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1. INTRODUCTION
Large amounts of data are being produced daily as detailed
records of Web usage behavior, but the task of deriving
knowledge from them still remains a challenge. Modeling
and mining approaches are significant instruments to dis-
cover browsing patterns in such data and to understand how
users browse Web sites.

There is an increasing body of literature on the investiga-
tion of clickstream data and navigation behavior modeling,
with the majority focusing on data collected in a single
site. Inspiring works [20] convincingly argue on the ben-
efits of studying user behavior at multiple websites. Such
approaches present significant potential to derive actionable
behavioral knowledge and make better future forecasts, but
they still have to tackle the problem of heterogeneity of the
information encountered at different sites.

We approach the problem of usage data comprehensability
at its root, addressing the issue of semantically formalizing
cross-site user Web browsing behavior. Usage data (or usage
logs) are syntactic representations of Uniform Resource Lo-
cator (URL) requests of pages and Web resources accessed
by the site visitors. Due to the primarily syntactical nature
of such requests, comprehension of users’ browsing patterns
is difficult. Hence, there is an urge for formalization ap-
proaches that leverage the semantics of the usage data in
accordance with the domain they occurred.

As such, mapping usage logs to comprehensible events from
the application domain helps to discover more insights about
user behavior. While most approaches use flat taxonomies
to represent such vocabulary, we deploy ontologies for struc-
turing domain concepts and relations, since they ensure a
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richer semantic model of a Web site content.

This work aims at monitoring user behavior across multiple
Web sites, logging clickthrough data upon agreement of In-
ternet users. Each log entry is a tuple L={UserID, URL,
timestamp} of a user ID, URL of the accessed Web resource,
and real time when this happened. These usage data logs
are initially stored in raw form, as produced upon each user
interaction.

The overall approach, illustrated in Fig. 1, comprises a series
of steps, such as data preprocessing (human logs filtering,
session construction, data transformation), formalization of
usage logs, and techniques for their semantic enrichment.

This work gives the following contributions to the field:

• Model for the formal and semantic represen-
tation of cross-site browsing logs. I present the
Web browsing Activity Model (WAM), expressed as an
OWL-2-DL ontology, which enables a shared concep-
tualization of the knowledge from the various domains
where the usage logs are recorded.

• Techniques for the automatic extraction of the
usage logs semantics from heterogenous sources, in
which the domain knowledge has a semi-structured or
structured formal representation.

• New approach for semi-supervised prediction
with ontology-based output spaces. This covers
the problem of inferring the semantics of logs belong-
ing to sites that do not offer a domain ontology. The
contribution is a structured prediction algorithm for-
mulated for the case of complex output objects rep-



resented as ontologies (with is-a hierarchies of classes
and relations among them).

2. MOTIVATION
Existing approaches can benefit from leveraging usage data
with semantics in the following ways: increase understand-
ability of user behavior with respect to the application do-
main; enable analysis on higher levels of abstraction e.g.
for parameters in URL (museum instead of Louvre), or for
location (capital instead of Paris), which can be also used
for privacy protection; allow formulation of more expressive
queries for mining user behavioral patterns. Furthermore,
enrichment of usage data with domain knowledge provides
a broader context of user behavior, which can be exploited
for more intelligent recommendation models.

The semantically-leveraged logs provide an added-value with
respect to their syntactic representation in being useful in-
puts for techniques such as semantic pattern mining, next-
step navigation prediction or user clustering, which usually
assume that the semantics of logs exists or are manually
derived. A more beneficial aspect is the extension of these
techniques to deal with cross-site browsing data and not only
a single Web site.

2.1 Applications
An interesting application is the integration of domain knowl-
edge in the process of discovering usage patterns. This helps
to increase the precision, and hence interpretation of the re-
trieved patterns, while ensuring different level of abstraction.
I present two approaches for discoverying browsing behav-
ior patterns, while using as basis the formal and semantic
representation of logs:

I.Ontology-based Web usage mining
The first application deals with the automatic mining of fre-
quent patterns from the sequence of event logs, which are
enriched with description from domain ontologies. While re-
cent trends in Web Usage Mining (WUM) have put the em-
phasis on the exploitation of ontologies to the pattern min-
ing process, yet they share two limitations: the ontologies
are either restricted to representations of class taxonomies
while ignoring relates among the concepts, which reduces
the problem back to the traditional generalized sequential
pattern discovery [?], or they are restricted to a single on-
tology (single Site) that is assumed to be completed with
relations. Because of the hetegoreneity of Web sites and re-
spective domain knowledge, our setting requires a mining
technique that addresses the problem when there are multi-
ple ontologies in background and not all the relations among
the concepts are established. Hence, they still need to be in-
ferred during the mining process.

As a contribution to the WUM field, with practical moti-
vation from the Web personalization field, I propose an ap-
proach for mining frequent sequential patterns in the pres-
ence of multiple domain ontologies. The mined patterns
can, then, easily be extended to association rules [?], which
provides predictions for the user’s next step navigation pref-
erence.

II. Pattern discovery with DL-LTL expressive queries
In this application, patterns are discovered from the cor-

pus of the semantically formalized logs upon issuing specific
queries that express semantic and temporal conditions of
usage behavior.

While the first application (mining) concentrates on the se-
mantics of the logs, another crucial aspect to consider when
analyzing browsing behavior is also its temporal dynamic.
Additional aspects of user browsing behavior can be discov-
ered if reasoning not only with semantic constraints, but also
with more expressive temporal conditions is made possible.
I introduce an approach to formulate queries using a tem-
poralized description logic called DL-LTL, which combines
SROIQ [9] with Lineal Temporal Logic (LTL) [1] over finite
traces.

It is further shown how to search for behavioral patterns
from the usage logs applying a query answering technique,
which is based on current model checking tools. This allows
to automatically retrieve sessions of user browsing events
that satisfy a set of semantic and temporal conditions. The
adaptation and application of the DL-LTL logic and these
techniques for the setting of Web usage analysis are novel.

3. STATE OF THE ART
The contributions related to this thesis are grouped into
works dealing with 1) the modeling of user browsing behav-
ior at multiple Web sites, 2) formal and semantic description
of usage logs, and 3) exploitation of ontologies in Web usage
mining, and 4) prediction of structured data.

3.1 Modeling Cross-site User Browsing Behav-
ior

Interest to characterize online behavior has started much
earlier with works such as those of Catledge et al. [5],
and Montgomery et al. [18] that try to identify browsing
strategies and patterns in the web. Browsing activity has
been studied and modeled, e.g. Bucklin et al. [4] and others,
usually exploiting server-side logs of visitors in a specific
website.

Regarding the modeling of browsing behavior at multiple
websites, Downey et al. [8] propose a state machine rep-
resentation for describing search activities. The present an
approach for modeling and analyzing user behavior, focusing
on the search activities and what users do when they depart
the search engine. Park and Fader [20] present a stochastic
timing model of cross-site user visit behavior, using informa-
tion from one site to explain the behavior at another. While,
Johnsonet al.[12] study online search and browsing behavior
across competing e-commerce sites.

The works in this category do not particularly apply seman-
tic techniques or ontologies for behavior modeling.

3.2 Ontologies in Usage Mining
There is an extensive body of work dealing with usage log
analysis and mining, but we focus on the combination of
these techniques with semantic technologies, which start
with contributions such as Stumme et al. [22] and Oberle
et al. [19]. In this field, research has been mostly focused
on search query logs or user profiling. Recent approaches,
which use semantics for extracting behavior patterns from



web navigation logs, are presented by Yilmaz et al. [26] and
Mabroukeh et al. [14].

Vanzin et al. [25] present ontology-based filtering mecha-
nisms for the retrieval of Web usage patterns. More recently,
Mehdi et al. [15] tackle the problem of mining meanining-
ful usage patterns and exploit the impact of ontologies to
solve this problem. These works are restricted to only one
domain and not cross-site browsing behavior. Hence, they
mostly deal with a mining problem in the presence of a single
ontology. It is interesting to explore further the discovery
of patterns when multiple domain ontologies are involved,
considering the establishment of mappings between them as
an additional requirement of the mining process.

It is important to note though, that the process of enriching
of logs with semantics is not the central problem of these
works. They mostly use the ontological knowledge in the
background for leveraging or optimizing the mining tech-
niques.

3.3 Semantic Formalization of Usage Logs
This group consists of works that directly deal with seman-
tic annotation of usage logs, hence mapping the requests of
Web resources to meaningful concepts from the application
domain. d’Aquin et al.[7] present the UCIAD platform1,
which applies annotation of user-centric activity data. It
relies on pre-defined URL patterns to characterize accessed
resources over which the activities are realised, and therefore
their respective semantics. As part of setting up the plat-
form, it is initially defined which is the set of websites that
are present on the considered server, as well as the URL pat-
terns,expressed as regular expressions, enable to recognise
webpages as parts of these websites. Similarly, definitions
of the user activities are also manually made in the setup
process, in order to characterize and give semantics to the
user actions.

The work of Tvarozek et al. [24], while actually focusing
on an architecture for the personalized presentation layer
of Web-based information systems, covers in one of its tech-
niques the problem of semantically annotating usage logs. In
order to create comprehensive logs of user actions, the logs
browsing events captured by a client side monitoring tool, as
well as server-side logging data, are enhanced with seman-
tics from the Web sites content using a SemanticLog tool.
This tool is based on a semantically-enabled portal, which
means that there is a conceptual ontology in the background
of the site. The mapping of an interaction of the user with
parts of the Web site, then use this ontology to generate the
annotation of the user action. In this case, the semantics of
the logs are not inferred, but rather defined in background
as part of the engineering of the site. Still, this can be fea-
sible only in the case when one is in charge of the content
of the site, and also restricted to a small set of sites. Addi-
tional manual effort in the engineering process is needed to
generate the semantic annotations.

Stühmer et al.[21] focus on processing complex events of
user interactions with annotated Web pages, and they also
present an approach for capturing and lifting these events

1http://uciad.info/ub/

in RDF. Hence, instead of dealing with the syntactical form
of events, they also address leveraging logs with semantic
information, which pertains to the actual domain knowledge
of the Web page. As in the previous work, this technique
also assumes the presence of a semantically-enabled Web
site. In this case, RDFa is used to support the semantics
embedded within actual Web page data and allow reusable
semantic markup inside of Web pages.

The related works in this group are restricted to a man-
ual approach for enriching the logs with semantics. This
limitation poses a significant burden when we need to anal-
yse browsing behavior at various Web sites, which leads to
immense efforts of extracting the semantics of logs and map-
ping them to respective domain ontologies. Moreover, it is
assumed that the domain ontology is provided. This leaves
the problem of inferring (learning) the semantic types of logs
for non-semantically enabled sites still a challenge.

3.4 Prediction of Structured Data
Machine Learning today offers a broad range of methods for
classification and regression, but only a few cover the prob-
lem of predicting complex objects, such as trees or graphs.
The approaches dealing with prediction of structured and in-
terdependent output data are principally grouped into those
using probabilistic models (e.g. Conditional Graphical Mod-
els, HMM) and those using discriminative models (e.g. Max-
Margin Structured Classification, Energy-Based Models, SVM).

In the latter group, Support Vector Machines (SVM) for
structured and interdependent output spaces [23, 11] of-
fer solid theoretical foundations, as well as very high effi-
ciency for the structured prediction approach. While struc-
tural SVMs provide a generalized formulation of the learning
problem, its state of the art applications cover only the case
when the output object are sequences or trees.

There is still the need to reformulate the learning problem,
and further adapt the SVMs for the case when the output
instances are objects represented as ontologies. In this case,
ontologies comprise not only a hierarchical structure of the
classes (is-a hierarchy) in the output space, but also a set
of semantic relations between these classes. The difficulty
of the prediction problem now increases, since it requires
learning a model that takes into account the semantics of
the ontology in the output space, which is an additional
requirement when compared to the current techniques that
deal with general graphs or trees.

4. FORMALIZATION OF WEB BROWSING
BEHAVIOR

When browsing the Web, users interact with Web resources
via browsers interface (e.g. clicking links, submitting HTML
forms, etc.). These interactions can be recorded as usage
data in forms of Web server or client-side logs. We use the
term browsing event to describe the basic component of user
behavior in performing activities with the Web browser di-
rectly.

Example 1. (Cross-site Browsing Logs)
ID Time User Action
1 [17:04:14:35] http://www.avis.com/car-rental/reservation/



start-reservation.ac?resForm.pickUpLocation=Lyon
1 [17:11:49:21] http://www.google.de/search?q=Lyon+www2012
1 [17:11:49:33] http://dbpedia.org/page/Lyon
1 [17:11:49:39] http://data.semanticweb.org/conference/
www/2011/demo/a-demo-search-engine-for-products

In this running example of usage logs, the user starts a car
rental reservation at Avis, next performs search at Google,
and then visits sequentially the page of Lyon at DBpedia 2

and the page of a demo paper at Semantic Web Dog Food 3.
The last two sites are semantically-enabled, thus, offer a do-
main ontology and data publishing as Linked Open Data.

If each log entry is represented as a meaningful event from
the application domain where it is issued, then user behavior
becomes more comprehensible. The context of the event can
be extended with additional information from the domain
(as explained in Sec. 4.2). 2

We aim at monitoring user behavior across multiple Web
sites, logging clickthrough data upon agreement of Internet
users. Each log entry is a tuple L = {UserID,URL, timestamp}
of a user ID, URL of the accessed Web resource, and real
time when this happened. These usage data logs are initially
stored in raw form, as produced upon each user interaction.

Our formalization approach, illustrated in Fig. 1, comprises
a set of techniques, such as data preprocessing, human logs
filtering, session construction, formal description of logs, and
semantic enrichment. In the following sections, we present
the definitions upon which this work is based. We then
focus on the semantic enrichment approach, which extends
our previous work [10].

The contributions of this work are: 1) a model to formally
and semantically structure usage logs, 2) an approach for
the automatic extraction of the semantics of usage logs from
heterogenous sources, in which the domain knowledge has a
semi-structured or structured formal representation, and 3)
a new approach for semi-supervised prediction with ontology-
based output spaces

4.1 Formal Model for the Representation of
Logs

Definition 1. (Event) We define a browsing event as a
tuple e = (l, T , P, t), where l is the full URL invoked, T is a
set of event types for which this event qualifies, P={p1, ..., pl}
is a set of parameters and t is the occurrence time. For sim-
plicity, we denote event time by ei.t and set of event types
by ei.T .

Each user browsing activity recorded in logs is physically
represented by a URL, but conceptually it comprises an
event that serves a particular function and relates to a spe-
cific content. We give meaning to each event issued as an
HTTP request in the logs, by mapping its respective URL to
domain concepts according to two dimensions: content and

2http://dbpedia.org
3http://data.semanticweb.org

function. An event resulting from the interaction of a user
with a specific Web page serves a particular function (e.g.
searching, browsing, login, etc.) related to some content
(e.g. flight reservation, organization, hotel, etc.).

Definition 2. (Event Type) An event can be mapped
to several types denoted by the set T = {Tc, Tf}, where Tc
is the type of content to which this event relates, Tf is the
type of function this event serves.

We have extended the definition of a browsing event with
parameters, which can be extracted based on the informa-
tion contained in the URL l. We consider three main con-
ceptual elements in a link: URL base, variable names, and
values. Based on the typical convention of URL formation,
we syntactically split the link into two basic parts: URL
base, which defines domain name, and the rest of the URL is
used to extract input variables, which are modeled as event
parameters.

Definition 3. (Parameter) An event parameter p, which
can be further classified as input or output parameter, is
a pair p=(vname, vvalue) consisting of variable name and
value.

Events are grouped into sessions, which represent a period of
sustained Web usage. The boundaries of a session are nor-
mally determined by temporal and behavioral factors (e.g.
browsing intention). We follow previous research [4] in de-
ploying an heuristic, which starts a new session after an idle
period of 30 minutes between the browsing events.

Definition 4. (Session) We denote a user session as
a tuple S = {s, Ts, Te, U}, where s = 〈e1, e2, ..., en〉 is an
ordered sequence of browsing events performed from user U ,
such that ei.t ≤ ei+1.t for all i, where i denotes the event
order in the sequence. Furthermore, Ts is the starting time
and Te the ending time of the session, such that Ts ≤ ei.t ≤
Te.

Ordering of events in a session is used later as a feature for
the supervised learning of event types, when they are not
available in the domain ontology.

For the realization of these concepts, I have use a Web
Browsing Activity Model (WAM), which I formalize as an
ontology (Fig. 2). This is also presented in the paper Hoxha
et al. [10]

Classes and Properties. Classes in WAM are divided
in three groups: Core classes, External classes, and Type
classes. External classes are basic concepts that I reuse from
well-established ontologies. Each wam:Event is a subclass of
the concept event:Event from the Event ontology 4.

Each wam:Session has one wam:StartEvent and one wam:EndEvent,
both of type wam:Event. Class wam:User is simply charac-
terized by user IP address and ID, but the ontology allows
4http://purl.org/NET/c4dm/event.owl#



time:Instant 

wam:hasStartEvent 

event:Event 
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wam:User 
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wam:hasUser 
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wam:fullURL 

Literal 

wam:baseURL 

Literal 
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wam:contentType 
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wam:Event 

wam:EventURL 
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time:Interval 

time:TemporalEntity 

time:DateTimeDescription 

wam:hasTime 
wam:hasEvent 

wam:Session 

time:inDateTime 

Literal 

wam:order 

wam:hasInput 

Figure 2: WAM Ontology

flexible future extendability with user profiles or other at-
tributes (e.g IP-based geographical location). To annotate
of event timestamps and session interval, I reuse basic con-
cepts from OWL Time ontology, 5 which models knowledge
about time such as temporal units, instants, etc.

The ontology is expressed in OWL-2-DL with underlying
SROIQ logic [9].

4.2 Semantic Enrichment using Domain Knowl-
edge

In order to obtain semantic information about the pages that
the users have accessed, we extract domain-level structured
objects as semantic resources contained in the pages.

The main focus of this semantic enrichment approach, for-
mally described in algorithm Alg. 1, is to find the content
types belonging to each event 6. For each URL resource
request l in the logs, we use the Content Negotiation mech-
anism7 to retrieve the respective RDF representation, if it is
available. Based on the RDF, we identify the Uniform Re-
source Identifier (URI) of the resource (Alg.1, line 4). We
also retrieve the domain ontology Od of the respective Web
domain, as well as the class to which the given resource be-
longs (querying on rdf:type) (line 6). A resource may be a
member of many classes in the Od, therefore we consider all

5http://www.w3.org/2006/time#
6In this work, we focus on the contentType class only
7http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html

of them as instances of content type (line 9).

Algorithm 1 Automatic semantic enrichment of a browsing
event: findContentTypes(s)

Require: Ordered sequence of events s = 〈e1, e2, ..., en〉
Ensure: Update knowledge base with new ABox assertions

αt related to content types
for all ei ∈ s do

Get the URL ei.l of the event
3: Retrieve RDFl=retrieveRDF(ei.l) the RDF/XML

representation
Get resource URI Rl=identifyResourceURI(RDFl)
Ob= getDomainOnt(RDFl);

6: Find Tc = classMembership(Rl)
for all T ∈ Tc do

Abox Assertions
9: αt = {ContentType(T ), contentType(ei, T )}

end for
end for

12: Serialize assertions αt and update knowledge
base

An example of enriching an event with semantics is illus-
trated in Figure 3. This is the last log entry of our running
example in Ex. 1. Initially, the raw log is just a syntactic rep-
resentation of the URL request (in this case a demo paper).
We retrieve the respective RDF representation and identify
the resource with its URI. Querying (via SPARQL8) the
domain ontology, here the SWRC publications ontology, we

8http://www.w3.org/TR/rdf-sparql-query/



InProceedings 

swrc:ConferenceEvent 

swrc:InProceedings 

foaf:Person 

ns1:author 

isA 

swrc:Publication 

literal 

ns2:relatedToEvent 

ns1:name 

ID     Time        User Action   

1     [17:11:49:39]   http://data.semanticweb.org/conference/ 
                     www/2011/demo/a-demo-search-engine-for-products/html 

http://data.semanticweb.org/conference/www/2011/demo/a-demo-search-engine-
for-products/rdf 

s:<e1, e2, e3> 

e1.URI e1.ContentType 

http://data.semanticweb.org/conference/www/2011/ 
demo/a-demo-search-engine-for-products 

swrc:InProceedings foaf:Person 

http://data.semanticweb.org/person/anindya-ghose 

ns2:affiliation 

/organization/stern-school-of-business-new-york-university 

ns1:author 

ns2:affiliation 

foaf:Organization 

Semantic     Enrichment 

RDF    Retrieval 

Figure 3: Semantic Enrichment of Usage Logs

can enrich the eventt’s semantics with additional knowledge.
We find that this resource is a Demo of type InProceedings.
We can further extend the context with information like the
conference WWW2011 it belongs, the conference location,
the author of the paper, the author’s affiliation, etc.).

4.3 Leveraging usage logs with structured markup
data

The previous enrichment approach addressed Web sites that
provide semantic annotations in pure RDF format, which
even though increasing in popularity are still limited in num-
ber. For this reason, we also address another category of
sites, which provide metadata as structured markup data,
embedded in the HTML content. Annotation of HTML el-
ements with structured markup data is a technique increas-
ingly used nowadays by Web site providers [17] that en-
ables search engines, web crawlers, and browsers to extract,
automatically-process and better understand the content of
pages. Structured markup data can be provided in differ-
ent formats (such as RDFa, microdata, microformats), using
particular supporting vocabularies (also called schemas), e.g.
Open Graph Protocol,9 schema.org,10 DCMI Terms,11 etc.

We devise an approach for the semantic enrichment of user
logs with structured markup data, which we extract from
the pages that the users have visited. The Web page under
each URL from user logs is identified as a Web resource by a
unique URI.12 This resource is further enhanced with other
objects, which annotate it with descriptive metadata based
on shared schemas.

The semantic enrichment approach starts with the extrac-
tion of user browsing logs (tracked by a client toolbar) and
segmenting logs in sessions, such that one session contains
all requests of one user within a day. Therefore, there might
also be different sessions that belong to the same user. We
then filter those sessions that include pages belonging to sev-
eral sites of interest. For our experiments, we have chosen
a set of sites13 from the events (concerts, conferences, etc.)

9http://ogp.me/
10http://schema.org/
11http://dublincore.org/documents/dcmi-terms/
12Uniform Resource Identifier
13eventful.com, eventbrite.com and upcoming.yahoo.com

advertisement domain.

The next steps consist in identifying the set of unique pages
in the filtered user logs, then deploying metadata extraction
and metadata analysis techniques. We map each page to
a semantic Web resource, which we define (Def. 5) as the
atomic unit of the modelling approach.

Definition 5. (Semantic Web Resource) We define
as a semantic Web Resource an information resource from
the document Web that is identified by a dereferencable HTTP
URI (Uniform Resource Identifier), and has an RDF/XML
representation, which contains associated description of its
attributes and relations to other Web resources.

It is important to highlight that different Web sites use dif-
ferent schemas to annotate their HTML elements. We semi-
automatically align the concepts and relations among the
schemas based on their respective semantics, in order to
enable matching resources across different sites. The end
result is a reference ontology O consisting of constructs
that define the concepts and their semantic relations used
for the semantic annotation of resources across all sites. The
resources are classified into classes/concepts of the ontology
and are connected between each-other via semantic relations
(e.g. hasperformer, hasvideo). Resources are also annotated
by attributes, which are represented as RDF predicates and
respective literal values.

We perform resource duplicate detection and entity linking,
which is important for identifying pages that belong to dif-
ferent Web sites, but still semantically represent the same
resource (e.g. same performer, venue, etc.).

We detect if two resources found under different links are
duplicates, by aligning them based on their attribute pred-
icates. We have manually identified a set of rules, which
map predicates that belong to different schemas, but have
the same semantics (e.g. http://purl.org/dc/terms/title and
http://opengraphprotocol.org/schema/title).

We automatically group resources based on their type (Con-
tentType), then compare the resources of the same type
based on the values of the attributes, after aligning them by
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Figure 4: Leveraging Usage Logs with Structured Markup Data

predicate name. The values of the attributes are compared
using the Levenshtein distance. The Levenshtein distance
between two strings is defined as the minimum number of
edits needed to transform one string into the other, with
the allowable edit operations being insertion, deletion, or
substitution of a single character. In our case, we use a
pre-define threshold value (0.8) of the edit distance between
the attribute values. For example, two resources of type
Event will be classified as duplicates if they have the same
value of the attribute venue and time, whereas the values
of their title attributes have an edit distance greater than
the defined threshold.

5. SUPERVISED LEARNING OF EVENT CON-
TENT TYPES

5.1 Problem Definition
Finding the contentType class of a browsing event can be
formulated as a classification problem, borrowing from the
field of machine learning. After the deployment of the for-
malization and automatic semantic enrichment approach of
Sec. 4, we generate a session sk = 〈e1, e2, ..., en〉 (Def. 4) as
a sequence of semantically-annotated browsing events (as in
Def. 1). For most of the events in the sequence, we are able
to automatically find and assign a contentType class from
the domain ontology. But, there are also two events in sk,
where no contentType class could be derived. Hence, we fol-
low a second step of semantic enrichment that comprises a
supervised technique for learning the class, based on the ob-
served examples (i.e. already formalized events in the overall
sessions). We need to assign a particular event from the logs
to a predefined class, being in our case the contentType of
this event. Hence, we approach our problem as a classifica-
tion task, which learns a function f : E → C that maps an
event ei ∈ E s.t. ei = (li, Ti, Pi, ti) (as in Def. 1) to an out-
put class ci ∈ C. In our case, C is a set of classes belonging
to an ontology O.

5.2 Classification with Structural Support Vec-
tor Machines

In our approach, we use the generalized formulation of multi-
class SVM learning [23]. We are interested on the problem of
learning a function f : X → Y, which maps input instances
x ∈ X , which in our setting consist of the events in the logs,
to discrete outputs y ∈ Y that consist of arbitrarily num-

bered labels representing contentType classes in our events
ontology.

Lets consider the case of finding a function f that maps
each event xi from usage logs to one of the classes in Y =
{y1, ...,yn}. The problem addressed is to learn a discrimi-
nant function F : X × Y → < over input/output pairs, so
that for a given input x, we can derive a prediction by max-
imizing F over the response variables:

F (x;w) = argmax
y∈Y

F (x,y;w)) (1)

In our case, we deal with a multi-class classification prob-
lem [6], where X = {x1, ...,xK} is the input set of events of
sessions from the usage logs, Y = {y1, ...,yN} is the set of
output classes from ontology O, and w = (w1, ..., wN ) is a
stack of vectors with wn being a weight vector for the class
yn. We use the following formulations of the linear discrim-
inant functions F :

F (x,yn;w) = 〈wn,Φ(x)〉 (2)

where Φ(x) ∈ < is the vector of numeric features extracted
from x. SVM, then, solves the following optimization prob-
lem:

min
x,ξ

1

2

N∑
i=1

|| wi ||2 +
C

K

K∑
i=1

ξi (3a)

∀i,∀y ∈ Y \ yi : 〈w,Φ(xi)〉 ≥ 100∆(yn, ŷn)− ξi (3b)

with regularization parameter C and slack variables ξi for
margin violations (for details see [11]). The learning algo-
rithm optimizes the error rate during training, minimizing
prediction loss defined by a function ∆ : Y×Y → <D, where
∆(yn, ŷn) is the loss of predicting yn when the correct out-
put is ŷn.

Reasons for choosing structural SVM
There are several reasons for choosing structural SVM as
our classification approach. Firstly, SVMs in general are
shown to perform better in building complex and accurate
models [11], particularly in settings similar to ours such as
Web page categorization or purely URL-based page classi-
fication [13, 2]. Secondly, SVMs deal very well with sparse



and highly dimensional data, as is the case of the huge and
heterogeneous amounts of cross-site usage logs, which lead
to feature vectors that are large and highly sparse. At last,
structural SVMs enable learning for complex and interde-
pendent objects of the output space, leading us towards
an extension of our approach in learning a formal, struc-
tured ontology with class relationships for the classification
of events (i.e. requested resources) in the usage logs.

For our classification task, we follow a procedure comprising
the following steps:

Preparation of Training and Testing Datasets. After
the logs have been semantically formalized using our for-
malization approach, we select a portion of the data for the
classification problem. Initially, since the formalized logs
are represented as RDF triples and stored in a repository,
using SPARQL queries we extract two sets of data for train-
ing and testing, each of them containing a huge vector of
session id, URL of event and order of event belonging to
that session. We then prepare training and test datasets,
respectively. Since supervised learning needs labeled data,
a part of those generated from the mapping to the domain
ontology, which serve as ground truth values. The labels14

that are not found in the ontology are annotated manually.

Feature Selection. We select different categories of fea-
tures for the classification of event types. We first exper-
iment with whole tokens (no stemming is performed) of
URLs, and with the letter n-grams of the tokens [13]. We
also test sequential features, such as sequences of pairs of
tokens in the URL, referred as the precedence bigrams. We
further propose a new feature based not only on the URL of
the event, but on the sequential information related to the
session in which the event belong (sequential neighbors.). In
this case, the tokens of the neighboring events are also in-
cluded as features.

Feature Vector Representation. As explained earlier
(Sec. 5.1), SVMs require that each instance in the input
space is represented as a vector of real numbers. Hence, we
convert our inputs into vectors of numeric values. In or-
der to construct such feature vectors, we follow a series of
preprocessing steps aligned with our definition of the fea-
tures. Preprocessing includes tokenization, n-gram genera-
tion, and precedence bigram formation. Tokens or ngrams
derived from the URL of the event serve as binary features.

Model Selection. We experiment with the linear kernel of
structural SVM, motivated by the following reasons: high
dimensionality of the feature vectors, huge number of fea-
tures, and high number of classes/labels. We experiment
with different values of the regularization parameter C.

Evaluation Measures. To evaluate the performance of
our classification approach, we use the F-measure metric,
which is the harmonic mean of precision (π) and recall(ρ),
defined as follows:

πi =
TPi

TPi + FPi
, ρi =

TPi
TPi + FNi

(4)

14Terms label and class, as well as instance and event are
used interchangeably.

Fi =
2πiρi
πi + ρi

,macroF1 =

∑N
i=1 Fi

N
(5)

where TPi (True Positives) is the number of instances as-
signed correctly to class i; FPi (False Positives) is the num-
ber of instances that do not belong to class i, but are as-
signed to class i incorrectly; and FNi (False Negatives) is
the number of instances not assigned to class i, but which
actually belong to this class.

The F-measure values are in the interval (0,1), and larger
values correspond to higher classification quality. To com-
pute the overall F-measure score of our multi-class classifi-
cation problem, we use macro-averaging (Equation 5) as a
binary evaluation measure across the overall N classes.

We have conducted experiments with datasets of real-world
usage logs. In section 6 we provide details on the character-
istics of the datasets used for training and testing, as well
as report on the evaluation results of these experiments.

6. EVALUATION
6.1 Formalization Approach
We provide a Java SE implementation of the introduced
formalization approach, deploying the steps of processing
usage logs, cleaning, and formalization with WAM ontology
(whose consistency is checked with Pellet 1.5.2 reasoner).
We have further implemented the step of automatic semantic
enrichment of events, for which we read and query using
Jena Framework 15.

In order to show the feasibility of this approach, we per-
formed experiments by semantically formalizing logs from
the USEWOD datasets [3] featured in Table 1. The formal-
ized sessions and events are serialized in RDF, and then
imported via OpenRDF Sesame Core 2.6.0 API16 into a
repository of a Sesame Framework 17 that is made avail-
able online 18. Overall, we processed nearly one month of
usage logs from large Web sites (such as DBPedia), proving
that the approach is scalable and able to retrieve the content
types classes of more than 80% of events.

Regarding the practicality of the proposed approach, which
requires the existence of semantically-enabled websites or
sites that include RDF annotations, we note that the per-
centage of such sites in the Web is now continuously and
quickly increasing (for details see [16]).

6.2 Supervised Learning Approach
Experimental Setup. For our supervised learning exper-
iments, we used two datasets D1 and D2 of different sizes
extracted from the repository of events generated in the first
step of our formalization. These are the events belonging
to the two weeks of the SWDF part of Table 1. For both
datasets we prepared training and testing sets. The test
sets contain events for which the content type was not au-
tomatically found. We report on the characteristics of these
datasets in Table 2.

15http://incubator.apache.org/jena/
16http://www.openrdf.org/doc/sesame2/api/
17http://www.openrdf.org/
18http://46.4.66.131:8080/openrdf-
workbench/repositories/wam/query



Table 1: Results of the Formalization Approach
SWDF DBPedia 3-3

Monitoring Period 01/07/09-13/07/09 01/07/09-13/07/09
Nr. Sessions 2831 31893
Average nr. ses-
sions/day

235.92 2899

Nr. Triples 277788 > 3million
Nr. Events 10437 426k
Mode nr. events/session 4 10
% events with content-
Type classes

83% 81%

Table 2: Description of training and testing datasets
Dataset D1 Dataset D2

Training set Test set Training set Test set
Nr. events/set 974 1152 4676 4957
Total nr. events 2126 9632
Nr. classes 66 82

For dataset D1, we chose usage logs of two random consec-
utive days, extracting the events of one day (3. July) for
the training and events of another day (2. July) for testing.
Whereas for D2, we chose a larger set comprising the logs of
all the days from both weeks.

We use the implementation structSVM19 of structural SVMs
with the multi-class formulation. After experimenting with
different values of the regularization parameter C, we chose
the value 5000 to be the best one. For training, we follow a
three-fold cross-validation approach.

Experimental Results. In our experiments, we use the
token feature as the baseline. All the other experiments
additionally use each of the other features. We report on the
zero/one-error (%) and macro-F1 measures of our results.

As can be observed in Table 3, in particular the ngram (N)
and sequential neighbor features (S) play an important role
in increasing the classification accuracy. For D1 we see that
the combination of features N and S yields the most optimal
results, since the error is the smallest, while still keeping a
high value of the macro-F1 measure (which is a harmony of
precision and recall averaged accross all classes)20. For D2

we note that the precedence bigram feature gives the best
classification in terms of the 0/1 error rate. Still, as in D1,
the impact of the sequential neighbor feature yields the best
combination of both the error and the overall averaged F1

score. This proves our expectation that users sequentially
browse related resources, which can help us derive missing
semantics.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we address the issues of modeling user Web
browsing behavior, tackling the problems related to infor-
mation heterogeneity by using semantics. We present an

19http://svmlight.joachims.org/svm struct.html
20The experiments on D2, whose results are reported as N/A
, were not supported by our machine because of the high
dimesionality of feature vectors.

approach for the formalization of such behavior across mul-
tiple sites based on a newly-introduced Web browsing Ac-
tivity Model (WAM). A crucial part of the formalization is
a two-staged semantic enrichment of logs, which maps them
to events with comprehensible content types from the appli-
cation domain. In order to find such semantic annotations of
the logs, in the first stage we perfom an automatic technique
to retrieve the semantic types of logs from existing domain
ontologies of Web sites. To annotate the remaining logs of
those sites that do not provide a formal domain ontology,
we deploy a supervised learning technique via a multi-class
classification formulation. We explore for the first time the
use of Support Vector Machines with structural and inter-
dependent output spaces, as well as the exploration of new
session-related sequential features for the semantic classifi-
cation of usage logs.

The semantically-leveraged logs provide an added-value with
respect to their syntactic representation in various ways: al-
low for more expressive formulation of queries to discover
user navigation patterns; are useful input for techniques,
such as semantic pattern mining, next-step navigation pre-
diction or user clustering, which usually assume that these
semantics of logs exists or are manually derived. A more
beneficial aspect is the extension of these techniques to deal
with cross-site browsing data and not only single Web sites.

We have implemented the overall formalization approach
with both stages of the semantic enrichment and performed
experiments with real-world datasets of usage logs. We show
that the extension with the supervised classification tech-
nique increases considerably the annotation accuracy. The
introduced sequential features play an important role in en-
suring a higher classification quality.

We plan to further investigate the techniques of learning se-
mantic types (in particular function types) of usage logs, es-
pecially for semi-supervised techniques that reduce the effort
of manually labeling training data. More interestingly, this
work lays the foundations for a promising learning problem
where the output space is not a set of classes, but a struc-



Table 3: Macro-F1 measure of the experimental results (Regularization parameter C = 5000)
Dataset D1 Dataset D2

Feature Category Nr. Features zero/one-error (in %) Macro-F1 Nr. Features zero/one-error (in %) Macro-F1
Token (T) 1357 14.40 0.79 4341 13.04 0.75
Trigram (N) 4673 14.41 0.84 11205 12.99 0.69
Precedence Bigram (P) 3385 14.75 0.82 11060 11.80 0.58
Sequential Neighbors (S) 4071 13.54 0.67 13023 12.02 0.63
S+P 6099 14.06 0.73 15647 N/A N/A
N+S 7387 13.45 0.74 19887 N/A N/A

tured, formal ontology containing also the relations among
concepts. We will elaborate on these aspects in our future
work.
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