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Abstract. Much research has been done to combine the fields of Data-
bases and Natural Language Processing. While many works focus on
the problem of deriving a structured query for a given natural language
question, the problem of query verbalization – translating a structured
query into natural language – is less explored. In this work we describe
our approach to verbalizing SPARQL queries in order to create natural
language expressions that are readable and understandable by the hu-
man day-to-day user. These expressions are helpful when having search
engines generate SPARQL queries for user-provided natural language
questions or keywords and enable the user to check whether the right
question has been understood. While our approach enables verbalization
of only a subset of SPARQL 1.1, this subset applies to 85% of the 209
queries in our training set. These observations are based on a corpus of
SPARQL queries consisting of datasets from the QALD-1 challenge and
the ILD2012 challenge.
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1 Introduction

Much research has been done to combine the fields of Databases and Natural
Language Processing to provide natural language interfaces to database systems
[21]. While many works focus on the problem of deriving a structured query for
a given natural language question or a set of keywords [26, 10, 20], the problem
of query verbalization – translating a structured query into natural language –
is less explored. In this work we describe our approach to verbalizing SPARQL
queries in order to create natural language expressions that are readable and
understandable by the human day-to-day user. The verbalized form of the gen-
erated query is helpful for users since it allows them to understand how the
results have been retrieved and whether the right question has been asked to the
queried knowledge base.

In this paper we describe the current state of our SPARTIQULATION sys-
tem1 which allows verbalization of a subset of SPARQL 1.1 SELECT queries.

1 The name is derived from joining SPARQL and articulation.
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The remainder of this paper is structured as follows. Section 2 gives an
overview of our query verbalization approach in terms of our system’s archi-
tecture and the tasks that it performs. Section 3 relates it to existing work, and
in Section 4 conclusions are drawn and an outlook is provided.

2 Query Verbalization Approach

2.1 Introduction

Our approach is inspired by the pipeline architecture for natural language gen-
eration (NLG) systems and the set of seven tasks performed by such systems
as introduced by Reiter and Dale [18]. The input to such a system can be de-
scribed by a four-tuple (k, c, u, d) – where k is a knowledge source (not to be
confused with the knowledge base a query is queried against), c the communica-
tive goal, u the user model, and d the discourse history. Since we neither perform
user-specific verbalization nor do we perform the verbalization in a dialog-based
environment, we omit both the user model and the discourse history. The com-
municative goal is to communicate the meaning of a given SPARQL query q.
However, there are multiple options. Three basic types of linguistic expressions
can be used: i) statements that describe the search results where this descrip-
tion is based on the query only and not on the actual results returned by a
SPARQL endpoint (e.g. Bavarian entertainers and where they are born), ii) a
question can be formulated about the existence of knowledge of a specified or
unspecified agent (e.g. Which Bavarian entertainers are known and where are
they born? ), and iii) a query can be formulated as a command (e.g. Show me
Bavarian entertainers and where they are born). In this work we decided to ex-
plore how to verbalize queries as statements. Therefore, the communicative goal
is to verbalize a query as a statement – more precisely in English.

2.2 Components and Tasks

In this section we present our approach along the seven tasks involved in NLG
according to Reiter and Dale [18]. This work is the first step towards the ver-
balization of SPARQL queries. So far we put a focus on document structuring,
but not on lexicalization, aggregation, referring expression generation, linguistic
realisation, and structure realisation.

The pipeline architecture is depicted in Figure 1. Within the Document Plan-
ner the content determination process creates messages and the document struc-
turing process combines them into a document plan (DP) which is the output
of this component and the input to the Microplanner component. Within the
Microplanner the processes lexicalization, referring expression generation and
aggregation take place, which results in a text specification (TS) that is made
up of phrase specifications. The Surface Realizer then uses this text specification
to create the output text.
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Fig. 1. Pipeline architecture of our NLG system

Content determination is the task to decide which information to commu-
nicate in the text. In the current implementation we decided not to leave this
decision to the system. What is communicated is the meaning of the input query
without communicating which vocabularies are used to express the query. There-
fore, in this task no action is performed.

Document structuring is the task to construct messages from the input query
and to decide for their order and structure. These messages are used for repre-
senting information in the domain, such as the class to which the selected entities
belong to or the number to which the result set is limited. We present the set
of message types after introducing the notion of the main entity and the graph
transformation. Our observations are based on a corpus of SPARQL queries con-
sisting of datasets from the QALD-1 challenge2 and the ILD2012 challenge.3 The
full dataset contains 2634 SPARQL SELECT queries and associated manually
created questions. In order to leave parts of this dataset for future evaluation we
only regarded 80% of each dataset as training data. Since in our approach we
cannot yet handle all features of the SPARQL 1.1 standard, we had to exclude
some queries. Within this training set of 209 queries we excluded the queries with
the features UNION (22), GROUPBY (7), and those where the triple patterns
within the WHERE clause do not form a connected graph (3). This means that
this subset covers 85% of the queries within the training set.

We perform a transformation of the query graph, since it reduces the num-
ber of necessary message types which are shown in Table 1. Thus it simplifies
the verbalization. This transformation is based on the observation that in most
queries one variable can be identified that is rendered as the subject of a sen-

2 http://www.sc.cit-ec.uni-bielefeld.de/qald-1
3 http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/
4 For nine questions no query is given since they are out of scope regarding the datasets

provided for the challenge. 28 queries are ASK queries.
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tence. For example when querying for mountains (bound to variable ?mountain)
and their elevations (bound to variable ?elevation), then ?mountain is verbal-
ized as the subject of the verbalization mountains and their elevations. We
refer to this variable as the main entity of a query. However, for some queries
no such element exists. Consider for example the query SELECT * WHERE { ?a

dbpedia:marriedTo ?b .}. Here a tuple is selected and in a possible verbal-
ization Tuples of married entities5 no single variable appears represented as a
subject. In order to identify the main entity we define Algorithm 1 that applies
the ordered list of rules shown in Figure 2. These rules propose the exclusion of
members from a candidate set. We derived them by looking at queries within
the training set having multiple candidates. The candidate set C is initialized
with variables that appear in the select clause and the algorithm eliminates can-
didates step by step. Q denotes the set of triples within the WHERE clause of
a query, Rt is the property rdf:type and Rl is a labeling property from the set
of 36 labeling properties identified by [6]. The application of an exclusion rule
Ri to a candidate set C, denoted by Ri(C), results in the removal of the set E
proposed by the reduction rule.

Rule 1 E := {x ∈ C | ”x appears in OPTIONAL only”}
Rule 2 E := {z ∈ C | ¬∃(z,Rt, u) ∈ Q}

if ∃c1 ∈ C : ¬∃(c1, Rt, x) ∈ Q ∧ ∃c2 ∈ C : ¬∃(c2, Rt, y) ∈ Q
Rule 3 E := {z ∈ C | ¬∃(z,Rl, u) ∈ Q}

if ∃c1 ∈ C : ¬∃(c1, Rl, x) ∈ Q ∧ ∃c2 ∈ C : ¬∃(c2, Rl, y) ∈ Q

Fig. 2. Exclusion rules

The rules can be described as follows where the numbers show how often
a rule was successful in reducing the candidate set for the 209 queries within
our training set. Rule 1 (85, 40.67%) proposes removing candidates that appear
within the WHERE clause only within OPTIONAL blocks. Rule 2 (12, 5.74%)
proposes removing candidates that represent subjects that are not constrained
via rdf:type in the case that there are candidates that are constrained via
rdf:type. Rule 3 (48, 22.97%) proposes removing candidates for which no label is
constrained or requested in the case that there are candidates for which this is
the case. In some cases (64, 30.62%) no rule was applied since the candidate set
contained only a single variable. For all queries given these rules the main entity
has been identified. While our actual list of exclusion rules contained more rules
these were never applied for the given training data and thus omitted here.

We transform, as shown in Algorithm 2, queries in a way that the query graph
is converted into a graph where the main entity is the root and all edges point
away from the root if the query does not come in that shape already. Therefore
the algorithm maintains three sets of edges: edges that are already processed
(P ), edges that need to be followed (F ), and edges that need to be transformed

5 DBpedia provides no rdfs:domain and rdfs:range information, such as
foaf:Person for this property. Therefore here we give a generic verbalization to
demonstrate the problem.
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Algorithm 1 Applying reduction rules to candidate set.

if |C| = 1 then
return C

while |C| > 1 do
for all Ri ∈ R do

if |Ri(C)| > 0 then
C ← Ri(C)
if |C| = 1 then

return C
return ∅

(T ) which means reversed. An edge is reversed by exchanging subject and object
and by marking the property (p) as being reversed (pr).

Algorithm 2 Graph transformation

P ← ∅, F ← {(s, p, o) ∈ Q|s = m}, T ← {(s, p, o) ∈ Q|o = m} (init)
while F 6= ∅ or T 6= ∅ do

for all (si, pi, oi) ∈ F do
for all (sj , pj , oj) ∈ Q \ (P ∪ F ∪ T ) do

if oi = sj then
F ← F ∪ {(sj , pj , oj)}

else if oi = oj then
T ← T ∪ {(sj , pj , oj)}

Move (si, pi, oi) from F to P

for all (si, pi, oi) ∈ T do
for all (sj , pj , oj) ∈ Q \ (P ∪ F ∪ T ) do

if si = sj then
F ← F ∪ {(sj , pj , oj)}

else if si = oj then
T ← T ∪ {(sj , pj , oj)}

T ← T \ {(si, pi, oi)}
P ← P ∪ {(oi, pri , si)}

return P

We identified the set of 14 message types (MT), shown in Table 1 that allow
us to represent the 209 queries from our training set. The first 9 MTs represent
directed paths in the query graph which means that for each directed path that
begins at the main entity, we represent this path with a message. Each path
starts at the main entity (M) and consists of none to many pairs ((RV )∗) of a
resource (R) followed by a variable (V ). Moreover, they may contain a labeling
property (Rl) or the rdf:type property (Rt). V AR represent all information
about a variable, such as its name, whether it is the main entity, whether it is
selected, distinct, optional, counted, or whether any filter is specified for this
variable. The MTs ORDERBY , LIMIT , OFFSET and HAV ING represent
the respective SPARQL features.

The document plan (DP), which is the output of the Document Planner and
input to the Microplanner, structures the content as follows: in the first part,
which can later be verbalized as one ore more sentences, the main entity and its
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constraints are described, followed by a description of the requests (the variables
besides the main entity that appear in the select clause) and their constraints.
In a second part, if available and not already communicated in the first part, the
selection modifiers are verbalized. According to these 3 categories – abbreviated
with cons, req, and mod – we classify the MTs as follows. The MTs (1), (2), (4),
(6), (7), and (9) from Table 1 belong to the class cons, the MTs (3), (5), and
(8) belong to the class req. MTs (1), (2), (4), (6), (7) and (9) may also belong to
class req if they contain a variable besides the main entity that appears in the
select clause. MTs (10)− (14) belong to the class mod. While this set of message
types is sufficient for the given training set, which means that all queries can be
represented using these message types, we extended this list with 76 more types
in order to be prepared for queries such as SELECT ?s ?p ?o WHERE { ?s ?p

?o. } and SELECT ?p WHERE { ?s ?p ?o. } where instead of generating text,
canned text is used, such as All triples in the database and Properties used in
the database.

nr name nr name nr name

(1) M(RV )∗RR (2) M(RV )∗RL (3) M(RV )∗RV
(4) M(RV )∗RlR (5) M(RV )∗RlV (6) M(RV )∗RlL
(7) M(RV )∗RtR (8) M(RV )∗RtV (9) M(RV )∗RtL

(10) V AR (11) ORDERBY (12) LIMIT
(13) OFFSET (14) HAV ING

Table 1. Message types

As an example the SPARQL query in Listing 1 is represented using the 6
messages shown in Figure 3. Note that due to the graph transformation the
property onto:author is reversed which is denoted by rev: yes within the
data structure stored in the messages. This query can be verbalized as: Authors
of books with English name ”The Pillars of the Earth” and if available their
English names. Note that plural (authors, books and names instead of author,
book, and name) is used per default. The filter for English labels is stored within
the message representing the variable string.

SELECT ?uri ?string WHERE {

?books rdf:type onto:Book .

?books onto:author ?uri .

?books rdfs:label "The Pillars of the Earth"@en .

OPTIONAL {

?uri rdfs:label ?string .

FILTER (lang(? string) = ’en’)

}

}

Listing 1. Who wrote the book The pillars of the Earth? – SPARQL query

Lexicalization is the task of deciding what specific words to use for expressing
the content. For each entity we dereference its URI and in case that RDF data

6 Given that all three variables can either be selected or not selected and at least one
variable needs to be selected, this results in 7 combinations.
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type: M(RV)*RlL 
RV: [ 
  1: [ 
    R: onto:author 
    V: books 
    rev: yes 
  ] 
] 
label: [ 
  prop: rdfs:label 
  value: “The Pillars of the Earth” 
  lang: en 
] 

type: M(RV)*RlV 
RV: [ ] 
label: [ 
  prop: rdfs:label 
  var: string 
] 

type: VAR 
name: string 
opt: yes 
select: yes 
lang: en 
 

type: VAR 
name: uri 
main: yes 
 
type: VAR 
name: books 
select: no 
 

type: M(RV)*RtR 
RV: [ 
  1: [ 
    R: onto:author 
    rev: yes 
    V: books 
  ] 
] 
class: onto:Book 

Fig. 3. Messages for the SPARQL query in Listing 1.

is returned, we check if an English label is provided using one of the 36 labeling
properties defined in [6]. Otherwise, we derive a label from the URI’s local name
using the patterns introduced by Hewlett et al. in [11].

Referring expression generation is the task of deciding how to refer to an
entity. Considering the example Entertainers born in Bavaria and where they
are born. Here, they is the expression that refers to the Bavarian entertainers.

Aggregation is the task to decide how to map structures created within the
document planner onto linguistic structures such as sentences and paragraphs.
For messages of type cons and req sentence parts are created that are joined
into a single sentence. Messages of type mod are verbalized in further sentences.
Aggregation is indispensable for concise verbalization. Since we split a query
graph into (overlapping) paths where each path is represented by a message,
aggregation would exploit these overlappings.

Linguistic realization is the task of converting abstract representations of sen-
tences into real text. Text parts are generated for each of the message types (1)−
(9) from Table 1. For each such type a rule is invoked that produces a sentence
fragment, for example for the MT MRVRlL –which is an instance of the MT
M(RV )∗RlL – the rule article(lex(prop1)) + lex(prop1) + L produces for
two triples ?uri dbpedia:producer ?producer and ?producer rdfs:label

"Hal Roach" the text a producer Hal Roach. The function article choses
an appropriate article (a or an) depending on the lexicalization lex(prop1) of
the property. This fragment is added to the part of the verbalization where the
constraints for the main entity are described and may be joined by the word and

with other constraint fragments.

Structure realization is the task to add markup such as HTML code to
the generated text in order to be interpreted by the presentation system, such
as a web browser. While this could be helpful to enhance the readability of a
complex verbalization, which is the case in [2], we do not currently exploit this
opportunity.
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3 Related Work

While to the best of our knowledge no work is published on the verbalization
of SPARQL queries, related work comes from three areas: verbalization of RDF
data [24, 15, 5, 23, 28], verbalization of OWL ontologies [1, 27, 22, 3, 11, 12, 8, 19, 7,
11, 4, 25, 9, 14], and verbalization of SQL queries [16, 17, 13]. Although the first
two fields provide techniques that we can apply to improve the lexicalization
and aggregation tasks, such as the template-based approach presented in [5], the
document structuring task, on which we focus here, is rarely explored. Compared
to the SQL verbalization work by Minock [16, 17], where they focus on tuple
relational queries, our problem of verbalizing SPARQL queries is different in
the sense that we strive for having a generic approach that can be applied to
any datasource without being tied to any schema. Patterns need to be manually
created to cover all possible combinations for each relation in the schema whereas
in our work we defined a set of message types that are schema-agnostic. Koutrika
et al. [13] annotate query graphs with template labels and explore multiple graph
traversal strategies. Moreover, they identify a main entity (the query subject),
perform graph traversal starting from that entity, and distinguish between cons
(subject qualifications) and req (information).

4 Conclusions and Outlook

For the task of verbalizing SPARQL queries we focused on a subset of the
SPARQL 1.1 standard which covers 88% of the queries in a corpus of 209
SPARQL queries. Evaluation will have to show the representativeness of this
corpus compared to real-life queries and the qualities of the verbalizations gen-
erated using our SPARTIQULATION system. While in our architecture 6 tasks
are needed to generate verbalizations, our main focus has been the task of doc-
ument structuring which we described in this work. In order to realize the full
verbalization pipeline, 5 other tasks need to be explored in future work. Since the
current approach is mostly schema-agnostic – only terms from the RDFS vocab-
ulary are regarded during document structuring – we believe that this approach
is generic in terms of being applicable to queries for RDF datasources using any
vocabularies. However, in the future the tasks of lexicalization can be improved
by regarding schemas such as FOAF since persons are treated differently in ver-
balizations then non-persons, genders can be regarded etc. Having message types
designed for specific vocabularies allows to tailor the verbalization to a specific
use case and may lead to more concise verbalizations. In the current implemen-
tation message types are hard-coded thus limiting the flexibility of the approach.
Having the possibility to load a set of message types into the system would add
the possibility to integrate automatically learned or application-specific message
types.
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