
QuiKey – an Efficient Semantic Command Line

Heiko Haller

Forschungszentrum Informatik (FZI), Germany
heiko.haller@fzi.de

Abstract. QuiKey is an interaction approach that offers interactive fine
grained access to structured information sources in a light weight user
interface. It is designed to be highly interaction efficient for searching,
browsing and authoring semantic knowledge bases as well as incremen-
tally constructing complex queries. Empirical evaluation using a compar-
ative GOMS Analysis and a user study confirm interaction efficiency.

1 Introduction

Many knowledge management systems, especially those which rely on highly
structured information and meta data being entered and maintained by users,
fail because users do not make this additional effort. This may be one of the
reasons why semantic technologies have, so far, not found widespread use in
knowledge management systems, although semantic meta data would undoubt-
edly improve findability, interoperability and, in general, automated processing
of information and knowledge items. QuiKey is a user interface concept that pro-
vides a light-weight, generic tool for searching, browsing and editing structured
information in a fine-granular way. Additionally, and in the same interaction
paradigm, QuiKey allows the construction of simple semantic queries as well as
combining these simple queries to more complex ones in a step-by-step manner.
QuiKey’s main design goal is efficient interaction. It is targeted to cover the fol-
lowing use cases: targeted search of information (e.g. someone’s phone number or
someone’s girlfriend’s e-mail address), fast information entry (e.g. adding a new
contact and linking her to an existing project), text search, formulating simple
queries (e.g. all members of a certain project), set-based browsing [1] (explained
in Section 2.2) and incrementally constructing complex queries (e.g. getting a
list of members of projects financed by the EU that live in Portugal).

This paper describes the interaction design of QuiKey, and its current pro-
totypical open source implementation together with a twofold evaluation study
to substantiate its claims.

2 Design

The primary design goal of QuiKey was to make interaction as efficient as possi-
ble. Everything should be done with the least interaction effort necessary. While
interaction efficiency is generally desirable, it is even more crucial for mobile



devices where typing is usually cumbersome. The secondary design goal was,
to have a minimalistic screen design that is also suitable for constrained screen
space like in mobile devices.

The following principles have guided the interaction design of QuiKey:

Fig. 1. Text Search: A number of items
is shown that match the search string
“love me”.

– Everything can be done with the
keyboard alone. While mouse in-
teraction is always possible, it is
never required. This avoids un-
necessary costly switches between
input media (also referred to as
“homing” in user interaction liter-
ature [2]).

– There is only one mode for ev-
erything. Searching, browsing, au-
thoring and querying is all done in
the same consistent way of inter-
action.

– Short feedback cycles to reduce
error-proneness. All parts of a
complex interaction (items, rela-
tions, query operators and such)
are implicitly or explicitly selected
from lists of existing things, and
the structure of the current opera-
tion is reflected visually. Like this,
misspellings or syntax errors are
greatly avoided and if they occur
they are easy to notice.

QuiKey is organized around the notion of parts. A part can be an existing
item, a relation, a new text string or a command. Depending on the types and
order of the parts entered, it is decided what action to take. The following are the
main functionalities of QuiKey. As explained below, they are tightly interwoven.

2.1 Text Search

The simplest functionality that is also usable without any understanding of the
structure of semantic knowledge models, is full text search. While search terms
are entered, a list or ranked results is displayed based on a set of matching rules
explained below. The best hit is preselected, so any item can be addressed by
mere text entry without the need to use any special keys for syntax elements or
selection. Of course, other items can also be selected via arrow keys or mouse.
The following ordered list of ranking principles determines the ranking of text
search results in QuiKey:



– a perfect match between search string and item text is best
– matching the beginning of an item is better than matching it anywhere else
– matching full words is better than matching a prefix only
– matching prefix is better than matching an arbitrary substring only
– matching the complete, coherent search string is better than matching single

search words separately
– matching several search words in the right order is better than random order

This text search functionality is used throughout QuiKey wherever an item,
relation type or such needs to be identified and it is one of the reasons that make
QuiKey efficient. For example, to bring the item “Michael Jackson” to the top
position out of 43270 named entities, it suffices to type “m jac”.

2.2 Browsing

Starting with an item selected by text search, a user can navigate the knowledge
base through its graph structure hop by hop by hitting the tab key.

When an item is jumped to, all corresponding statements (triples) about
this item are displayed – sorted by relation types. When an item and a re-
lation are selected (e.g. Madonna→has genre)1, all statements matching this
pattern are displayed as in Figure 2. From there, any statement can be se-
lected to jump to the target object of the statement (in our example a partic-
ular album). Like this, a user can browse from entity to entity with the pat-
tern item→relation→item→relation→item. . . (e.g. Madonna→has album→Like

a Virgin→has genre→Pop music...).

Fig. 2. Browsing: A list of all albums
of madonna is shown after selecting the
item “Madonna” and the relation type
“has album”.

Fig. 3. Set-based browsing: A list of
all genres of all albums of madonna is
shown.

Set Based Browsing It is also possible to browse from sets of items to related
sets by using the pattern item→relation→relation. . . For example, Madonna→has

album→has genre would give a list of all genres of all albums of Madonna as
in Figure 3.

1 The arrow symbol→is used here to separate input parts, which is done with the tab
key in QuiKey.



2.3 Queries

Constructing complex, possibly nested, queries over structured or semi-structured
data with a text-based query language (like querying an RDF [3] graph with
SPARQL [4] or formulating ASK Queries in Semantic MediaWiki [5]) is dif-
ficult: every slight syntax error or misspelling makes the whole query fail or
(worse) return unintended results. And there is usually no feedback as to where
the error lies because complex queries are formulated and evaluated as a whole
only. QuiKey tackles these two common problems:

(1) Misspellings and syntax errors are largely avoided because instead of
requiring the user to write a whole query in some complicated syntax, in QuiKey,
simple queries are constructed by browsing interactively, selecting from existing
items and without the need of syntactical characters.

(2) To facilitate modular construction of complex queries in a step-by-step
manner, each query can be saved and referred to as a special query item:

Saving Queries In QuiKey, like in facetted browsing, the border between
browsing and query construction is blurred. In fact, the two above browsing
examples already form semantic queries. Such simple queries can be persisted
by inserting a name, under which the query should be saved, in the respective
position of the pattern as a placeholder – prefixed by a question mark. For exam-
ple: Madonna→has album→?Madonna’s albums would save a new query item
named “Madonna’s albums” that represents all of madonna’s albums. The place-
holder does not need to be in the last position, e.g., the pattern ?Madonna’s

Genres→is genre of→is album of→Madonna would save a query item rep-
resenting all genres of all albums of Madonna.

Complex Queries More complex queries can be constructed by combining
existing saved queries with the logical operators and and or (e.g. Madonnas’s
genres→and→Jacko’s genres). Since also complex queries can be saved, more
complex queries can be constructed step by step out of existing ones.

2.4 Authoring

With QuiKey, knowledge bases can be altered in the following different ways:

Adding Items To add a new text item to the knowledge base, it is enough to
just type the text and press enter.

Adding Statements To make statements about existing items, the statement
can be entered in a subject→predicate→object pattern, separated by tab-keys.
So, for example, Michael Jackson→has album→This Is It would add this
statement to the knowledge model. Only that the user would not even have to
type in the whole labels because parts that are already known can be chosen
from the suggestions list while typing in auto-completion manner. So, for this
example, it is actually enough to type in m jac→h albu→This Is It.



Fig. 4. Adding Several Objects: A new item“This
Is It” is about to be created together with the
statement that it is an album of Michael Jackson.

Adding Items and State-
ments Together If not all
three parts in such a state-
ment are known objects,
the respective items or re-
lation types are also added
to the knowledge base. So,
in the above example, if
“This Is It” is not a known
item, it would directly get
created, together with the
statement that it is an al-
bum of Michael Jackson. To
avoid accidentally creating
new items instead of reusing

existing ones, the respective part is highlighted in yellow during interaction, i.e.
before the action is executed. This can bee seen in Figure 4.

3 Implementation

QuiKey was initially developed as part of the semantic desktop project nepo-
muk2. For more information on semantic desktop systems in general, see [6]
and 3. While the QuiKey approach could be used with any kind of graph-based
knowledge base, the current implementation uses a back-end and data model
called CDS (Conceptual Data Structures) that has also been developed in the
nepomuk project. The Java based CDS-API also features an in-memory inverted
sub-string index, that serves QuiKey’s text search functionality. The preliminary
set of matching items is then ranked by quikey according to the matching rules
described in Section 2.1. For performance reasons, the search depth of QuiKey’s
matching rules can be adjusted by the user. However, even with all rules enabled,
text searches with up to 4 search words are executed well below one second on
a knowledge base with 43270 items on a 2.4 GHz Intel core duo processor –
with up to 3 search words, results are usually perceived as instantaneous. Since
the expressiveness of neither CDS nor QuiKey’s queries exceeds EL++[7], there
could also be optimized implementations that scale to very large knowledge bases
without slowing down user experience. For more information about CDS, see [8].

QuiKey’s current open source implementation is based on Java/Swing. Today,
QuiKey is deployed to complement iMapping, a visual knowledge workbench [9]
that is also based on CDS and developed in nepomuk. For more information
about iMapping and to get the latest version of both iMapping and QuiKey, see
http://imapping.info/.

2 http://nepomuk.semanticdesktop.org
3 http://semanticdesktop.org



4 Related Work

4.1 Quicksilver

Quicksilver4 by Nicholas Jitkoff is a kind of advanced application launcher for
the Mac that has gained a lot of popularity due to its versatility and efficiency.
QuiKey is mainly inspired by quicksilver. It is the attempt to adapt and transfer
quicksilver’s highly efficient interaction paradigm to the semantic desktop. How-
ever, QuiKey differs from Quicksilver in several ways: (a) While both allow to
browse structured information models, Quicksilver is for finding and acting upon
certain desktop objects. QuiKey is a generic authoring and query tool for graph-
based knowledge bases. (b) Quicksilver matches the letters of the search string
entered in the exact order only. It does not distinguish separate search words
and will e.g. not match “Ontology Web Language” to “Web Ontology Language”.

4.2 Parallax

Parallax by David Huynh [1] is probably the most convenient user interface to
date to explore large amounts of structured data. Parallax is an experimental
front end to Freebase5, a website that offers a large amount of open structured
data. A video that is also embedded in the parallax home page6 nicely explains
the benefits of semantic search in general and parallax in particular. It features
the notion of set-based browsing, where navigation takes place from one set
of things to another related set of things (e.g. from Michael Jackson’s albums
to their genres). It partly addresses the same use cases as QuiKey (querying
large graph based knowledge bases through navigation), and features a visually
much richer user interface (many navigation options per view, picture content,
thumbnail previews, et c.).

5 Evaluation

The main claim of QuiKey’s interaction design, to be highly interaction efficient,
has been evaluated in two phases: First, in a comparative interaction analysis ac-
cording to the KLM-GOMS method, where QuiKey has been measured against
Semantic MediaWiki and parallax. Second, in a user study, where actual inter-
action times have been measured for QuiKey in order to validate the outcomes
of the GOMS analysis. To that end, a set of tasks has been defined, by means
of which the respective tools could be compared.

4 Original homepage: http://blacktree.com/?quicksilver
5 http://www.freebase.com/
6 http://www.freebase.com/labs/parallax/



5.1 Tasks and Data

The goal that was chosen as a basis for the evaluation, was to construct a con-
junctive query that yields the answer to the question Which musical genres do
Madonna and Michael Jackson have in common?. This goal fulfills the follow-
ing requirements: (a) It can be decomposed into single steps that cover a wide
range of QuiKey’s functionalities (searching for items, browsing their proper-
ties, constructing simple and complex queries and adding new items). (b) It is
comparable to other tools that offer similar functionality. (c) It is easy to under-
stand because the musical domain is common knowledge. (d) A large amount
of structured data is publicly available. In fact, an export from freebase of the
music domain has been taken (artists, albums, genres etc.). It was filtered down
to yield a data set of 26115 items that was highly interconnected to allow for
complex semantic queries but small enough to run smoothly with the current
CDS back end which was designed to handle personal knowledge management
data fast and in memory rather than large imported data sets.

This goal can be broken down to the following sub-tasks:

1. Find out what albums Madonna has made. (text search, browse)

2. Find out what genres these albums have. (browse set)

3. Save this as a persistent query. (save query)

4. Do the same (1–3) for Michael Jackson.

5. Intersect these two saved queries. (construct complex query)

These sub-tasks have been used for comparison in the GOMS analysis and the
user study.

5.2 GOMS Analysis

KLM-GOMS is a method developed by Card, Moran & Newell [2] to estimate
the time it takes a user to complete simple interactive tasks using a keyboard
and mouse7. This was done for each of the three tools. Once for the most efficient
way the tool could theoretically be used for the task and once for the typically
expected way (e.g. query code was formatted with white space, query names
were more verbose (“Jacko genres” instead of “MJgen”) and search words were
spelt out instead of only to the point necessary.

The tools that were chosen for comparison are Semantic Mediawiki8, [5] and
parallax9, [1]: Semantic MediaWiki with its ASK query language is probably the
most widely used semantic knowledge modeling tool that also allows to construct
complex and persistent queries. Parallax is probably the most convenient user
interface to date to explore large amounts of structured data.

7 for an overview see http://en.wikipedia.org/wiki/KLM-GOMS
8 http://semantic-mediawiki.org/
9 http://www.freebase.com/labs/parallax/



Results The resulting estimates of interaction time needed are shown in Ta-
ble 5.2. Unfortunately, in parallax it appears not to be possible to intersect exist-
ing queries or sets. Saving a current query also seems not to be possible. However
a straight forward way how this would be done in parallax’ interaction paradigm
is apparent and so this way was guessed as an approximation. As can be seen

Table 1. KLM-GOMS analysis for the sub tasks in comparison. Typically expected
interaction and theoretically minimal paths of interaction are computed separately.
Overall results for QuiKey are bolded for comparison with Table 2.

SMW parallax QuiKey
task typical minimal typical minimal typical minimal

one-time overhead per query 8.2 8.2 0 0 0 0
elementary query Madonna 13.2 13.0 10.8 10.8 7.5 6.1

elementary query M. Jackson 16.4 16.1 13.1 13.1 8.1 6.4
increment to chain query (x2) 18.3 17.2 7.2 6.6 3.5 2.9

increment to save (x2) 19.4 19.4 8.2 6.5 7.5 5.8
intersection query 21.0 21.0 n/a n/a 10.7 7.6

overall time w/o intersection 113.2 110.4 54.8 50.3 37.5 30.0
overall time incl. intersection 134.2 131.4 n/a n/a 48.2 37.6

in Table 5.2, QuiKey is theoretically more interaction efficient than any of the
two compared tools on any of the tasks. This means that, learnability, interac-
tion styles and error-pronenes aside, it is theoretically possible to complete these
tasks faster in QuiKey than in the other tools. What remains to be shown is
that QuiKey can actually be used in this efficient way by real users:

5.3 User Study

In order to determine whether QuiKey can be used by real users as efficiently
as it is designed to be, we let 16 testers perform the above defined set of tasks.
All testers were familiar with semantic technologies in general. 3 of the testers
were female, 13 male. The age of the testers ranged from 23 to 36. 14 of the 16
testers had never used QuiKey before and only one was already familiar with it.

Each tester went through the following process:

1. Short introduction to QuiKey: basic functionalities and interactions that are
needed for the tasks were explained and demonstrated. Testers were asked
to try out the interactions and explore the model and the tool until they feel
confident in using it. (This took up to 8 minutes.)

2. A screen capture tool was started, that recorded screen content, audio, key
strokes and the users via screen cam.

3. Testers were then asked to carry out the set of tasks. Instructions were given
sequentially one by one, whenever the previous step was completed.



Later, keystrokes and interaction times were determined from the captured
video with a precision of 18 frames per second.

Results The mean number of keystrokes and interaction times are listed in Ta-
ble 2 along with their confidence intervals10. The last column lists the minimal
interaction times any user had needed to complete the task. Since these values
come from different users they do not add up to the overall times. The overall
minimum times instead reflect the time of the overall single fastest user. These
minimum times are included in the table because they prove for each task how
fast it can actually be done. Comparing the bolded values shows that the overall

Table 2. Mean times and key strokes needed for sub-tasks. (confidence intervals for
p=.05%)

keystrokes measured time
task mean ±CI mean ±CI minimum

elementary query Madonna 10.8 ±1.1 9.2 ±1.2 4.8
elementary query M. Jackson 12.7 ±1.9 8.9 ±1.5 4.3
increment to chain query (x2) 7.6 ±0.4 7.1 ±0.8 3.2

increment to save (x2) 18.7 ±2.6 8.7 ±1.2 2.5
intersection query 20.1 ±2.7 16.0 ±3.1 8.1

cum. interaction time w/o intersection 50.1 ±6.4 31.8
cum. interaction time incl. intersection 66.1 ±9.1 38.9

GOMS estimation of minimal interaction times were very close to the actual
minimal times. This supports the GOMS estimations in general. Mean interac-
tion times were somewhat longer than estimated for typical use. This may well
be due to the fact that most of the testers were first time users. Also, during
user testing it was noticed that search words were often spelt out completely
instead of only to the extent needed (e.g. “Michael Jackson” instead of “m jac”).
This is because users do not check results after every keystroke while typing
known words. However in situations where keyboard interaction is more costly,
like on mobile devices or touchscreens, for motion impaired users, or for long or
unfamiliar words, the use of shorter search strings becomes more relevant.

6 Conclusion

Some of the claims, why the interaction approach of QuiKey is beneficial may be
convincing by argument and some may be hard to prove in a lab study. But the
the fundamental claim of interaction efficiency has been well confirmed through
GOMS analysis and the user study.

Additional functionalities that are subject of future work include

10 http://en.wikipedia.org/wiki/Confidence_interval



– displaying short explanations about what a pattern means during interaction
interacting, before it is executed, so the user knows what is going to happen
and giving unobtrusive confirmations on actions completed,

– a way to interactively construct complex queries from scratch without the
need to name and save intermediate queries,

– improving matching rules during use and automatically learning shortcuts
for frequently used items,

– more expressive query operators including negation,
– history and undo
– using QuiKey as an additional front-end to Semantic MediaWiki
– developing a mobile version, where some of QuiKey’s minimalist interactions

have a bigger benefit, because typing is more costly.

Acknowledgements

This Work has partially been financed by the European Commission in the
projects NEPOMUK (IST-FP6-027705) and MATURE (IST-FP7-216356). Spe-
cial thanks go to Florian Simon for the implementation work of QuiKey.

References

1. Huynh, D., Karger, D.: Parallax and companion: Set-based browsing for the
data web. Technical report, Metaweb, MIT (2009) Available online: http://

davidhuynh.net/media/papers/2009/www2009-parallax.pdf.
2. Card, S.K., Moran, T.P., Newell, A.: Psychology of Human-Computer Interaction.

Lawrence Erlbaum (1983)
3. Manola, F., Miller, E.: Resource Description Framework (RDF) primer. W3C

Recommendation (2004) Available at http://www.w3.org/TR/rdf-primer/.
4. Prud’Hommeaux, E., Seaborne, A.: Sparql. W3C Candidate Recommendation

(June 2007)
5. Krötzsch, M., Vrandecic, D., Völkel, M., Haller, H., Studer, R.: Semantic wikipedia.

Journal of Web Semantics 5 (SEP 2007) 251–261
6. Sauermann, L., Kiesel, M., Schumacher, K., Bernardi, A.: Semantic Desktop.

In Blumauer, A., Pellegrini, T., eds.: Social Semantic Web, Springer-Verlag,
X.media.press (2009) 337–362

7. Krötzsch, M., Rudolph, S., Hitzler, P.: Complexity boundaries for horn description
logics. In: Proceedings of the 22nd AAAI Conference on Artficial Intelligence,
Vancouver, British Columbia, Canada, AAAI Press (2007) 452–457

8. Völkel, M., Haller, H.: Conceptual data structures for personal knowledge man-
agement. Online Information Review 33(2) (2009) 298–315

9. Haller, H., Abecker, A.: imapping – a zooming user interface approach for personal
and semantic knowledge management. In Toms, E., Bernstein, M., Millard, D., eds.:
Proceedings of the Hypertext Conference, ACM (2010) in print.

10. Haase, P., Herzig, D.M., Musen, M., Tran, D.T.: Semantic wiki search. In: 6th An-
nual European Semantic Web Conference, ESWC2009, Heraklion, Crete, Greece.
Volume 5554 of LNCS., Springer Verlag (Juni 2009) 445–460

11. Miller, G.A.: The magical number seven, plus or minus two: Some limits on our
capacity for processing information. Psychological Review 63 (1956) 81–97


