inst(y, y)
(3) rol(v)→ srole(v, v)
(4) supEx(y, v, z, x′)→ inst(x′, z)
(5) nom(x) ∧ supEx(y, v, z, x′) ∧ inst(x, y) ∧ inst(x′, x)→ self(x, v)
(6) subClass(y, z) ∧ inst(x, y)→ inst(x, z)
(7) subConj(y1, y2, z) ∧ inst(x, y1) ∧ inst(x, y2)→ inst(x, z)
(8) supEx(y, v, z, x′) ∧ subEx(v′, y′, z′) ∧ inst(x, y) ∧ srole(v, v′) ∧ inst(x′, y′)→ inst(x, z′)
(9) subEx(v, y, z) ∧ self(x, v) ∧ inst(x, y)→ inst(x, z)
(10) subSelf(v, z) ∧ self(x, v)→ inst(x, z)
(11) supSelf(y, v) ∧ inst(x, y)→ self(x, v)
(12) subRole(v,w) ∧ srole(u, v)→ srole(u,w)
(13) subRole(v,w) ∧ self(x, v)→ self(x,w)
(14) subRConj(v1, v2,w) ∧ srole(u, v1) ∧ srole(u, v2)→ srole(u,w)
(15) subRConj(u, v,w) ∧ self(x,u) ∧ self(x, v)→ self(x,w)
(16) supProd(v, z1, z2) ∧ supEx(y,u, z, x′) ∧ inst(x, y) ∧ srole(u, v)→ inst(x, z1)
(17) supProd(v, z1, z2) ∧ self(x, v)→ inst(x, z1)
(18) supProd(v, z1, z2) ∧ supEx(y, u, z, x′) ∧ srole(u, v)→ inst(x′, z2)
(19) supProd(v, z1, z2) ∧ self(x, v)→ inst(x, z2)

Fig. 4.Deduction rulesPsc-

If (17) or (18) was used withv1 ◦ v2 ⊑ v, thenx = x′ and, as above,z2 ∈ ran(v2). So
there are axiomsv2 ⊑ v1

2, . . . , v
n−1
2 ⊑ vn

2 andvn
2 ⊑ C × z2 in the knowledge base. Using

rules (14) and (26) suffices to establish the claim sinceQ(x) = Q(x′). ⊓⊔

In terms of OWL 2, the DL of the previous theorem covers all OWLEL ontologies
without datatype properties and the constructsowl:Thing,owl:topObjectProperty,
owl:Nothing, owl:bottomObjectProperty,objectHasValue andobjectOneOf.
Note how the reasoning used for obtaining this calculus exploits our datalog-based de-
scription of materialisation calculi, which allows us to conveniently argue about possi-
ble derivations.

It is not hard to further simplifyKscc for the case that no role chains occur in the
knowledge base. The main observation here is thattriple atoms then can only be in-
ferred by existential quantifiers on the right-hand side, and by applying role hierarchies
and role conjunctions. The effect of the latter two features can be integrated using a new
predicate that encodes inferred subrole relations, using rules similar to the ones for sub-
class and class conjunction. With this change, a statementtriple(x,w, z′) is equivalent
to the conjunctionsubEx(y, v, z, x′) ∧ inst(x, y) ∧ srole(v,w) ∧ inst(x′, z′), and we
can use this conjunction in all rules that includetriple in their bodies. Some further
simplifications apply if not all arguments oftriple are relevant to some rule applica-
tion. Note that rule (10) of Fig. 3 is still needed, but since we consider a case where all
classes can be assumed to be non-empty (i.e. whereinst(y, y) holds for all classesy),
we can simplify this rule as well. We thus obtain the following materialisation calculus
that extends the binary classification calculus forELH as presented in [5].

Theorem 4. Consider the materialisation calculus Ksc- = 〈Isc-,Psc-,Osc-〉 with Isc- de-
fined like Iinst in Fig. 2 but undefined for all axioms that use nominal classes,⊤, ⊥, role

chains◦, or concept products on the left-hand side, Psc- defined as in Fig.4, and Osc-

defined as Osc-(A ⊑ B) ≔ inst(A, B) if A, B ∈ NC, and undefined otherwise.
Then Ksc- is sound and complete, i.e. it provides a binary materialisation calculus

for subsumption checking for normalisedSROEL(⊓,×) knowledge bases that contain
only⊓ (for concepts and roles),∃, Self, and concept products on the right-hand side.

Note that the DL of the previous theorem still is a significantextension ofELH
since it allows role conjunction (and thus role disjointness), local reflexivity (Self), and
EL-admissible range restrictions (expressed as concept products on the right).

5 Minimal Arities of Materialisation Calculi

The materialisation calculi we discussed for reasoning inSROEL(⊓,×) above fea-
tured various arities: while some reasoning problems couldbe solved by binary and
ternary calculi, the presented classification calculus forSROEL(⊓,×) is 4-ary. Higher
arities lead to increased upper bounds on the number of consequences that are in-
ferred, and hence increase the potential space requirementand computation time for
materialisation-based implementations. It is therefore desirable to develop materialisa-
tion calculi of minimal arity. In this section, we establishlower bounds on the arity of
materialisation calculi for various reasoning problems.

Our general proof strategy is as follows. For a contradiction, we suppose that there
is a materialisation calculus of lower arity that solves a given reasoning problem. We
then consider a particular instance of that problem, given by a knowledge base KB
from which a relevant consequenceα must follow. Since the calculus is assumed to
be complete, we obtain an according datalog derivation witha corresponding proof
tree. This proof tree is then modified by renaming constants,leading to a variant of the
proof tree that is still valid for the given materialisationcalculus, but that is based on
different (renamed) assumptions. The modified assumptions correspond to a modified
knowledge base KB′, and by our construction we find that the materialisation calculus
still computes the entailment ofα on the input KB′. We then show thatα is not entailed
by KB′, so that the calculus is proven to be unsound. Since KB′ is based on the modified
proof tree, some graph theoretic arguments are required to establish this last step.

A central notion of this proof strategy is the following modification of proof trees.

Definition 4. Consider a materialisation calculus K= 〈I ,P,O〉 and a knowledge base
KB such that I(KB) is defined, and a proof tree T= 〈N,E, λ〉 for I (KB) ∪ I (NI ∪NC ∪

NR)∪ P. We say that a DL signature symbolσ occursin a ground atom F if F contains
σ as a constant, or if F contains some auxiliary constant auxα

i such thatσ occurs inα.
Theinterfaceof a node n∈ N is the set of signature symbols that occur inλ(n).

The (labels of) T can bediversifiedby the following recursive construction:

– replace all signature symbols s that do not occur in the interface of the root node
by a fresh symbol s′ that has not yet been used in T or in this construction,

– recursively diversify the subtrees below each of the directchild nodes of the root.

n1: inst(A,C)

n2: subClass(B ,C) n3: inst(A,B)

n11: cls(A)

n8: inst(A,A)

n7: supEx(A,R ,C ,aux)

n4: subEx(R ,C ,B) n5: triple(A,R ,aux) n6: inst(aux ,C)

n10: inst(A,A)

n1 n1

n3

n3n3

n3 n3

A⊑∃R .C
n3 n3

n1 A⊑∃R .C
n3 n3

A⊑∃R .C
n3 n3

n9: supEx(A,R ,C ,aux)n3n3 A⊑∃R .C
n3 n3

n12: cls(A)

n3

Fig. 5. Diversification of aKscc proof for {A ⊑ ∃R.C,∃R.C ⊑ B,B ⊑ C} |= A ⊑ C

We tacitly assume that the datalog signature contains all required new constant names.
Note that the renaming may affect auxiliary constants by renaming symbols in the ax-
ioms that are part of their name. The diversification is thus obtained by replacing some
signature symbols with fresh symbols. This replacement maynot be uniform throughout
the tree, and we use sn to denote the symbol by which s is replaced in node n.

Intuitively speaking, the above renaming removes any re-use of constant names
throughout the proof tree that is not strictly necessary forapplying the rules ofP. What
is “strictly necessary” is captured by theinterfaceof each node: constants that are not
in the interface of a rule application can be renamed uniformly in all descendants of
the current node without affecting the correctness of the proof tree. This creates a direct
connection between the arity of a calculus and the amount of renaming that can be
accomplished when diversifying a proof tree.

Figure5 shows an example diversification based on the calculusKscc of Theorem3,
where we use the notation from Definition4 for denoting renamed symbols. Note how
C is renamed toCn3 in some but not in all labels. Also note that no further renamings
occur below the nodesn5 andn6 since all relevant symbols occur in their interface
due to the auxiliary constant. As expected, the diversification is again a proof tree for a
knowledge base that contains suitably renamed axioms:

The diversification corresponds to a proof tree for a knowledge base that contains
renamed axioms:

Definition 5. Consider a materialisation calculus K, knowledge baseKB, and proof
tree T as in Definition4. Letλ′ denote a diversified labelling for T .

Let m∈ N be a leaf node withλ(m) ∈ I (α) for someα ∈ KB. By Definition3, one
can rename symbols inα to obtain an axiomα′ such thatλ′(m) ∈ I (α′). Concretely,
α′ is obtained fromα be replacing all symbols s in the interface of m by sm, and by
replacing all other symbols t by some fresh symbol t′ not used anywhere yet. We select
one such axiomα′m for each such node m.

Thediversification KB′ of KB is the knowledge baseKB′ ≔ {α′n | n ∈ N, n a leaf}.
The tree structure of T can be used to representKB′ as a set of nested setsΓn for
n ∈ N, recursively defined by settingΓn ≔ {α

′
m | 〈n,m〉 ∈ E,m a leaf} ∪ {Γm | 〈n,m〉 ∈

E,m not a leaf}. We say that an axiom or set isbelowa setΓn if it is either an element
of Γn, or if it is (recursively) below some element ofΓn.

For Fig.5, the diversified knowledge base is{A ⊑ ∃Rn3.Cn3,∃Rn3.Cn3 ⊑ Bn1, Bn1 ⊑

C} and we haveΓn1 = {Bn1 ⊑ C, {∃Rn3.Cn3 ⊑ Bn1, {A ⊑ ∃Rn3.Cn3}}}. Since the un-
derlying calculus is correct, the conclusion still followsfrom the diversified knowledge

base, and the diversified proof tree is still correct. Below we use diversification to con-
struct proof trees with invalid conclusions for calculi with insufficient arities. But first
let us note that diversification does indeed always lead to a new proof tree that can be
constructed based on the diversified knowledge base.

Lemma 4. Consider a materialisation calculus K, knowledge baseKB, and proof tree
T as in Definition4. The diversification T′ of T is a proof tree for I(KB′)∪ I (NI ∪NC ∪

NR) ∪ P whereKB′ is the diversification ofKB.

Proof. It is easy to see that the conditions on proof trees are satisfied for all non-leaf
nodes ofT′. All leafs of T are labelled with EDB atoms ofI (KB) ∪ I (NI ∪ NC ∪ NR).
Since I is assumed to be independent of concrete signature symbols (Definition 3),
we find that for all EDB atomsα ∈ I (NI ∪ NC ∪ NR) there is a corresponding atom
ρ(α) ∈ I (NI ∪ NC ∪ NR) for any renamingρ, since all symbols used by renamings are
part of the signature. Finally, ifm ∈ N is a leaf node withλ(m) ∈ I (α) for someα ∈ KB,
then by Def.5 there isα′m ∈ KB′ such thatλ′(n) ∈ I (α′n). ⊓⊔

By the construction in Definition5, if l is the maximal number of premises in rules
of K, then each setΓn has at mostl elements. Moreover, ifΓm ∈ Γn, then the DL
signature symbols that occur in axioms belowΓm either belong to the interface ofn,
or occur only in axioms of KB′ that are belowΓm. Since the interface includes all DL
symbols that occur in the ground datalog atom that is derivedat a certain node of the
proof tree, the use of auxiliary constants can require the inclusion ofall symbols of a
given input axiom into the interface. Yet, the arity clearlylimits the number of axioms
for which this may be the case: for a calculus of aritya, the interface of any node
can comprise no more than the set of DL symbols that occur ina axioms of the input
knowledge base. These observations can also be interpretedgraphically based on the
dependency graphof KB′ which encodes the sharing of signature symbols in axioms:

Definition 6. Thedependency graphof a knowledge baseKB is the graph that has the
signature symbols inKB as its nodes, and, for each axiom ofKB that has exactly n
signature symbols, an n-ary hyperedge connecting these n symbols.

The sets of axiomsΓn can be viewed as subgraphs of a dependency graph, where the
interface of the noden describes the nodes that this subgraph is allowed to share with
the remaining graph. In our subsequent proofs, we will arguethat the interface that a
calculus of a certain arity allows a node to have is necessarily too small for establishing
this connection between such a subgraph and the rest of the given dependency graph.
For this argument to work, it is important that the subgraphsdescribed by axioms below
a setΓn can be assumed to be sufficiently distinct from the rest. For example, subgraphs
Γn that contain only single axioms can always be connected if anauxiliary constant for
this axiom occurs inλ(n); conversely, the same applies to subgraphs that contain all but
a single axiom. Since axioms inΓn play the role of leafs in the underlying proof tree,
the next lemma helps us to find subgraphsΓn that have the right amount of axioms:

Lemma 5. Consider a finite tree structure T with nodes N and edges E suchthat each
node of T has at most k children. LetΓn denote the set of leafs of the subtree of T which
has n∈ N as its root, and let l denote the total number of leafs in T. For any number

d > 1 with l > (k+ 1)(d− 1), there must be a node n∈ N such thatΓn contains at least
d and at most l− d elements.

Proof. Assume that there is a nodem ∈ N for which Γn contains at leastl − d + 1
elements, but for which all childrenm′ of m are such thatΓn′ ≤ d − 1. ThenΓn can
contain at mostk(d− 1) elements. Therefore, a node likemcan only exist ifl − d+ 1 ≤
k(d−1), i.e. if l ≤ (k+ 1)(d− 1). The precondition of the claim states that this is not the
case. Hence every noden0 of T with at leastl − d+ 1 leafs below it has a child noden1

with |Γn1| > d − 1. If |Γn1| > l − d+ 1, there is a childn2 of n1 with |Γn2| > d − 1. Since
T does not contain an infinite chainn0, n1, n2m. . ., this construction ends with a noden
as required in the claim. The overall claim follows sinceT contains a node with more
thanl − d+ 1 leafs below it: its root. ⊓⊔

As a first application of this machinery, we show a result for DLs that are much
weaker thanSROEL(⊓,×).

Theorem 5. LetL be a DL with GCIs, existential quantification, and role chains. Ev-
ery materialisation calculus that is sound and complete forclassification or instance
retrieval inL has arity three or more.

Proof. We first consider the classification problem. For a contradiction, suppose that
there is a binary materialisation calculusK = 〈I ,P,O〉 such thatI is defined on all
axioms ofL, andO is defined for all axioms of the formA ⊑ B. Let l be the maximal
number of body atoms in any rule ofP, and consider somek > 2(l + 1). A knowledge
base KB is defined to contain the following axioms:

– Di ⊑ ∃Si .Di+1 for all i ∈ {0, . . . , k},
– Dk+1 ⊑ ∃Rk+1.B,
– Si ◦ Ri+1 ⊑ Ri for all i ∈ {0, . . . , k},
– ∃R0.B ⊑ B.

Then KB entailsD0 ⊑ B. Thus, by the assumption onK, there is a proof treeT for deriv-
ing O(D0 ⊑ B) for the programI (KB) ∪ I (NI ∪NC∪NR)∪P. LetT′ = 〈N,E, λ′〉 be the
diversified proof tree obtained fromT by using renamed symbolssn as in Definition4,
and let KB′ be the according diversified knowledge base.

We claim that KB′ has a modelI that does not satisfyD0 ⊑ B. Define∆I ≔ {Dn
i |

0 ≤ i ≤ k + 1, n ∈ N} ∪ {Bn | n ∈ N}. The interpretation for role and concept names
is defined as follows, wheren,m ∈ N are nodes ofT′, anddi , r i , si , b denote arbitrary
signature symbols where the names are chosen to hint at the actual symbols they may
represent based on the given conditions:

– (Dn
i)I ≔ {Dn

i } for all i = 0, . . . , k+ 1,
– (Sn

i)I ≔ {〈di , di+1〉 | di ⊑ ∃Sn
i .di+1 ∈ KB′},

– (Rn
k+1)I ≔ {〈dk+1, b〉 | dk+1 ⊑ ∃Rn

k+1.b ∈ KB′},
– for i = k + 1, . . . , 1 recursively define (Rn

i−1)I ≔ {〈di−1, b〉 | si−1 ◦ r i ⊑ r i−1 ∈

KB′, 〈di−1, di〉 ∈ sIi−1, 〈di , b〉 ∈ rIi },
– (Bn)I ≔ {Bn} ∪ {d ∈ ∆I | 〈d, Bn〉 ∈ rI0 and∃r0.Bn ⊑ Bn ∈ KB′}.

d0 d1

s0

r0 r1

d2

r2

dk

rk

dk+1

rk+1

s1 sk

B

d0 d1

s0

b0 b1

d2

b2

dk

bk

dk+1

bk+1

s1 sk

A'

a'

R'

Fig. 6. Dependency graphs for the proofs of Theorem5 (left) and6 (right)

It is easy to see thatI is a model of KB′. It remains to show thatDI0 * BI. By the
construction ofI, we see thatD0 ∈ BI only if KB ′ contains the following axioms:

– chains of axiomsd0 ⊑ s0.d1, . . . , dk ⊑ sk.dk+1 ands0 ◦ r1 ⊑ r0, . . . , sk ◦ rk+1 ⊑ rk

where we findd0 = D0, di = Do
i for someo ∈ N, si = So

i for someo ∈ N, and
r i = Ro

i for someo ∈ N,
– dk+1 ⊑ B,
– ∃r0.B ⊑ B.

For a contradiction, suppose that KB′ contains a set KB′′ of axioms of the above form.
The dependency graph of KB′′ is depicted in Fig.6. Based on the construction of KB′,
the axioms of KB′′ must be distributed over sets (Γo)o∈N as in Definition5. By Lemma5
and our choice ofk, there is a nodeo ∈ N such thatΓo has three axioms of the form
di ⊑ ∃si .di+1 below it, and such that three other axioms of this form are notbelow it
(to obtain this from Lemma5, we simply consider the subtree ofT′ that is induced by
removing all leafs that do not correspond to axioms of this form).

Now Γo induces a subgraph of the dependency graph of KB′′. SinceK has arity
2, the maximal amount of symbols in the interface ofo is the set of symbols used in
two axioms of KB′′ (the interface may also contain less symbols, e.g. two individual
symbols if no auxiliary constants are used, but this case is subsumed). It is not hard
to see that the subgraph induced byΓo must share more symbols with the rest of the
dependency graph. First note that the interface ofo must contain at least one symboldi

with i < k+ 1 since some axiom involving such a symbol does not occur below Γo.
Moreover, there are three axioms of the formdi ⊑ ∃si .di+1 belowΓo, but not all of

the involved three symbolssi can be in the interface ofo (since no two of them belong to
the same axiom of KB′′). Thus, an axiom of the formsi ◦r i+1 ⊑ r i must be belowΓo. But
the dependency graph of KB′ contains a cycle through the nodesr0, r1, . . . , rk+1, B, r0.
The interface ofΓo can contain two nodes from this cycle only if they belong to the
same axiom in KB′′ (since the interface already contains a nodedi which certainly is
not in any axiom together with some node in the cycle). Thus atmost one axiom from
this chain could not be belowΓo, while all other axioms must be belowΓo. But by
construction three axioms of the formdi ⊑ ∃si .di+1 are not belowΓo, so the involved
symbolssi must belong to the interface ofo whenever the according axiomsi ◦ r i+1 ⊑ r i

is belowΓo. Hence this is the case for at least two symbolssi which do not occur
together in an axiom, and which do not occur in an axiom that involves the symboldi

that we reasoned to be part of the interface as well. Thus,o must have symbols from
three distinct axioms in its interface, which cannot be.

Summing up,Γo cannot exist, and thus KB′′ cannot be contained in KB′. SoI does
not satisfyD0 ⊑ B, and thus the latter is not a consequence of KB′. SinceT′ is a proof
tree forI (KB′)∪ I (NI ∪NC ∪NR)∪ P by Lemma4, K derivesD0 ⊑ B. SoK cannot be
sound, contradicting our assumption of its existence.

The result for instance retrieval is obtained by extending KB with an axiomD0(a),
and using an analogous argument to show thatB(a) is not entailed by any diversification
of this knowledge base on a materialisation calculus of arity 2. ⊓⊔

Next, we consider a case where classification turns out to require a higher arity than
instance retrieval.

Theorem 6. LetL be a DL with GCIs, existential quantification, and nominal classes.
Every materialisation calculus that is sound and complete for classification inL has
arity three or more.

Proof. The steps of the proof are similar to the proof of Theorem5. Suppose that there
is a binary materialisation calculusK = 〈I ,P,O〉 such thatI is defined for all axioms of
L, andO is defined for all axioms of the formA ⊑ B. Let l be the maximal number of
body atoms in any rule ofP, and consider somek > 2(l + 1). A knowledge base KB is
defined to contain the following axioms:

– Di ⊑ ∃Si .Di+1 for all i ∈ {0, . . . , k},
– Dk+1 ⊑ {a},
– ∃Si .Bi+1 ⊑ Bi for all i ∈ {0, . . . , k},
– D0 ⊑ ∃R.A, A ⊑ {a}, A ⊑ Bk+1.

Then KB entailsD0 ⊑ B0. Thus there is a proof treeT for derivingO(D0 ⊑ B0) for the
programI (KB) ∪ I (NI ∪NC ∪NR)∪ P. Let T′ = 〈N,E, λ′〉 be the diversified proof tree
obtained fromT by using renamed symbolssn as in Definition4, and let KB′ be the
according diversified knowledge base.

We claim that KB′ has a modelI that does not satisfyD0 ⊑ B0. The definition
of such a model is not difficult but somewhat unwieldy due to the effects of nominals,
which may force some individuals to be identified in a model. We account for this by
first defining≈ to be the least equivalence relation on the set

⋃
n∈N{a

n,An,Dn
k+1} for

which we find:

– if An ⊑ {an} ∈ KB′, thenAn ≈ an,
– if Dn

k+1 ⊑ {a
n} ∈ KB′, thenDn

k+1 ≈ an.

We use [d] for denoting≈ equivalence classes [d] ≔ {e | e ≈ d}. We now define a
modelI of KB′ over the domain∆I ≔

⋃
n∈N({[an], [An], [Dn

k+1]} ∪ {D
n
i | 0 ≤ i ≤ k}).

The interpretation is defined as follows:

– (an)I ≔ [an],
– (Dn

0)I ≔ {D0} if Dn
0 = D0; and (Dn

0)I ≔ ∅ otherwise,
– (Dn

i)I ≔ {Dn
i } for i = 1, . . . , k, and (Dn

k+1)I ≔ {[Dn
k+1]},

– (Sn
i)I ≔ {〈di , d′i+1〉 | di ⊑ ∃Sn

i .di+1 ∈ KB′ andd′i+1 ∈ {di+1, [di+1]} ∩ ∆I},
– (An)I ≔ {[An]} if there is m ∈ N such thatAn = Am, (Dm

0)I , ∅, and Dm
0 ⊑

∃Rm.Am ∈ KB′; and (An)I ≔ ∅ otherwise,

– (Rn)I ≔ ∆I × ∆I,
– (Bn

k+1)
I
≔ {[Am] | (Am)I , ∅ andAm ⊑ Bn ∈ KB′},

– for i = k+ 1, . . . , 1 recursively define (Bn
i−1)
I
≔
⋃
∃Sm

i .B
m
i ⊑Bn

i−1∈KB′(∃S
m
i .B

m
i)I.

It is not hard to check thatI is indeed a model of KB′. It remains to show thatI does
not entailD0 ⊑ B0. To this end, note thatD0 ∈ BI0 holds only if KB′ contains the
following axioms:

– chains of axiomsd0 ⊑ s0.d1, . . . , dk ⊑ sk.dk+1 and∃s0.b1 ⊑ b0, . . . ,∃sk.bk+1 ⊑ bk

where we findd0 = D0, di = Do
i for someo ∈ N, si = So

i for someo ∈ N, b0 = B0,
andbi = Bo

i for someo ∈ N,
– D0 ⊑ ∃R′.A′, A′ ⊑ {a′}, A′ ⊑ B, dk+1 ⊑ {a′}.

For a contradiction, suppose that KB′ contains a set KB′′ of axioms of the above form.
As in the proof of Theorem5, we find a nodeo ∈ N such thatΓo has three axioms of the
form di ⊑ ∃si .di+1 below it, and such that three other axioms of this form are notbelow
it. The dependency graph for KB′′ (see Fig.6) is very similar to the one constructed for
the proof of Theorem5, and the arguments used for showing thatΓo cannot exist due
to the restrictions on the size of the interface ofo are analogous to the ones given in the
earlier proof.

As before, we conclude that KB′′ cannot be contained in KB′, soI does not satisfy
D0 ⊑ B0, and thus the latter is not a consequence of KB′. SinceT′ is a proof tree for
I (KB′)∪ I (NI ∪NC ∪NR)∪P by Lemma4, K derivesD0 ⊑ B0. SoK cannot be sound,
contradicting our assumption of its existence. ⊓⊔

It is interesting to note that the previous result does not extend to instance retrieval.
The proof indicates why this is the case. The cyclic path thatwas required to exist in the
dependency graph involves the axiomD0 ⊑ ∃R′.A′ which ensures non-emptiness ofA′

wheneverD0 is non-empty. If this axiom was present in another form, sayDn
0 ⊑ ∃R

′.A′

with Dn
0 , D0, the result could not be concluded. The according instance retrieval

problem, in contrast, includes an input axiomD0(c) from which the conclusionB0(c)
must follow. In this case, the cyclic dependency is not needed: any classDn

0 must be
non-empty if the axiomDn

0(cn) is present, and we do not needDn
0 = D0 to obtain the

result. This explains on an intuitive level why we cannot extend Theorem6 to instance
retrieval like Theorem5. To prove that a materialisation calculus of arity two would
really suffice in this case, an according calculus would need to be specified – this is easy
to do by eliminating the 4-arytriple_sc predicate fromKsc using the same methods
as in the case ofKsc- in Section4.

Now we are ready to show that the arity of the materialisationcalculus of Theorem2
is optimal.

Theorem 7. LetL be a DL with GCIs, existential quantification, role chains, and nomi-
nal classes. Every materialisation calculus that is sound and complete for classification
in L has arity four or more.

Proof. The steps of the proof are again similar to the proofs of Theorem5 and6. Sup-
pose that there is a ternary materialisation calculusK = 〈I ,P,O〉 such thatI is defined
on all axioms ofL, andO is defined for all axioms of the formA ⊑ B. Let l be the

d0 d1

s0

r0 r1

d2

r2

dk

rk

dk+1

rk+1

s1 sk

B

A'

a'

T'

C'

Fig. 7. Dependency graph for the proof of Theorem7

maximal number of body atoms in any rule ofP, and consider somek > 3(l + 1). A
knowledge base KB is defined to contain the following axioms:

– Di ⊑ ∃Si .Di+1 for all i ∈ {0, . . . , k},
– D0 ⊑ ∃T.A, A ⊑ {a}, Dk+1 ⊑ {a}, A ⊑ C,
– C ⊑ ∃Rk+1.B,
– Si ◦ Ri+1 ⊑ Ri for all i ∈ {0, . . . , k},
– ∃R0.B ⊑ B.

Then KB entailsD0 ⊑ B. Thus there is a proof treeT for derivingO(D0 ⊑ B) for the
programI (KB) ∪ I (NI ∪NC ∪NR)∪ P. Let T′ = 〈N,E, λ′〉 be the diversified proof tree
obtained fromT by using renamed symbolssn as in Definition4, and let KB′ be the
according diversified knowledge base.

Combining the techniques of Theorem5 and6, it is not hard to construct a modelI
of KB′ in such a way thatI |= D0 ⊑ B holds only if KB′ contains the following axioms:

– D0 ⊑ T′.A′,
– A′ ⊑ {a′},
– A′ ⊑ C′,
– chains of axiomsd0 ⊑ s0.d1, . . . , dk ⊑ sk.dk+1 ands0 ◦ r1 ⊑ r0, . . . , sk ◦ rk+1 ⊑ rk

where we findd0 = D0, di = Do
i for someo ∈ N, si = So

i for someo ∈ N, and
r i = Ro

i for someo ∈ N,
– C′ ⊑ rk+1.B,
– dk+1 ⊑ {a′},
– ∃r0.B ⊑ B.

Constructing the according modelI is not difficult along the lines of the earlier proofs,
and we omit the details here. For a contradiction, suppose that KB′ contains a set KB′′

of axioms of the above form, the dependency graph of which is depicted in Fig.7. By
Lemma5 and our choice ofk, we can again find a nodeo ∈ N such thatΓo has four
axioms of the formdi ⊑ ∃si .di+1 below it, and such that four other axioms of this form
are not below it.

The proof thatΓo cannot exist is very similar to the argument used in Theorem5.
SinceK has arity 3, the maximal amount of symbols in the interface ofo is the set of
symbols used in three axioms of KB′′. To show that this suffices, we note that the depen-
dency graph of Fig.7now features two cyclic chains with nodesd0, d1, . . . , dk+1, a′,A′, d0

andr0, r1, . . . , rk+1, B, r0. As in the proof of Theorem5, we can argue that either of these
chains has some (two or more) but not all (not even all but one)of its axioms belowΓo.
Thus two end nodes for the fragments of either chain must belong to the interface ofo.
Clearly, no two of those four nodes occur together in a singleaxiom, so the interface
would have to be larger than possible for a ternary materialisation calculus.

Summing upΓo cannot exist, and thus KB′′ cannot be contained in KB′. SoI does
not satisfyD0 ⊑ B, and thus the latter is not a consequence of KB′. SinceT′ is a proof
tree forI (KB′)∪ I (NI ∪NC ∪NR)∪ P by Lemma4, K derivesD0 ⊑ B. SoK cannot be
sound, contradicting our assumption of its existence. ⊓⊔

Just like Theorem6, the previous result again applies to classification only. Indeed,
Theorem1 shows that a ternary instance retrieval calculus exists fora DL that includes
existentials, nominals, and role chains.

Theorem7 may be surprising, given that the calculus proposed in [2] for EL++

would be ternary in our notation. The explanation is that this algorithm is incomplete
for classification; the proof of Theorem7 can be used to find a suitable counter example.
However, we do not need to use quite as many axioms as for the general case considered
in the theorem:

– D0 ⊑ ∃S.D1, D0 ⊑ ∃T.A,
– A ⊑ {a}, D1 ⊑ {a},
– ∃S.A ⊑ A.

This knowledge base entailsD0 ⊑ A but the algorithm in [2] does not derive this.
The reason is that the algorithm’s derivation rule (CR6) is not able to inferD1 ⊑ A
since this is not universally true. Indeed, one can only infer “D1 ⊑ A wheneverD0

is non-empty” but this statement cannot be represented by the algorithm in [2]. The
algorithm features an auxiliary relationE {R F that signifies that “F must be non-
empty wheneverE is” but in our example, we only getD0 {R A and D0 {R D1

but not D1 {R A as would be required for applying (CR6). Theorem7 shows that
this shortcoming cannot be overcome by introducing furtherspecial cases (e.g., one
could allow (CR6) to apply in a situation with three classes as in our counter example):
we can always find a larger counter example that is not covered. The only solution
is to “contextualise” all derivations by conditions of the form “if D0 is non-empty . . . ”
which corresponds to an increase of the arity of derived statements by one. Note that the
problem does not occur when restricting to instance retrieval (i.e. subsumption checking
where the subsumed class is a nominal) since the auxiliary relation{R always takes
all nominal classes into account. In our example, ifD0 would be replaced by{d0}, then
the relationE {R A is derived for any classE, especially forE = D1, so {d0} ⊑ A is
inferred.

6 Summary and Conclusions

The focus of this work has been the study of inferencing calculi for SROEL(⊓,×) and
its fragments, and especially this paper is – to the best of our knowledge – the first to
present a sound and complete polynomial time calculus for inferencing in a DL that is

so closely related to the OWL EL ontology language. For investigating properties of
such calculi, we presented a simple framework for expressing materialisation calculi
in terms of datalog. This revealed the arity of IDB predicates as an interesting mea-
sure for the worst-case space requirements of materialisation-based algorithms. While
SROEL(⊓,×) fragments without role chains and nominals admit classification calculi
based on binary IDB predicates, the inclusion of either feature increases the required
arity by one. Having both features,SROEL(⊓,×) thus does not admit any sound and
complete classification calculus of arity below four.

We are thus able to differentiate variousSROEL(⊓,×) fragments and inferencing
tasks based on a measure that relates to the efficiency of actual implementations. Indeed,
our findings agree with practical experiences that especially nominals and role chains
are harder to implement efficiently than basicEL features.5 Computational complexity
has not been able to provide an explanation for such discrepancies, since all reasoning
problems we consider are P-complete. In addition, our studyalso shows that various
other features are not harder to implement than some of the most basic ones, thus pro-
viding guidance for deciding which features to implement orto use in an application.

Although there are standard implementation strategies fordatalog reasoning, our
study is independent of actual algorithms. A promising nextstep thus is to develop con-
trol strategies for implementing our calculi in a “pay-as-you-go” algorithm that min-
imises the potential negative impact of the occurrence of certain features. Moreover,
we conjecture that our results about datalog arity can be further strengthened to obtain
more direct statements about space complexity of almost arbitrary monotone calculi.

AcknowledgementsThe author thanks Yevgeny Kazakov for his valuable input, and
the anonymous reviewers for helpful comments. This work wassupported by DFG in
projectExpresSTand by EPSRC in projectConDOR(EP/G02085X/1).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley (1994)
2. Baader, F., Brandt, S., Lutz, C.: Pushing theEL envelope. In: Kaelbling, L., Saffiotti, A.

(eds.) Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05). pp. 364–369. Profes-
sional Book Center (2005)

3. Baader, F., Brandt, S., Lutz, C.: Pushing theEL envelope further. In: Clark, K.G., Patel-
Schneider, P.F. (eds.) Proc. OWLED 2008 DC Workshop on OWL: Experiences and Direc-
tions. CEUR Workshop Proceedings, vol. 496. CEUR-WS.org (2008)

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press, second edn. (2007)

5. Delaitre, V., Kazakov, Y.: ClassifyingELH ontologies in SQL databases. In: Patel-
Schneider, P.F., Hoekstra, R. (eds.) Proc. OWLED 2009 Workshop on OWL: Experiences
and Directions. CEUR Workshop Proceedings, vol. 529. CEUR-WS.org (2009)

6. Hayes, P. (ed.): RDF Semantics. W3C Recommendation (10 February 2004), available at
http://www.w3.org/TR/rdf-mt/

5 Based on the author’s experience implementing Orel [9], and personal communication with
developers of DB [5] and CEL (http://lat.inf.tu-dresden.de/systems/cel/).

http://lat.inf.tu-dresden.de/systems/cel/

7. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman
& Hall /CRC (2009)

8. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty, P., My-
lopoulos, J., Welty, C.A. (eds.) Proc. 10th Int. Conf. on Principles of Knowledge Represen-
tation and Reasoning (KR’06). pp. 57–67. AAAI Press (2006)

9. Krötzsch, M., Mehdi, A., Rudolph, S.: Orel: Database-driven reasoning for OWL 2 profiles.
In: Haarslev, V., Toman, D., Weddell, G. (eds.) Proc. 23rd Int. Workshop on Description
Logics (DL’10) (2010)

10. Krötzsch, M., Rudolph, S., Hitzler, P.: ELP: Tractable rules for OWL 2. In: Sheth et al. [14],
pp. 649–664

11. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue,A., Lutz, C. (eds.): OWL 2
Web Ontology Language: Profiles. W3C Recommendation (27 October 2009), available at
http://www.w3.org/TR/owl2-profiles/

12. Motik, B., Sattler, U.: A comparison of reasoning techniques for querying large description
logic ABoxes. In: Hermann, M., Voronkov, A. (eds.) Proc. 13th Int. Conf. on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR’01). LNCS, vol. 4246, pp. 227–
241. Springer (2006)

13. Rudolph, S., Krötzsch, M., Hitzler, P.: Description logic reasoning with decision diagrams:
CompilingSHIQ to disjunctive datalog. In: Sheth et al. [14], pp. 435–450

14. Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.):
Proc. 7th Int. Semantic Web Conf. (ISWC’08), LNCS, vol. 5318. Springer (2008)

http://www.w3.org/TR/owl2-profiles/

	Efficient Inferencing for the Description Logic Underlying OWL EL
	1 Introduction
	2 Preliminaries
	3 Instance Checking for SROEL(n,x)
	4 Classification of SROEL(n,x) Knowledge Bases
	5 Minimal Arities of Materialisation Calculi
	6 Summary and Conclusions

