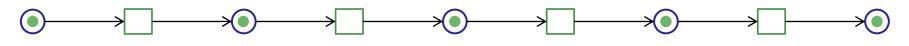


3D Support for Business Process Simulation

Institute of Applied Informatics and Formal Description Methods Universität Karlsruhe (TH)

Daniel Eichhorn, Agnes Koschmider, Yu Li, Andreas Oberweis, Peter Stürzel, Ralf Trunko

Seattle, July 21, 2009


Overview

AIFB O

- Introduction and Motivation
- 3D Representation of Data and Process Objects
- Forming Data and Process Objects in 3D Simulation Environment
- Analysis of Simulation Results
- Conclusion and Future Work

Introduction

• About simulation:

- key technique for design and redesign of business processes,
- way to test decisions prior to their implementation in real business environment.

• What simulation allows:

- integration of variability and uncertainty,
- introduction of dynamic process parameters,
- measurement of process performance [ABGK06][FNSE99].

Motivation

• What tools provide:

 a variety of analysis possibilities for simulation runs based on standard process performance metrics [JaNe06].

• What is the problem yet:

 increasing complexity of business processes hampers quick visual allocation of weak points.

What is our aim:

 compact visualization of business process simulation and result by adding a third dimension.

Motivation

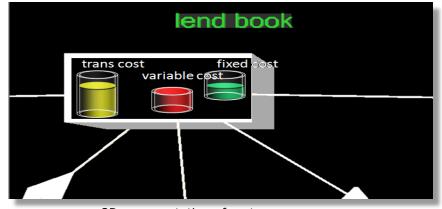
• Why third dimension:

- supports users to quickly identify weak points of modeled business processes,
- supports the human visual intuition [BaES00].

• How to get there:

- enhance concept for spatial visualization of Petri net diagrams with a third modeling dimension,
- enables interactive 3D animations of business process models,
- statistical analyses of simulation results based on volume changes of 3D process and data objects.

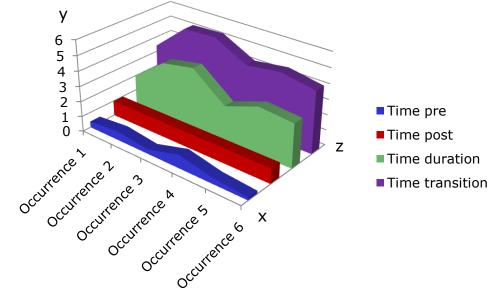
AIFB O


- objects in business processes are classified into data objects and process objects [AaBe01].
- *data objects* refer to flowing objects conveying data that are manipulated and delivered across a process net.
- *process objects* are non-flowing objects used to construct the control flow or serving as parameterized indicators.
- discuss following process objects:
 - transition cost, transition time, resources, and place capacity.

• Transition Cost:

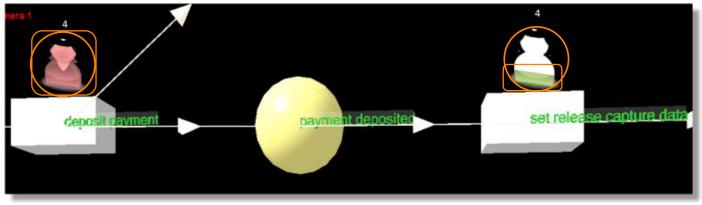
 $C_{trans}(t,i) = C_{fix}(t) + C_{var}(t,i)$ with $t \in T$, $i \in J$

- height of the cylinder varies according to current values of its corresponding cost indicators.
- cost cylinder is included in a transparent cylinder that controls the increase/decrease of cost factors.


3D representation of costs

Transition Time:

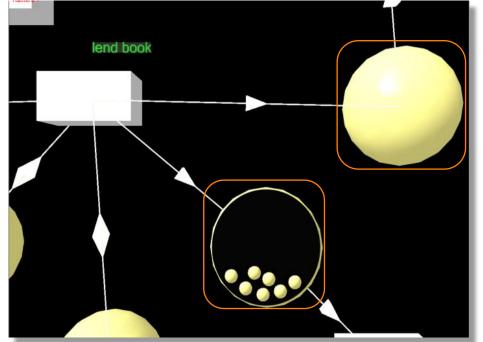
 $T_{trans}(t,i) = T_{pre}(t,i) + T_{dur}(t,i) + T_{post}(t,i) \text{ with } t \in T, i \in J$


area diagrams can be rotated for different view perspectives.

3D representation of transition time

AIFB O

Resources:



Assignment of Resources to Activities

- are displayed over each transition icon, representing resources with their time attributes,
- size of the icon is proportional to the value of available time for a transition and remains constant in a simulation.
- each icon is filled with colors for warning purpose,
- filling level varies according to load of the resource.

Place Capacity:

- Place capacity restricts number of tokens that are allowed to be contained in a place.
- Infinite capacity places are displayed as non-transparent spheres.
- Transparent places are filled with tokens that are displayed as small balls.
- for alerting capacity bottlenecks, tokens are colored green, yellow or red.

3D Representation of Capacity

IFB

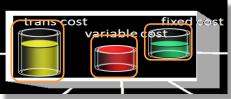
- Size and Volume
- Monitoring
- Metrics

Size and Volume

- visualize weak points of the process design by changing volume v or size s of the representation of the objects.
- Monitoring
- Metrics

AIFB

• Size and Volume

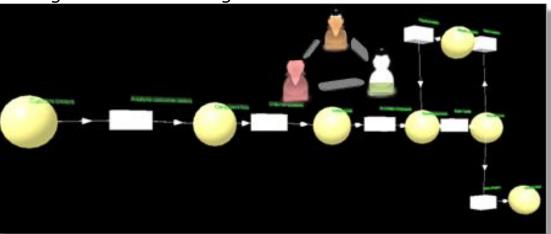

Monitoring

- each formula defines changes s or v of the figures in simulation.
- each figure has a default size and volume computed from its corresponding default *parameters* (e.g., height, length). The modification for each *p* is defined by:

modification
$$p = \frac{c * \Delta \text{ objectUnit}}{\text{objectUnit}}$$

- current status of an objectUnit is monitored with three colors for the size or volume:
 - Green: the value is performing well,
 - Yellow: warning that a value indicates a critical degree,
 - Red: alarming that a value indicates an impact problem.

Metrics

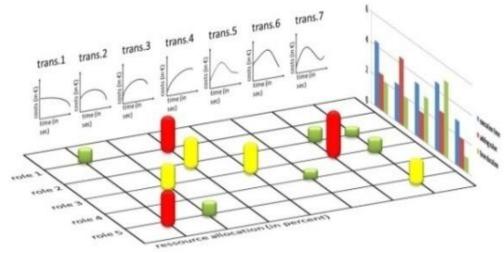


- Size and Volume
- Monitoring
- Metrics
 - Seigeriekania an endersiter ity
 - deten interacion interacion interacional policies interactive and the interactive intera
 - **OBJECTORING** WHEN BALLED UNE CONTROL TO CONTROL OF THE CONTROL
 - · AND CHELER COADER WAS WAS EFFORT OF A CHERRY AND STON
 - result[ShWa03]
 resource metric computes the degree between assigned resource and all available resources:

assigned resources

all resources

LFB

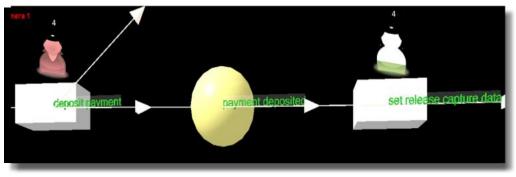

Analysis of Simulation Results

Analysis and Monitoring

 the aim of a 3D representation of analysis results is a quicker understanding of the simulation data set.

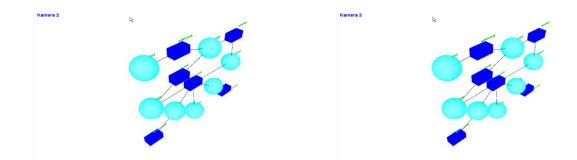
Customization of Analysis Results

 possibility to display the right diagram in the middle for a better recognition of the details.



3D Analysis of Role Performances Daniel Eichhorn, 3D Support for Business Process Simulation AIFB

Conclusion


 ✓ added a third dimension into the graphical representation of process objects.

- benefit is a statistical analysis of simulation results based on volume and size changes.
- ✓ by 3D environment, different views can examine and gather easily process-specific information.
 - => visualizing of weak points is more easy.

Future Work

- integration of the implemented prototype into HORUS,
- execution of simulation runs of different process models,
- analysis of the results,
- discussion of our approach with selected test users,
- 3D visualization and animation of other process objects,
- 3D representation concerning the data flow of processes (e.g. XML documents in high level Petri nets).

References

- AIFB O
- [ABGK06] April, B.; Better, M.; Glover, F.; Kelly, J.; Laguna, M.: Enhancing Business Process Management With Simulation Optimization. In: Proceedings of the 38th Conference on Winter Simulation, pp. 642-649, 2006.
- [FNSE99] Farrington, P.; Nembhard, H.; Sturrock, D.; Evans, G.: Business Process Simulation: A Fundamental Step Supporting Process Centred Management. In: Proceedings of the 1999 Winter Simulation Conference, Phoenix, Arizona, United States, pp. 1383-1392, ACM, 1999.
- [JaNe06] Jansen-Vullers, M.; Netjes, M.: Business Process Simulation A Tool Survey. In: Proceedings of the Seventh Workshop and Tutorial on the Practical Use of Coloured Petri Nets and the CPN Tools, Volume 579 of DAIMI, pp. 77-96, 2006.
- [BEHK08] Betz, S.; Eichhorn, D.; Hickl, S.; Klink, S.; Koschmider, A.; Li, Y.; Oberweis, A.; Trunko, R.: 3D Representation of Business Process Models. In: Proceedings of Modellierung betrieblicher Informationssysteme, LNI P-141, Gesellschaft für Informatik, Bonn, pp. 73-87, 2008.
- [AaBe01] van der Aalst, W. M. P. and Berens, P. J. S.: Beyond workflow management: product-driven case handling. In: International ACM SIGGROUP Conference on Supporting Group Work, ACM Press, New York, pp. 42-51, 2001.
- [HeKa81] Henry, S., Kafura, K.: Software structure metrics based on information flow. IEEE Transactions on Software Engineering, 7(5), pp. 510–518, 1981.
- [BaES00] Ballegooij, A.; Elliens, A.; Schönhage, B.: 3D Gadgets for Business Process Visualization A Case Study. In: Proceedings of the fifth symposium on Virtual reality modelling language, pp. 131-138, 2000.

Thanks for Your Attention

