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ABSTRACT
A lot of current web pages include structured data which can di-
rectly be processed and used. Search engines, in particular, gather
that structured data and provide question answering capabilities
over the integrated data with an entity-centric presentation of the
results. Due to the decentralized nature of the web, multiple struc-
tured data sources can provide similar information about an entity.
But data from di�erent sources may involve di�erent vocabular-
ies and modeling granularities, which makes integration di�cult.
We present an approach that identi�es similar entity-speci�c data
across sources, independent of the vocabulary and data modeling
choices. We apply our method along the scenario of a trustable
knowledge panel, conduct experiments in which we identify and
process entity data from web sources, and compare the output to
a competing system. The results underline the advantages of the
presented entity-centric data fusion approach.

CCS CONCEPTS
• Information systems → Data extraction and integration;
Resource Description Framework (RDF);
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1 INTRODUCTION
Between December 2014 and December 2015 the percentage of
web pages that include semantic markup has risen from 22% to
31.3% [16]. A large fraction of the structured data is based on
schema.org annotations, which can be parsed to RDF [23], a graph-
structured data model speci�ed by the W3C. Government initiatives,
non-pro�t organizations, and commercial data providers publish
structured data on the web. They often use data publication features
of current content management or electronic shop systems. Some
organizations even provide a dedicated interface on top of their
databases following the Linked Data principles [2]. Large-scale re-
trieval systems (e.g., search engines) collect, clean, normalize, and
integrate the data to drive user-facing functionality [10, 28].

Data from the web is heterogeneous, as pointed out in a recent
paper [3], where “heterogeneity, quality and provenance” has been
identi�ed as one of the four most pressing topics concerning the
Semantic Web: “It is a truism that data on the Web is extremely
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heterogeneous. [...] A dataset precise enough for one purpose may
not be su�ciently precise for another.” [3] As the data can di�er in
modeling granularities and can be sparse and overlapping across
sources, integration on the quality level that supports �ne-grained
querying often requires manual curation to map the data to a canon-
ical representation [34]. Less manual e�ort is involved in supporting
entity-centric views of only parts of the data, as done in so-called
“knowledge panels”, which tolerate noisier data. The knowledge
panels only contain a condensed top-k rendering of the data and
use ranking to achieve high precision at k data items [28, 30]; k is
often very small (10 or 20) compared to the overall available data
for an entity (which can often be multiple GBs).1 However, many
knowledge panels often do not show the provenance for individual
data items and doubts about correctness or notability have been
pointed out [6, 14].

In this paper, we address the problem of entity-centric data fusion.
In essence, we tackle the challenge of identifying when multiple
sources make the same claim2 about an entity in di�erent struc-
tured ways (i.e., by using di�erent RDF vocabularies)—which boils
down to: di�erent URIs, varying literals, and di�erent modeling
granularities. We leverage what could be perceived as “cross-source
redundancy” by reconciling identical or similar claims while still
keeping track of the respective sources and their representation of
a claim.

Our approach is based on a data processing pipeline, which takes
as input a set of equivalent entity identi�ers and provides as output
a similarity-based grouping (clustering) of RDF triples and chains of
triples from multiple sources that describe the entity. The pipeline
consists of the following steps: retrieve claims from di�erent web
sources; extract path features; perform hierarchical clustering; re-
�ne clusters; and select representatives. We provide placeholder
steps around record linkage (at the start of the pipeline) and �l-
tering/ranking (at the end), which can be implemented depending
on the speci�c scenario. The focus of our approach is to establish
mappings in entity-centric data while accounting for di�erent mod-
eling granularities. This also includes the mappings between the
involved vocabulary terms and entity identi�ers. The basic idea
is to move back and forth between representing claims about an
entity in a structured way (based on identi�ers and triples) and
representing claims as strings. In contrast to more traditional data

1The process of selecting the k most important data items about an entity is also called
“entity summarization” [30, 31].
2We use the term “claim” when one or multiple sources state a concise piece of
information in RDF, independent of its concrete modeling (in RDF), and the term
“triple” when information is represented in a single subject-predicate-object notation.



integration methods (e.g., [11]), we do not directly aim at identify-
ing contradicting information but our approach can be extended
with such functionality. A straight-forward interpretation of the
output of our method could be a weighting/ranking of claims about
an entity in accordance to the number of sources that make it.

Generic or customized record linkage algorithms [18, 19] com-
monly solve the problem of establishing equality between entity
identi�ers. In our work, we assume that entity identi�ers are al-
ready linked (as done via owl:sameAs in web data). In the past,
many ontology alignment approaches relied on clean and exten-
sively modeled ontologies without making strong use of instance
data (e.g., [27]). For example, [26] mapped di�erent modeling granu-
larities between two extensively modeled ontologies using “complex
correspondences” expressed in rules. On the web, with many di�er-
ent ontologies which are often inadequately modeled for ontology
alignment purposes, we require a more robust method. Approaches
such as [25, 29] allow for more heterogeneous input data, but do not
address modeling granularities ([29] identi�es “structural hetero-
geneity” to be addressed in future work). In fact, nowadays many
sources, most prominently Wikidata [33], use n-ary relations for
modeling RDF data in combination with additional context fac-
tors [13, 17], making the problem of addressing their integration
more acute.

The contributions of our work are as follows:
• We present the problem of granularity-agnostic entity data

fusion for graph-structured data on the web.
• We provide an entity-centric approach that enables the

fusion of claims from multiple web sources without prior
knowledge about the used schemas or required alignment
patterns, taking into account data provenance.

• We introduce the concept of path features, a graph rec-
onciliation model that enables easy switching between
(multi-hop) paths and their string representations.

• In our experiments, we measure the e�ectiveness of the en-
tity data fusion approach for entity-centric, multi-sourced
claims and demonstrate superiority over a baseline estab-
lished as part of the Sig.ma system in [32].

2 EXAMPLE
Figure 1 depicts our idea of a “trustable knowledge panel”. The
colors of the buttons implement a tra�c light scheme for the trusta-
bility of the claims. By clicking on such a button, a pop up would
open that provides direct reference to documents which cover the
claim together with each document’s representation. Amongst oth-
ers, such a panel can serve two important purposes:

(1) users can verify the sources provided for a claim; and
(2) the number of sources can serve as a straight-forward

justi�cation for notability.
The trustable knowledge panel requires the integration of data
from multiple sources, both on the syntactic and semantic level.
The input to the panel would be a single unique identi�er for an
entity (e.g., http://dbepdia.org/resource/Tim_Berners-Lee). Before
rendering the panel, we require to have multiple groups of claims
about the same entity. The claims can be single RDF triples or
2See also Tim Berners-Lee’s idea of the “Oh yeah?” button – https://www.w3.org/
DesignIssues/UI.html#OhYeah.
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<http://dbpedia.org/ontology/birthDate> "1955-06-08". 

(http://dbpedia.org/data/Tim_Berners-Lee.ttl) 

 

<http://www.wikidata.org/prop/direct/P569> "1955-06-08". 

(https://www.wikidata.org/wiki/Special:EntityData/Q80.ttl) 

 

<http://rdf.freebase.com/ns/people.person.date_of_birth> "1955-06-08". 

(https://www.googleapis.com/freebase/v1/rdf/m/07d5b) 

 

<http://schema.org/birthDate> "1955-6-8". 

(http://www.imdb.com/name/nm3805083) 
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Figure 1: Mock-up of a trustable knowledge panel (based on
a Google screenshot).

multiple ones (depending on the used vocabulary, in particular
modeling granularities). The claims of one group can come from
di�erent sources. Each group has a representative. The groups can
be ranked via “number of sources” but other ranking methods and
combinations are possible. In our work, we focus on the steps in the
pipeline to reconcile and fuse the data from multiple sources. The
trustable knowledge panel serves as illustration of how to apply
the output of our system in a user-facing scenario.

Let us assume, we want to state that the entity “Tim Berners-Lee”
(TimBL) has “Web Developer” as an occupation. The following three
sets of triples transmit the claim at di�erent levels of granularity:

(1) [ex1:TimBL ex1:occ "Web Developer"]
(2) [ex2:TimBL ex2:job ex2:webDev]
(3) [ex3:TimBL ex3:work ex3:work42],

[ex3:work42 ex3:occ ex3:webDev],
[ex3:work42 ex3:since "1989-03"]

In (1), only a non-clickable string would be displayed for “Web
Developer”. With (2) and (3), a link to ex2:webDev or ex3:webDev
can be provided where potentially more information about the pro-
fession can be retrieved. However, if we also want to model “since
when Tim Berners-Lee has been a Web Developer”, we make use of
n-ary3 relations as shown in (3). In the example, we create an indi-
vidual connecting node (ex3:work42) to combine the information
that “Tim Berners-Lee has been a Web Developer since March 1989”.
While some vocabularies (such as schema.org4 or the Open Graph
Protocol5) commonly use the more coarse-grained variants of (1)
and (2) in their modeling, web knowledge bases such as Freebase [4]
(that has been discontinued) and Wikidata [33] enable �ne-grained
modeling with n-ary relations (context/quali�ers) as exempli�ed
in (3). In general, it is the authors’ decision which level of detail they
want to address with the data they publish on the web. Our entity
data fusion approach performs the complex alignment of di�erent
vocabularies and automatically moves similar claims—expressed
RDF triple(s)—into the same clusters.

http://dbepdia.org/resource/Tim_Berners-Lee
https://www.w3.org/DesignIssues/UI.html#OhYeah
https://www.w3.org/DesignIssues/UI.html#OhYeah
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Figure 2: Overview: entity-centric data fusion.

3 APPROACH
Our approach for entity-centric data fusion starts with a URI u ∈ U
(with U being the set of all URIs) that identi�es a speci�c focus
entity e and returns a �ltered and ranked set of claims about e .
Di�erent resources can provide data for an entity, possibly under
di�erent URIs. Our approach uses a pipeline which consists of seven
di�erent processing steps that are visualized in Figure 2:

(1) Record Linkage: discover the URIs of all resources equiva-
lent to the entity e;

(2) Data Retrieval: retrieve RDF data for each resource and its
connected resources;

(3) Feature Extraction: extract a set of information compounds
(that we call “path features”) from RDF data;

(4) Clustering: run agglomerative hierarchical clustering on
the set of path features;

(5) Cluster Merging: re�ne clusters by merging;
(6) Representative Selection: identify claims as cluster repre-

sentatives;
(7) Filtering/Ranking: use di�erent cluster features for �ltering

or ranking.

The main focus is on the steps 2 to 6 but we also provide general
information on step 1 (i.e., what kind of input do we expect from
the record linkage step) and step 7 (i.e., what kind of output does
the pipeline produce and how can the results be used). We now
describe each step of the pipeline in detail.

3.1 Record Linkage
The topic of record linkage has a long tradition in statistics and
di�erent sub�elds of computer science, including databases and
information retrieval [22]. The main idea is to retrieve di�erent �les,
entries, or identi�ers that refer to the same entity (e.g., a speci�c
person). The problem has also been explored in the (Semantic) web
context [1, 18, 19]. With the use of explicit equivalence (e.g., by
using schema:sameAs or owl:sameAs), the availability of a variety
of algorithms (e.g., [15] for a recent work), and the availability of
systems that o�er record linkage as a service (e.g., sameAs.org), we
regard this problem as su�ciently addressed. The record linkage
approach is expected to take one URI for an entity e as input (e.g.,
http://dbpedia.org/resource/Tim_Berners-Lee) and then produces
an extended set R of reference URIs that all refer to e , for example:

R = { ex1:TimBL, ex2:TimBL }

3“De�ning N-ary Relations on the Semantic web” – http://www.w3.org/TR/
swbp-n-aryRelations
4schema.org – http://schema.org
5Open Graph Protocol – http://ogp.me/

3.2 Data Retrieval
We assume that all structured data is available as RDF [23]. The
sources either directly provide RDF in N-Triples, Turtle, RDF/XML
or JSON-LD via HTTP content negotiation or provide HTML pages
with embedded markup, where RDFa, Microdata, and JSON-LD are
the most supported formats [16, 24]. An RDF graph is de�ned as
follows:

De�nition 3.1 (RDF Graph, RDF Triples). With the three sets of
URIsU , blank nodes B, and literals L, an RDF graph G is de�ned as:

G ⊆ (U ∪ B) ×U × (U ∪ B ∪ L) (1)

The elements t ∈ G of a graph G are called triples. The �rst
element of a triple t is called the “subject”, the second “predicate”,
and the third “object”. URIs provide globally unique identi�ers;
blank nodes can be used instead of URIs if there is no URI available
for an entity, or the entity’s URI is unknown; and RDF literals
encode data type values such as strings or integers.

For each reference URI r ∈ R from the record linkage step,
we aim to retrieve RDF data. If one of the URIs o�ers RDF, the
crawler performs a breadth-�rst search around the URI (up to a
certain depth d). For example, if the triple [ex2:TimBL ex2:job
ex2:webDev] is contained in the retrieved dataset of ex2:TimBL,
the crawler also tries to retrieve RDF data from the URI ex2:webDev.
In addition, the crawler also retrieves information about the used
predicates; in this case the crawler retrieves data from ex2:job.
During this process, the crawler stores the complete path to the
�nally delivering URI (i.e., the URI that returns data with status
200 in case of redirects) for each request. That URI is used as a
graph name for all retrieved corresponding triples (therefore, with
the notion of named graphs – see De�nition 3.2, producing quads).
Cycles in the breadth-�rst search are resolved if the URI has already
been requested in the same search around r ∈ R or if the target
URI is contained in the set R (or their respective redirect variants;
i.e., cross-references in R are removed in this step). In these cases,
we do not retrieve the URI a second time. The result of the data
retrieval step is an RDF dataset that contains a forest of trees that
each have one reference URI as a root (together with provenance
information, that is, the URIs of the graphs in which the RDF triples
occur). Figure 3 shows an example for such a forest.

Overall, the forest together with the provenance information
forms a set of RDF graphs (i.e., an RDF dataset). An RDF dataset
can cover multiple RDF graphs and is de�ned as follows:

De�nition 3.2. [Named Graph, RDF Dataset] Let D be the set of
RDF graphs andU be the set of URIs. A pair 〈d,u〉 ∈ D ×U is called
a named graph. An RDF dataset consists of a (possibly empty) set
of named graphs (with distinct names) and a default graph d ∈ D
without a name.

http://dbpedia.org/resource/Tim_Berners-Lee
http://www.w3.org/TR/swbp-n-aryRelations
http://www.w3.org/TR/swbp-n-aryRelations
http://schema.org
http://ogp.me/
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Figure 3: Output of data retrieval: an RDF dataset containing
a forest of trees, each with a reference URI as a root.

3.3 Feature Extraction
We produce path features from the forests in the RDF dataset D
created in the data retrieval step. In the following, we consider
paths in the tree from the root to a leaf. In accordance to the de�ni-
tion of RDF, each tree can have two types of leaves: URI nodes or
literal nodes. However, leaves that are URI nodes do not provide
su�cient information as the node itself is a URI that was not re-
trieved. The system only knows that it exists. For example, if we
crawl ex2:TimBL only with depth 0 (i.e., ex2:TimBL and predicate
URIs are retrieved) the system knows that the node ex2:webDev
exists but we do not get the label “Web Developer” if the URI is
not retrieved (i.e., it is not in the RDF Dataset D as a graph name).
Therefore, we only consider paths that end with a literal node.

De�nition 3.3 (Path Feature). Let G be an RDF graph. A path
feature p is a sequence of triples in G. A path feature ful�lls the
following three conditions:

(1) It starts with a triple t1 ∈ G of the retrieved graph G that
has a reference URI in the subject position.

(2) It terminates with a triple t2 ∈ G of the retrieved graph G
that has a literal in the object position.

(3) It does not contain triples that have a reference URI in the
object position (to avoid loops).

(4) If it contains two consecutive triples t1, t2 ∈ G, the object
of t1 needs to be the subject of t2.

Single triples that ful�ll the above conditions are also path fea-
tures. We refer to path features that involve multiple triples as
“multi-hop” path features and to those that are constituted by only
one triple as “single-hop” path features. We use the� symbol to
denote the sequence of path features.

In our example, if we only consider the depicted claims of Fig-
ure 3, the following path features can be identi�ed:

(1) [ex1:TimBL ex1:bd "1955-06-08"]
(2) [ex1:TimBL ex1:occ "Web Developer"]
(3) [ex2:TimBL ex2:dob "1955-06-08"]
(4) [ex2:TimBL ex2:job ex2:webDev]�

[ex2:webDev rdfs:label "Web Developer"]

Next, we introduce a way that enables us to represent path
features as linked lists of strings: we remove all URI nodes and
use the rdfs:label of the predicate URIs. A predicate can also
have more than one label in the same language, so that we create
a representation for each. For example, ex2:job may have the

additional label “profession”. To take this into account, we add
another string representation for the full path feature. For all text-
based literals and labels we �x the language. In practice, best results
can be achieved with English as vocabularies often provide labels
only in that language.

We collect all string representations in a multi-valued map M :

M = [ ("birth date"→"1955-06-08", 〈1〉) ;
("occupation"→"Web Developer", 〈2〉) ;
("date of birth"→"1955-06-08", 〈3〉) ;
("occupation"→"label"→"Web Developer", 〈4〉) ;
("profession"→"label"→"Web Developer", 〈4〉) ]

3.4 Clustering
We cluster path features in accordance to their string represen-
tations. At this point, a key feature of the approach—the entity
centricity—mitigates the occurrence of ambiguities and unwanted
merges. For example, the string “web” has only one reasonable
meaning in the vicinity of the entity ex1:TimBL while in the whole
web graph there are many di�erent meanings for the term.

Similarity. In order to compare the string representations with
each other, we use string similarity functions as they are proposed
for ontology alignment [7]. For two given string representations
we compare the head h6 (i.e., the label of the �rst predicate) and the
tail t (i.e., the label of the leaf node) of each string representation
li ∈ keySet (M ) respectively. We compute the common result with
a linear combination (0 ≤ λ ≤ 1):

sim(l1, l2) = λ · sim(h(l1),h(l2)) + (1 − λ) · sim(t (l1), t (l2)) (2)

In our experiments we set λ = 0.5, which produced good results
for the clustering. The string similarity function incorporates to-
kenization (to) and normalization steps. We distinguish between
single-token and multi-token strings:

sim(s1, s2) =




jw(s1, s2) if |to(s1) | = 1
& |to(s2) | = 1

ja(to(s1), to(s2)) otherwise
(3)

Single-token strings use the Jaro-Winkler similarity metric (jw) and
multi-token strings use Jaccard similarity (ja). These measures are
recommended in [7] for achieving high precision. For both string
similarity measures, a value of 0 means no similarity and 1 is an
exact match.

Clustering. We compute a similarity matrix for all string rep-
resentations as an input for agglomerative hierarchical clustering.
The clustering is based on two steps: in the beginning, the linkage
of all elements is computed and afterwards the clusters are formed
by a cut-o�. The linkage starts with clusters of size 1 and uses the
similarity matrix in order to link two clusters. This is done in accor-
dance to the smallest Euclidean distance of any two elements in the
respective clusters. In the matrix, the elements are represented as
column vectors. We repeat this step until all clusters are linked. The
6We assume that the �rst predicate is commonly more descriptive than the second
or third predicate with respect to the focus entity e . It has to be noted that, in some
cases, the second or third predicate could make a better �t for string comparison. For
example, a string representation for the n-ary “work”-relation (see Example (3) in
Section 2) could be: "work"→"occupation"→"label"→"Web Developer".



linkage is then used to determine a cut-o� level that produces n or
fewer clusters. Under the assumption that all resources in R provide
RDF data and that each covers the same amount of information, the
value of n can be set to

⌈
|M |
|R |

⌉
.7 In our running example n would

be
⌈
5
2
⌉
= 3. After the clustering, we use the map M to move back

from the string representation level to the path feature level. The
clusters are then represented as follows:

• Cluster 1: { [ex1:TimBL ex1:bd "1955-06-08"],
[ex2:TimBL ex2:dob "1955-06-08"] }

• Cluster 2: { [ex1:TimBL ex1:occ "Web Developer"],
[ex2:TimBL ex2:job ex2:webDev]�
[ex2:webDev rdfs:label "Web Developer"] }

• Cluster 3: { [ex2:TimBL ex2:job ex2:webDev]�
[ex2:webDev rdfs:label "Web Developer"] }

In accordance to the de�ned similarity measure, the items of Clus-
ter 2 have a perfect match. The items of Cluster 1 have a high
similarity as the literal values match perfectly and the predicates
have a partial match. The most dissimilar item is Path Feature 4
with its alternative label “profession” for ex2:job. This item ends
up in its own cluster (as the number of total clusters is prede�ned
with 3, see above).

3.5 Cluster Merging
After the clustering, similar string representations of path features
are in the same cluster but some information is also dispersed. For
example, Cluster 2 and Cluster 3 represent similar information. The
data retrieval step (see Section 3.2) also retrieves path features that
include information about related entities. For example, in the case
of ex1, if we also cover the birth place of the entity “Tim Berners-
Lee”, via [ex1:TimBL ex1:bp ex1:London] we produce a lot of
path features that di�er only in factual information about London.
ex2 might cover similar claims and its information about London
might be gathered in the same clusters as the claims from ex1. This
naturally leads to many clusters that have the following shape:

{ [ex1:TimBL ex1:bp ex1:London]�
[ex1:London ex1:long "-0.127"],
[ex2:TimBL ex2:pob ex2:London]�
[ex2:London ex2:longitude "-0.1275"] }

Similar clusters would be formed about the latitude of London,
its population, total area, etc. In the case of the entity “Tim Berners-
Lee”, another fraction of di�erent clusters would cover claims about
the MIT (e.g., number of students, founding year, etc.). A common-
ality among these fractions (e.g., London, MIT) of clusters is that
the �rst triples of the contained path features are overlapping with
the �rst triples of the path features in other clusters. The individual
entity focus (in the example “Tim Berners-Lee”) provides that only
these �rst triples are relevant as—independent of the modeling
granularity—the �rst hop is most relevant to the entity. Therefore,
we can merge clusters in which the �rst triples of the path features
are overlapping.

7R is de�ned as the set of all reference URIs in Section 3.1, M is de�ned as the
multi-valued map between string representation and the respective path features in
Section 3.3.

In our example, the �rst triples of Cluster 2 and Cluster 3 are as
follows:

• Cluster 2: { [ex1:TimBL ex1:occ "Web Developer"],
[ex2:TimBL ex2:job ex2:webDev] }

• Cluster 3: { [ex2:TimBL ex2:job ex2:webDev] }

For the merging we apply the following method: if, in terms of
�rst triples, two clusters have an equal or higher degree of overlap
(estimated via Jaccard index, that has a range between 0 and 1)
than a threshold ϵ ,8 the clusters are merged. Note that the criteria
for merging clusters is based on structure (i.e., �rst triples of path
features) and the measure with which we derive the clusters is
string similarity.

In our example, with ϵ = 0.5, Cluster 2 and Cluster 3 are merged:

Cluster 2: { [ex1:TimBL ex1:occ "Web Developer"],
[ex2:TimBL ex2:job ex2:webDev]�
[ex2:webDev rdfs:label "Web Developer"],
[ex2:TimBL ex2:job ex2:webDev]�
[ex2:webDev rdfs:label "Web Developer"] }

Clusters containing [ex1:TimBL ex1:bp ex1:London] as a
�rst triple would also get merged. While �rst triples of single-hop
path features such as [ex1:TimBL ex1:occ "Web Developer"]
can occur only in multiple clusters if there are more labels for
the predicate, multi-hop path features can generate a variety of
di�erent label-leaf combinations for their string representations and
the �rst triple or—like in the example—the complete path feature
can occur in multiple di�erent clusters before the merging step. In
our approach, the combination of path features, their clustering, and
the merging of clusters can address all of these cases in a suitable
manner.

3.6 Representative Selection
For each cluster, we can select two types of representatives: one
general representative and one representative for each source. Both
types of representatives are needed for the scenario of Figure 1: one
triple to be shown in the panel and one triple per source to support
the presented triple. Before we present the details of the represen-
tative selection approach, we need to de�ne the term “source”. For
this we tracked the provenance of each triple in the data retrieval
step (cf. Section 3.2). For a speci�c path feature, we take the �rst
triple: the hostname of the delivering URI of this triple is considered
as the source of the path feature. The complete delivering URI of a
source representative may be used for a more detailed output (as
exempli�ed in Figure 1).

Cluster representative. We consider two cases for the cluster
representative:

(1) If the cluster contains only single-hop path features, return
the triple that has the highest similarity (see Formula 2) to
all other triples.

(2) If the cluster contains only multi-hop path features or
single-hop and multi-hop path features use the �rst triple
of each multi-hop path feature and count its occurrence

8The value of ϵ is �exible and can be adjusted within the range of 0 and 1.



in the cluster. The �rst triple that occurs most often in the
cluster is returned as the representative.

In our example, the �rst case returns any of the two birth-date
triples (as they have equal similarity to each other) for Cluster 1.
The �rst case enables to select the most common representation
among multiple candidates. For example, Wikidata provides also
"label"→"Sir Tim Berners-Lee" for the entity and the accord-
ing path feature gets clustered together with the path feature repre-
sented by "label"→"Tim Berners-Lee" from Wikidata9, IMDb,
Freebase etc. The �rst case selects the representative that is most
similar to all others and chooses the version without “Sir”.

In our example, the second case returns [ex2:TimBL ex2:job
ex2:webDev] as a representative for Cluster 2 (the triple occurs
twice). The idea of the second case is that links to other resources
(multi-hop) are always better than returning a plain string (single-
hop). However, the single-hop path features in multi-hop clusters
support the respective claim as a source. In addition, the second
case returns a triple that occurs in most path features and, as such,
the linked resource (i.e., ex2:webDev in the example) can provide
most information on the claim that is described by the cluster.

For the running example, the output of the representatives would
be as follows:

[ex1:TimBL ex1:bd "1955-06-08"],
[ex2:TimBL ex2:job ex2:webDev]

For both claims, the two sources ex1 and ex2 can be provided as
references.

Source representative. Source representatives are selected in
the same way as the cluster representative with the following re-
striction: it is chosen as (1) the most similar or (2) most often oc-
curring representative from a single source (e.g., dbpedia.org)
compared to all entries across sources.

3.7 Filtering / Ranking
Our approach covers the clustering of similar claims about entities.
It does not address steps that can build on the gained information.
In this section we provide an overview.

An important aspect, that we have not yet addressed, is the
handling of contradicting information. In general, following the
open-world assumption, we consider all made claims of all sources
as true. If a claim is missing in one source but occurs in another,
it can be true. If, in the case of persons, di�erent sources provide
di�erent claims about spouses, employers, and even the birth dates,
we consider all of them as true. However, as a general idea, we
assume that claims are more likely to be true if they are made by
multiple di�erent sources.10 In fact, the more sources support a
claim, the more likely it is to be valid or important. In contrast, if a
claim is made only by a single source, it is considered less likely or
unimportant. The lack of (a su�cient amount of) sources and the
explanations why certain claims are provided in knowledge panels
has led to criticism [6, 14]. With the presented entity data fusion
approach, we can support the identi�cation of additional sources

9Wikidata provides multiple English labels for this entity.
10Note: In a web setting, this assumption is not necessarily correct as the sources are
often not independent from each other. We discuss this matter in Section 4.6.

for claims. This enables users to verify the individual sources and
decide themselves whether they want to trust the claim or not. In
addition, in order to enable an automatically produced trustability
score, additional measures—such as PageRank [5] or knowledge-
based trust [12]—can be applied on the sources for each claim.

In a similar way, additional support for the notability of claims
can be estimated: the more sources support a claim about an entity,
the more it can be considered as important. This is in line with the
ideas of [32] that present entities in this manner (ranking claims
by the number of sources that support them).

4 EXPERIMENTS
In our experiments, we evaluated our entity data fusion method
relative to the Sig.ma baseline established in [32]. We compare the
coverage and the number of sources with respect to the scenario
of a trustable knowledge panel (see Section 1). The idea is that we
do not want to compare agreement on randomly selected claims
but to make sure that the evaluated claims would actually be pre-
sented to an end user. For this, we use the claims presented in the
Google Knowledge Graph (GKG) panels. With regard to the size
and the heterogeneity of the dataset (actual data from the web), this
restriction made the task of evaluation feasible.

4.1 Dataset
The TREC entity track was last run in 2011.11 We used the provided
evaluation data from that year12 and selected the entity names of the
REF and ELC tasks. This produced 100 entities with two duplicates.
Afterwards, we tried to identify the DBpedia URIs for the remaining
set of 98 entities. For 18 entities (e.g, “Landfall Foundation" or
“Foundation Morgan horses") we could not �nd according DBpedia
identi�ers (and also Google did not provide a graph panel for these
entities). Therefore, the �nal set of entities contained 80 entities.
This included persons, organizations, universities, places, bands, etc.
The service sameAs.org then enabled the retrieval of the according
Freebase identi�ers (e.g., m/027bp7c – entity “Abraham Verghese”)
and we could then retrieve Google summaries by adding the GKG
API namespace http://g.co/kg/ to these IDs, for example http://g.co/
kg/m/027bp7c. We manually retrieved GKG panels by storing the
respective HTML to �les. In this context, we used http://google.com
in English language with a clean browser history for each entity.

The list of the used entities, their DBpedia and Google identi-
�ers, the crawled dataset, the stored Google result pages, and the
output of our approach are available at http://people.aifb.kit.edu/
ath/entity_data_fusion.

4.2 Baseline: Sig.ma
The Sig.ma system described in [32] provides basic functionality
on entity data fusion. The approach is mostly based on string mod-
i�cation in order to derive a uniform representation. In particular,
the provided URIs for properties and the URIs/literals for values
are analyzed heuristically. The approach cannot deal with n-ary
relations and can only rudimentary reconcile between 0-hop and
1-hop granularity levels. However, in these cases it can serve as

11TREC tracks – http://trec.nist.gov/tracks.html
12TREC entity track 2011 – http://trec.nist.gov/data/entity2011.html
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Figure 4: Di�erent statistics on the distribution of path features, clusters, and sources. The ticks on the x-axes each represent
one entity of the TREC dataset.

a baseline so we re-implemented the main ideas13 of Sig.ma by
performing the following steps:

(1) We use the properties and values of triples where an iden-
ti�er for an entity is involved, for example:
ex4:occupation "Web Developer"@en

(2) For URIs (in the property or object position) we use the
last segment of the URI (e.g., occupation). Typical pat-
terns such as camelCase and dashes/underscores are split
up. Literal values are used without further modi�cation.
All strings are transformed to lower case. For the rec-
onciliation, the Sig.ma approach does not make use of
rdfs:label [32].

(3) These basic string representations are then aggregated
with an exact match and by attributing their sources:
"occupation Web Developer"
(http://example4.com, http://example5.com)

4.3 Con�guration
We applied the two data fusion methods on 80 entities of the TREC
entity dataset. We used the sameAs.org service as a record linkage
approach with the DBpedia identi�ers as an input. Multiple crawls
were performed in order to account for periods of unavailability
of resources. The crawls happened in June 2015. The crawler oper-
ated with depth 1 and retrieved RDF data via content negotiation.
After the individual crawls were completed the retrieved data was
merged. Per entity, there were 2 to 24 di�erent sources while 75%
of the entities included RDF information from at least 5 sources
(see Figure 4a). For our method, for each entity, we computed the
similarity matrix of the English string representations of all path
features. We set the parameter λ = 0.5. For this matrix, we produced
the linkage and retrieved n =

⌈
|M |
4
⌉

clusters for each entity. We
merged all clusters at an overlap threshold of ϵ = 0.5. An overview
of the distribution of the numbers of path features, clusters, and
merged clusters is provided in Figure 4b. All entities had more than
two clusters with at least two sources and 59% of the entities had
more than 10 such clusters. An overview of this distribution is
provided in Figure 4c.

13 We omitted several highly customized rules of Sig.ma such as the “[...] manually-
compiled list of approximately 50 preferred terms” [32].

4.4 Evaluation Setup
The evaluation included two steps, the matching of GKG claims to
clusters of the output of the respective systems and the evaluation
of the identi�ed matches.

Step 1: Match GKG claims to clusters. For the evaluation of
the quality of the results, the Google result pages and the produced
output of the systems needed to be aligned. Unfortunately, although
the data presented by Google is often found in Freebase (which
was covered by our crawl), it was not possible to identify a su�-
cient number of direct links. On the one hand, this was due to the
incorrect Turtle RDF output produced by Freebase. On the other
hand, a lot of information covered by Freebase included n-ary rela-
tions that are presented �at in GKG panels. Therefore, starting from
a GKG claim, it is di�cult to determine the respective Freebase
claim—especially if a variety of domains are covered (as it was the
case for the TREC entities). As a consequence, we nominated two
human evaluators (both experts on RDF and related technologies)
and asked them to provide a manual matching. For all entities, the
following was performed: For each claim that was presented in the
GKG panel, they used the systems’ output to identify clusters in
which at least one source representative matched the information
content of the GKG claim.

Step 2: Evaluation ofmatches. For all clusters in the output of
the systems that matched a speci�c GKG claim, the evaluators were
instructed to choose the cluster that had most correct sources (i.e.,
clusters where most source representatives match the information
content of the GKG claim). The number of correct sources of this
cluster was then documented. In the same step the evaluators kept
track of the following two types of error:

Type 1 error: Number of source representatives in the best-
�t cluster that did not match the GKG claim (false posi-
tives).

Type 2 error: Number of source representatives in other
clusters, that also matched the information content of the
GKG claim (false negatives).

4.5 Evaluation Results
The evaluators identi�ed 755 claims in the GKG panels of the 80
TREC entities. In average, each GKG panel covered 9.4 claims. Ta-
ble 1 respectively present the main results of our approach and



Table 1: Results for our approach and Sig.ma: the number
of produced GKG claims, GKG coverage, number of type
1 errors, number of type 2 errors, precision, recall, and f-
measure at di�erent thresholds for the number of sources.
The # symbol should be read as “number of”.

# sources in output: ≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 5
Our approach:
# GKG claims: 414 235 135 76 39
GKG coverage: 55% 31% 18% 10% 5%
# type 1 errors: 81 46 26 17 12
# type 2 errors: 146 81 43 26 16
Precision: 0.84 0.84 0.84 0.82 0.76
Recall: 0.74 0.74 0.76 0.75 0.71
F-measure: 0.78 0.79 0.80 0.78 0.74
Sig.ma:
# GKG claims: 299 112 70 44 9
GKG coverage: 40% 15% 9% 6% 1%
# type 1 errors: 0 0 0 0 0
# type 2 errors: 304 151 92 57 34
Precision: 1.0 1.0 1.0 1.0 1.0
Recall: 0.50 0.43 0.43 0.44 0.21
F-measure: 0.66 0.60 0.60 0.61 0.35

Table 2: Statistics about the 15 most occurring predicates
(with respect to the 755 claims of the GKG panels) and ac-
cording statistics for the number of (true-positive) sources
each system provides (↓min, ø avg, ↑max).

Predicate Count Our approach Sig.ma
↓ ø ↑ ↓ ø ↑

label 80 0 3.18 7 1 3.29 7
abstract 80 0 1.74 3 0 0.99 2
founder 42 0 0.79 4 0 0.02 1
place of interest 26 0 0.00 0 0 0.00 0
location 25 0 1.28 4 0 0.24 1
subsidiary 24 0 0.13 1 0 0.04 1
phone number 24 0 0.00 0 0 0.00 0
book 23 0 0.39 1 0 0.09 1
college/uni. 22 0 0.00 0 0 0.00 0
longitude 21 0 3.24 8 1 1.90 4
latitude 21 0 3.10 8 1 1.95 4
ceo 20 0 0.35 5 0 0.10 1
alumni 18 0 0.00 0 0 0.00 0
founding date 15 0 0.93 2 0 0.80 1
founding year 15 0 2.00 6 0 0.93 2

Sig.ma. Our entity data fusion method produced 414 GKG claims
(with a respective coverage of 55%) and, in total, 923 source rep-
resentatives. The baseline Sig.ma produced 299 GKG claims (with
a respective coverage of 40%). In almost all cases our approach
outperforms Sig.ma by ×2 or higher with respect to the task of
retrieving multiple sources per GKG claim (GKG coverage at ≥ 2,
≥ 3, etc.). Sig.ma only considers direct 1:1 matches which means
that it produces a precision of 1.0 (there are no type 1 errors). As
a side e�ect, this also implies a strongly reduced recall (which
stems from the high number of type 2 errors). The recall levels of

Sig.ma drop strongly when more than �ve sources are needed. In
contrast, our approach produces high precision and recall levels
and also remains stable when more sources are required (the small
increases/decreases are due to the varying proportion of type 1/2 er-
rors with respect to the respective coverage). These scores are also
re�ected in the respective f-measure scores where our approach
outperforms Sig.ma by di�erences from 0.12 (≥ 1 source) up to 0.39
(≥ 5 sources). In only 22 cases out of 755, Sig.ma produced more
sources than our approach. In these cases, relevant claims ended up
in larger clusters that had di�erent representatives chosen. Table 2
presents the 15 most-used predicates of the 755 GKG claims and
the minimum, average, and maximum number of sources per claim
for each of the two systems. It shows that there exist GKG claims
(such as phone number or places of interest) that were not covered
by any of the web data sources. This explains the gap between 755,
the total number of GKG claims, and 414, the number of claims for
which we could identify at least one source. In average, in almost
all cases, our entity data fusion approach provides more sources
than Sig.ma for all di�erent claim predicates.

4.6 Discussion
The results of the experiments demonstrate the e�ectiveness of our
entity data fusion approach. They show, that the recall is signif-
icantly improved by considering multiple granularity levels and
by the approximate matching via string similarity. As a matter of
fact, these factors a�ect the precision in a negative way, however
(as the f-measure scores demonstrate) only to a point where the
advantages of the improved recall have a signi�cant overweight. In
applications where precision is of ultimate importance, we would
suggest an approach that utilizes direct or manually de�ned map-
pings. In the presented scenario of a trustable knowledge panel, we
suggest to use our entity data fusion approach (which provides a
highly improved recall).

A number of challenges that we encountered deal with the qual-
ity of Linked Data data on the web in general: not every URI is
dereferenceable, not every URI provides RDF data, not all returned
RDF data is in (any) correct format, not all RDF data contains infor-
mation about the retrieved URI, not all RDF data contains labels,
and not all RDF data contains language tags. We still made use
of all these features and were able to retrieve RDF data from a
number of reference URIs (up to 24) via content-negotiation and
could make su�cient use of the provided data. For production en-
vironments, we would recommend the implementation of a data
curation infrastructure that deals with the mentioned challenges.

RDF triples are often used in the subject-predicate-object style
but, although—technically—the predicate provides a direction, every
such triple also provides information about the object. Tim Berners-
Lee encourages RDF creators not to put too much emphasis on the
direction of RDF triples.14 However, only few sources (DBpedia is
one of them) provide information about an entity when it is in the
object position of a triple. One way to address this matter could be
to perform a full web crawl and apply path feature extraction also
for triples that use the entity URI in the object position.

14Tim Berners-Lee: “Backward and Forward links in RDF just as important” – http:
//dig.csail.mit.edu/breadcrumbs/node/72
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For a variety of parameters of the method, potential extension
and optimization with a gold standard is possible. One particular
point is literal/object similarity: Many literals are annotated by
their type. For example, a birth date like "1955-06-08" often has
xsd:date as data type. Therefore, additional (or alternative) simi-
larity measures could be de�ned for the most common data types.
Ultimately, this could be extended towards media similarity for
URIs that represent an audio �le, an image, or a video.

With increased crawling depth, the number of path features
grows exponentially. As we compare path features via their string
representation, and we have |M | · ( |M | − 1)/2 comparisons, this
leads to a signi�cant demand for computation time. One solution
that we consider in order to mitigate this e�ect is locality-sensitive
hashing [21]. This hashing method moves similar strings to sim-
ilar buckets and strongly reduces the number of candidates for
traditional string comparison.

One aspect that is not addressed in this work is the question
“how can we verify that the sources gathered their information
independently from each other?” Unfortunately, for small infor-
mation units, such as triples, it is often impossible to gain a deep
understanding of provenance if respective information is not ex-
plicitly given; especially if the claims are commonly known and
true. A related task was addressed in [9] where the authors tackle
the problem of copy detection by tracking di�erent datasets and
their change over time.

5 RELATEDWORK
Our approach is most related to the data fusion and presentation
method of Sig.ma by Tummarello et al. [32]. Sig.ma presents a rule-
based, entity-centric data fusion method embedded in the context
of semantic search. As such, further components of Sig.ma include
object retrieval via keyword queries, parallel data gathering, live
consolidation, and presentation. The presented entity data fusion
approach is strongly focused on e�ciency and relies on meaningful
URIs, a frequently used feature of many vocabularies and datasets.
In contrast, in our approach we fully rely on rdfs:label and can
also deal with multiple languages and opaque identi�ers as they
are used in Wikidata or schema.org (that makes strong use of blank
nodes). Although n-ary relations are mentioned in [32], they are
not addressed by Sig.ma. In contrast, we designed our approach to
deal with claims distributed over multiple hops and enable to align
sources with di�erent modeling granularities.
Data/Knowledge fusion: Recent work of Dietze points out the
main challenges of “retrieval, crawling and fusion of entity-centric
data” [8]. The author mentions the issues of missing (owl:sameAs)
links, redundancy, and quality. In our work, we extend on that and
lay particular focus on modeling granularities and introduce a feasi-
ble solution for the presented challenges. In [11], Dong et al. de�ne
knowledge fusion as the problem of constructing a large knowl-
edge base from unstructured data (like HTML tables or natural
language text) with di�erent extractors from di�erent sources. In
contrast, data fusion is de�ned as the processing of a source-feature
matrix for each entity where the entries mark the actual values.
Our work lies between these two extremes as we deal with data
for which we do not need extractors but the complexity of the data
goes beyond database-like tables as we need to deal with di�erent

identi�ers, vocabularies, and di�erent modeling approaches. The
work on knowledge-based trust by Dong et al. [12] is also related to
our task. The authors estimate the trust-worthiness of web sources
by extracting information and verifying its correctness. With this
method, a trust value is computed for each web source. In con-
trast, we try to identify multiple occurrences of the same or similar
claim. The methods complement each other and we could use the
approach of Dong et al. [12] to compute the trustworthiness of the
sources that we provide in our output.
Schema/Ontology alignment: The �eld of schema and ontology
alignment has been very active in the past decade. Most relevant
to our work is the approach by Suchanek et al. [29], that integrates
relations, instances, and schemas. The authors use a probabilistic
model to integrate each of the mentioned aspects. The approach is
tested with YAGO, DBpedia, and IMDb. In contrast, in our work,
we account for di�erent granularities at the modeling level and
also match claims that include more than one hop. Further, we test
our approach in a real-world scenario with data from the web. The
authors of [20] investigate on the problem of the large amount of
di�erent vocabularies. They state the question: “How Matchable
Are Four Thousand Ontologies on the Semantic Web?” Although we
do not explicitly deal with the merging of di�erent vocabularies, our
clustering approach could be used to mine complex mapping rules
for vocabulary terms via patterns from di�erent clusters (across
entities) in an iterative way.

6 CONCLUSIONS
We have introduced a novel entity-centric approach for fusing
claims from multiple web sources. Our approach works without
any prior knowledge about the used vocabularies and just uses
core features of the RDF data model. We have demonstrated two
key features of the approach: the entity centricity, which enables
the application of string similarity measures for clustering, and the
robustness of the approach against �ne- or coarse-grained RDF data
modeling (via path features). In our experiments, we compared our
system to the Sig.ma baseline and demonstrated that our system
produces higher coverage, recall, and f-measure scores.

We also shed light on a variety of challenges that encompass the
task of web-scale entity data fusion. In particular, the large number
of di�erent vocabularies, their individual modelling focus, and var-
ious issues with Linked Data quality bring additional complexity
to an already computationally challenging problem.

We plan to address the use of existing mappings on the schema
level based on rdfs:subClassOf, rdfs:subPropertyOf, owl:equi-
valentClass and owl:equivalentProperty. A strength of our
current approach is that we do not need these mappings, as not
many of them exist; schema.org, for example, only maps to a hand-
ful of external classes and properties. But we believe that, over time,
more mappings will become available, either manually constructed
or with the support of ontology alignment approaches that can
handle schema diversity in arbitrary web data. In that line, we plan
to extend the string-based similarity measure by a rule learning
system that detects frequent vocabulary alignment patterns in the
clusters and iteratively feeds this information back to the similarity
measure. In the further work, we also plan to combine the presented
approach with our entity summarization system LinkSUM [31].
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