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Abstract. The automatic extraction of ontologies from text and lexical resources
has become more and more mature. Nowadays, the results of state-of-the-art on-
tology learning methods are already good enough for many practical applications.
However, most of them aim at generating rather inexpressive ontologies, i.e. bare
taxonomies and relationships, whereas many reasoning-based applications in do-
mains such as bioinformatics or medicine rely on much more complex axiomatiza-
tions. Those are extremely expensive if built by purely manual efforts, and methods
for the automatic or semi-automatic construction of expressive ontologies could
help to overcome the knowledge acquisition bottleneck. At the same time, a tight
integration with ontology evaluation and debugging approaches is required to re-
duce the amount of manual post-processing which becomes harder the more com-
plex learned ontologies are. Particularly, the treatment of logical inconsistencies,
mostly neglected by existing ontology learning frameworks, becomes a great chal-
lenge as soon as we start to learn huge and expressive axiomatizations. In this chap-
ter we present several approaches for the automatic generation of expressive on-
tologies along with a detailed discussion of the key problems and challenges in
learning complex OWL ontologies. We also suggest ways to handle different types
of inconsistencies in learned ontologies, and conclude with a visionary outlook to
future ontology learning and engineering environments.

Keywords. Ontology Learning, Reasoning, Ontology Evolution, Ontology
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1. Introduction

During the last decade ontologies have become an important means for knowledge inter-
change and integration. They are used for corporate knowledge management, web portals
and communities, semantic search, and web services. A couple of ontology languages
have emerged as wide-spread means for ontology representation - among them the web
ontology language, OWL, which provides a powerful formalism for knowledge repre-
sentation and reasoning. OWL was proposed as a world-wide standard by the W3C com-
mittee, and several subsets of the OWL language with different expressivity have been
defined in order to meet the demands of a great variety of semantic applications, and of
course the great vision of the semantic web.

However, the realization of the semantic web as envisioned by Tim-Berners Lee is
still hampered by the lack of ontological resources. Building ontologies is a difficult and
time-consuming task. It usually requires to combine the knowledge of domain experts
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with the skills and experience of ontology engineers into a single effort with high demand
on scarce expert resources. We believe that this bottleneck currently constitutes a severe
obstacle for the transfer of semantic technologies into practice.

In order to address this bottleneck, it is reasonable to draw on available data, ap-
plying automated analyses to create ontological knowledge from given resources or to
assist ontology engineers and domain experts by semi-automatic means. Accordingly, a
significant number of ontology learning tools and frameworks has been developed aim-
ing at the automatic or semi-automatic construction of ontologies from structured, un-
structured or semi-structured documents. The current state-of-the-art in lexical ontology
learning is able to generate ontologies that are largely informal or lightweight ontologies
in the sense that they are limited in their expressiveness and often only consist of con-
cepts organized in a hierarchy. While less expressive, informal ontologies have proven
useful in certain application scenarios – an observation that also resonates with the so-
called Hendler hypothesis [1]: “A little semantics goes a long way.” – more and more
people tend to see the future of semantic technologies in application scenarios such as
e-business or bio-informatics which require large scale reasoning over complex domains.
These knowledge-intensive applications even more than the semantic web depend on the
availability of expressive, high-quality ontologies. However, both quality and expressiv-
ity of the ontologies which can be generated by the state-of-the-art ontology learning sys-
tems fail to meet the expectations of people who argue in favor of powerful, knowledge-
intensive applications based on ontological reasoning. While it might seem infeasible to
improve upon both at the same time, we argue that learning more expressive ontologies
(e.g. by adding disjointness axioms) does not only yield sufficiently good results, but
may also help in the task of automatic ontology evaluation, thus improving the overall
quality of learned ontologies.

In this chapter, we present two complementary approaches to the automatic gen-
eration of expressive ontologies suitable for reasoning-based applications. The first ap-
proach is essentially based on a syntactic transformation of natural language definitions
into description logic axioms. It hinges critically on the availability of sentences which
have definitory character, like “Enzymes are proteins that catalyse chemical reactions.”
Such sentences could be obtained e.g. from glossaries or software documentation related
to the underlying ontology-based application. We exemplify this approach with defini-
tions taken from a fishery glossary used in a case study at the Food and Agriculture
Organization of the United Nations (FAO).

The second approach relies on a machine learning classifier for determining dis-
jointness of any two classes. For its implementation, we developed a variety of different
methods to automatically extract lexical and logical features which we believe to provide
a solid basis for learning disjointness. These methods take into account the structure of
the ontology, associated textual resources, and other types of data sources in order to
compute the likeliness of two classes to be disjoint. The features obtained from these
methods are used to build an overall classification model which we evaluated against a
set of manually created disjointness axioms.

The support for reasoning is the major benefit of the use of expressive ontologies
grounded in logics. Reasoning can be used in different phases of the lifecycle of an on-
tology. At runtime, reasoning allows to derive conclusions from the ontology, e.g. for the
purpose of query answering over the ontology. At development time, reasoning can be
used to validate the ontology and check whether it is non-contradictory, i.e. free of log-



ical inconsistencies. The more expressive the ontology language, the more precisely the
intended meaning of a vocabulary can be specified, and consequently, the more precise
conclusions can be drawn. Introducing disjointness axioms, for example, greatly facili-
tates consistency checking and the automatic evaluation of individuals in a knowledge
base with regards to a given ontology.

Another particularly important topic for ontology learning is the challenge of deal-
ing with inconsistencies. The reason lies in the fact that all ontology learning approaches
generate knowledge that is afflicted with various forms of imperfection. The causes of
imperfection may already be in the data sources from which the ontologies are generated,
or they may be introduced by the ontology learning algorithms. To address this problem,
we illustrate in this chapter how ontology learning can be combined with consistent on-
tology evolution, a reasoning-supported process to guarantee that the learned ontologies
are kept consistent as the ontology learning procedures generate changes to the ontology
over time.

The chapter is structured as follows. In the subsequent section we provide a brief
introduction to the ontology language OWL and the main reasoning tasks in OWL as
a Description Logic. In Section 3 we present ontology learning methods for learning
expressive ontologies, particularly focusing on learning complex concept descriptions
and disjointness axioms as two expressive language elements. In Section 4 we critically
discuss the current state-of-the-art in learning expressive ontologies, analyzing problems
and open issues. In Section 5 we show how inconsistencies can be dealt with in the
context of ontology learning to guarantee a consistent evolution of the learned ontologies.
We then propose a way of integrating ontology learning and evolution into the ontology
lifecycle in Section 6. In Section 7 we present experiments in a concrete application
scenario in the domain of fishery ontologies before concluding in Section 8.

2. OWL Ontologies and Reasoning Tasks

Traditionally, a number of different knowledge representation paradigms have competed
to provide languages for representing ontologies, including most notably description log-
ics and frame logics. With the advent of the OWL Web Ontology Language, developed
by the Web Ontology Working Group and recommended by the World Wide Web Con-
sortium (W3C), a standard for the representation of ontologies has been created. Adher-
ing to this standard, we base our work on the OWL language (in particular OWL DL, as
discussed below) and describe the developed formalisms in its terms.

2.1. OWL as a Description Logic

The OWL ontology language is based description logics, a family of class-based knowl-
edge representation formalisms. In description logics, the important notions of a domain
are described by means of concept descriptions that are built from concepts (also referred
to as classes), roles (also referred to as properties or relations), denoting relationships
between things, and individuals (also referred to as instances). It is now possible to state
facts about the domain in the form of axioms. Terminological axioms make statements
about how concepts or roles are related to each other, assertional axioms (sometimes also
called facts) make statements about the properties of individuals of the domain.



We here informally introduce the language constructs of the description logic
SHOIN , the description logic underlying OWL DL. For the correspondence between
our notation and various OWL DL syntaxes, see [2]. In the description logic SHOIN ,
we can build complex classes from atomic ones using the following constructors:

• CuD (intersection), denoting the concept of individuals that belong to both C andD,
• C tD (union), denoting the concept of individuals that belong to either C or D,
• ¬C (complement), denoting the concept of individuals that do not belong to C,
• ∀R.C (universal restriction), denoting the concept of individuals that are related via

the role R only with individuals belonging to the concept C,
• ∃R.C (existential restriction), denoting the concept of individuals that are related via

the role R with some individual belonging to the concept C,
• ≥ nR , ≤ nR (qualified number restriction), denoting the concept of individuals that

are related with at least (at most) n individuals via the role R.
• {c1, . . . , cn} (enumeration), denoting the concept of individuals explicitly enumer-

ated.

Based on these class descriptions, axioms of the following types can be formed:

• concept inclusion axioms C v D, stating that the concept C is a subconcept of the
concept D,

• transitivity axioms Trans(R), stating that the role R is transitive,
• role inclusion axioms R v S stating that the role R is a subrole of the role S,
• concept assertions C(a) stating that the individual a is in the extension of the con-

cept C,
• role assertionsR(a, b) stating that the individuals a, b are in the extension of the roleR,
• individual (in)equalities a ≈ b, and a 6≈ b, respectively, stating that a and b denote the

same (different) individuals.

Using the constructs above, we can make complex statements, e.g. expressing that
two concepts are disjoint with the axiom A v ¬B. This axioms literally states that A
is a subconcept of the complement of B, which intuitively means that there must not be
any overlap in the extensions of A and B.

In the design of description logics, emphasis is put on retaining decidability of key
reasoning problems and the provision of sound and complete reasoning algorithms. As
the name suggests, Description Logics are logics, i.e. they are formal logics with well-
defined semantics. Typically, the semantics of a description logic is specified via model
theoretic semantics, which explicates the relationship between the language syntax and
the models of a domain.

An interpretation consists of a domain of interpretation (essentially, a set) and an in-
terpretation function which maps from individuals, concepts and roles to elements, sub-
sets and binary relations on the domain of interpretation, respectively. A description logic
knowledge base consists of a set of axioms which act as constraints on the interpreta-
tions. The meaning of a knowledge base derives from features and relationships that are
common in all possible interpretations. An interpretation is said to satisfy a knowledge
base, if it satisfies each axiom in the knowledge base. Such an interpretation is called a
model of the knowledge base. If there are no models, the knowledge base is said to be



inconsistent. If the relationship specified by some axiom (which may not be part of the
knowledge base) holds in all models of a knowledge base, the axiom is said to be en-
tailed by the knowledge base. Checking consistency and entailment are two standard rea-
soning tasks for description logics. Other reasoning tasks include computing the concept
hierarchy and answering conjunctive queries.

2.2. Approaches to Dealing with Inconsistencies

Standard entailment as defined above is explosive, i.e. an inconsistent ontology has all
axioms as consequences. Formally, if an ontology O is inconsistent, then for all axioms
α we have O |= α. In other words, query answers for inconsistent ontologies are com-
pletely meaningless, since for all queries the query answer will be true. To deal with
the issue of potential inconsistencies in ontologies, we can choose from a number of
alternative approaches [3]:

Consistent Ontology Evolution is the process of managing ontology changes by pre-
serving the consistency of the ontology with respect to a given notion of consistency. The
consistency of an ontology is defined in terms of consistency conditions, or invariants
that must be satisfied by the ontology. The approach of consistent ontology evolution
imposes certain requirements with respect to its applicability. For example, it requires
that the ontology is consistent in the first place and that changes to the ontology can be
controlled. In certain application scenarios, these requirements may not hold, and con-
sequently, other means for dealing with inconsistencies in changing ontologies may be
required.

Repairing Inconsistencies involves a process of diagnosis and repair: first the cause
(or a set of potential causes) of the inconsistency needs to be determined, which can
subsequently be repaired. Unlike the approach of consistent ontology evolution, repairing
inconsistencies does not require to start with a consistent ontology and is thus adequate
if the ontology is already inconsistent in the first place.

Reasoning with Inconsistent Ontologies does not try to avoid or repair the inconsis-
tency (as in the previous two approaches), but simply tries to “live with it” by trying to
return meaningful answers to queries, even though the ontology is inconsistent. In some
cases consistency cannot be guaranteed at all and inconsistencies cannot be repaired, still
one wants to derive meaningful answers when reasoning.

3. Learning Expressive OWL Ontologies

In the following we propose two complementary approaches to support the generation of
expressive ontologies suitable for reasoning-based applications. After a brief overview
of state-of-the-art methods for ontology learning we first present LExO, a prototypical
implementation supporting the automatic generation of complex class descriptions from
lexical resources (cf. Section 3.2). In Section 3.3, we focus on the task of creating dis-
jointness axioms, and describe a classification-based approach using a combination of
lexical and logical features for capturing disjointness.



3.1. Learning Ontology Elements and Basic Axioms

Ontology learning so far has focussed on the extraction of ontology elements such as con-
cepts, instances or relations, as well as simple axioms. In this section, we briefly present
some of the most frequently used methods for generating these types of primitives (for a
more complete survey see, e.g. [4]).

3.1.1. Ontology Elements

Concepts and Instances. Different term weighting measures such as TFIDF, relative
term frequency, entropy or C-value / NC-value [5] are used for identifying those terms
which are most relevant for the domain of interest. Whereas the domain is modeled by
a given document corpus each of the extracted noun phrases is assumed to represent ei-
ther a concept or an instance. The distinction between concepts and instances is typically
made depending on the part-of-speech information associated with its lexical represen-
tation, i.e. common and proper nouns.

General Relations. Approaches based on subcategorization frames rely on the assump-
tion that ontological relationships are mostly represented by verbs and their arguments.
Accordingly, selectional restrictions usually reflect domain and range restrictions of these
relations [6,7]. In this line, Navigli and Velardi [8] extract taxonomic and non-taxonomic,
i.e. general relations from glossaries and thesauri. Their approach is based on regular
expressions further restricted by syntactic and semantic constraints, as well as a word
sense disambiguation component which links extracted terms to WordNet. A more gen-
eral approach which also considers attributive descriptions of concepts has been devel-
oped by Poesio and Almuhareb [9] who evaluated the use of a machine learning clas-
sifier for selecting the most distinctive attributes and relations for each concept. Unla-
beled relations can be extracted by association rules which try to capture the semantic
correlation of two elements based on their co-occurrences in the corpus. Unlike relations
expressed by verbal or attributive phrases these anonymous relations have to be labeled
by the ontology engineer in a post-processing step [10]. In addition to these two kinds of
approaches, a number of methods for discovering particular types of relationships, e.g.
part-of relations [11], have been developed so far.

3.1.2. Axioms

Subclass-of Relations. Many approaches for learning subclass-of relationships exploit
hyponymy information in WordNet, or rely on Hearst patterns [12] as indicators for hy-
ponymy relationships. Moreover, methods based on hierarchical clustering [13,14,15]
and Formal Concept Analysis [16] have been developed for inducing taxonomies by
grouping concepts with similar lexical context. Lexical context in its simplest form con-
sists of the weighted co-occurrences of a term, but it may also include any kind of syn-
tactic dependencies such as predicates, or prepositional complements associated with a
given term.

Instance-of Relations. Distributional similarity, i.e. similarity based on lexical context,
can be considered as an indicator for certain paradigmatic relationships, which makes it a
suitable means for identifying, e.g. concept instantiation. Consequently, approaches such
as [17] assign instances to the semantically most similar class by computing the con-
textual overlap. Other approaches to learning instance-of relationships rely on manually
engineered or automatically acquired lexico-syntactic patterns [18,19].
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Figure 1. Dependency Tree (Minipar)

r u l e : r e l a t i v e c l a u s e {
a rg_0 : / / N
arg_1 : a rg_0 / C[ @role = ’ r e l ’ ]
a rg_2 : a rg_1 /V
r e s u l t : [ e q u i v a l e n t 0 [ and 0−1 2 ] ]

}
r u l e : ve rb and o b j e c t {

a rg_0 : / / V
arg_1 : a rg_0 /N[ @role = ’ obj ’ ]
r e s u l t : [ e q u i v a l e n t 0 [ some 0−1 1 ] ]
r e s u l t : [ s u b O b j e c t P r o p e r t y O f 0 0−1]

}

Figure 3. Transformation Rules

3.2. Learning Class Descriptions

LExO2 (Learning EXpressive Ontologies) [20] is among the first approaches towards the
automatic generation of ontologies featuring the full expressiveness of OWL DL. The
core of LExO is a syntactic transformation of definitory natural language sentences into
description logic axioms.

Given a natural language definition of a class, LExO starts by analyzing the syntactic
structure of the input sentence. The resulting dependency tree is then transformed into
a set of OWL axioms by means of manually engineered transformation rules. In the
following, we provide a step-by-step example to illustrate the complete transformation
process. For more (and more complicated) examples please refer to Section 7.

3.2.1. Example

Here, we assume that we would like to refine the description of the class Farmer which
could be part of an agriculture ontology: A farmer is a person who operates a farm.

Initially, LExO applies the Minipar dependency parser [21] in order to produce a
structured output as shown in Figure 1. Every node in the dependency tree contains
information about the token such as its lemma (base form), its syntactic category (e.g. N
(noun)) and grammatical role (e.g. subj), as well as its surface position. Indentation in
this notation visualizes direct dependency, i.e. each child node is syntactically dominated
by its parent.

This dependency structure is now being transformed into an XML-based format (see
Figure 2) in order to facilitate the subsequent transformation process, and to make LExO
more independent of the particular parsing component.

The set of rules which are then applied to the XML-based parse tree make use of
XPath expressions for transforming the dependency structure into one or more OWL DL
axioms. Figure 3 shows a few examples of such transformation rules in original syntax.
Each of them consists of several arguments (e.g. arg_1:. . . ), the values of which are
defined by an optional prefix, i.e. a reference to a previously matched argument (arg_0),
plus an XPath expression such as /C[@role=’rel’] being evaluated relative to that prefix.
The last lines of each transformation rule define one or more templates for OWL axioms,
with variables to be replaced by the values of the arguments. Complex expressions such
as 0-1 allow for “subtracting” individual subtrees from the overall tree structure. A more
complete listing of the transformation rules we applied can be found further below.

2http://ontoware.org/projects/lexo/



<?xml v e r s i o n = " 1 . 0 " e n c o d i n g ="UTF−8"?>
< r o o t >

<C i d ="E1 " pos ="0" >
<VBE i d ="3" pos ="3" r o l e =" i " p h r a s e =" i s " base =" be ">

<N i d ="2" pos ="2" r o l e =" s " p h r a s e =" f a r m e r ">
<Det i d ="1" pos ="1" r o l e =" d e t " p h r a s e ="A"/ >

</N>
<N i d ="5" pos ="6" r o l e =" p red " p h r a s e =" p e r s o n ">

<N i d ="E3 " pos ="4" r o l e =" s u b j " base =" f a r m e r " a n t e c e d e n t ="2" / >
<Det i d ="4" pos ="5" r o l e =" d e t " p h r a s e =" a " / >
<C i d ="E0 " pos ="7" r o l e =" r e l ">

<N i d ="6" pos ="8" r o l e ="whn" p h r a s e ="who" a n t e c e d e n t ="5" / >
<V i d ="7" pos ="9" r o l e =" i " p h r a s e =" o p e r a t e s " base =" o p e r a t e ">

<N i d ="E4 " pos ="10" r o l e =" s u b j " base ="who" a n t e c e d e n t ="5" / >
<N i d ="9" pos ="12" r o l e =" o b j " p h r a s e =" farm ">

<Det i d ="8" pos ="11" r o l e =" d e t " p h r a s e =" a " / >
</N> </V> </C> </N> </VBE> </C> </ r o o t >

Figure 2. XML Representation of Dependency Tree

A minimal set of rules for building a complete axiomatization of the Farmer example
could be, e.g. Copula, Relative Clause and Transitive Verb Phrase (see Table 1). The
resulting list of axioms (see Figure 4) in KAON23 internal syntax is directly fed into
the ontology management system which interprets the textual representation of these
axioms, and finally builds an unfolded4 class description as shown in Figure 5.

[ e q u i v a l e n t l e x o : a _ f a r m e r l e x o : a _ p e r s o n _ w h o _ o p e r a t e s _ a _ f a r m ]
[ e q u i v a l e n t l e x o : a _ p e r s o n _ w h o _ o p e r a t e s _ a _ f a r m [ and l e x o : a _ p e r s o n l e x o : o p e r a t e s _ a _ f a r m ] ]
[ e q u i v a l e n t l e x o : o p e r a t e s _ a _ f a r m [ some l e x o : o p e r a t e s l e x o : a_farm ] ]

Figure 4. Resulting Axioms

[ e q u i v a l e n t l e x o : a _ f a r m e r [ and l e x o : a _ p e r s o n [ some l e x o : o p e r a t e s l e x o : a_farm ] ] ]

Figure 5. Class Description (unfolded)

Obviously, all parts of this class description have to be normalized. After the normaliza-
tion, the final, unfolded axiomatization in DL syntax reads:

Farmer ≡ Person u ∃operate.Farm

Additionally, it may be necessary to map the ontology elements of the axiomatiza-
tion to already existing content of the ontology before the results can be used to gen-
erate suggestions for ontology changes (cf. Section 6). As shown by the large body of
research done in the domain of ontology mapping, this task is not trivial at all. Semantic
ambiguities of labels (e.g. homonymy or polysemy), as well as the fact that a single en-
tity or axiom in the ontology can have arbitrarily many lexicalizations – differing even
in their syntactic category – make it necessary to consider a multitude of possible map-
pings. Moreover, idiomatic expressions, i.e. expressions the meaning of which cannot
be directly derived from the meaning of their individual components, need to be treated
properly. Therefore, in addition to integrating a state-of-the-art mapping framework, a
significant degree of user involvement will be unavoidable in the end (see Section 6).

3http://kaon2.semanticweb.org
4By unfolding, a term borrowed from logic programming, we mean transformations like that of {A ≡
∃R.B, C ≡ A uD} to {C ≡ ∃R.B uD}. The specific for of output which we receive allows us to remove
many of the newly generated class names by unfolding, in order to obtain a more concise output.



3.2.2. Transformation Rules

Table 1 gives an overview of the most frequently used transformation rules. Each row
in the table contains the rule name (e.g. Verb with Prepositional Complement) and an
expression describing the natural language syntax matched by that rule – like, for ex-
ample, V0 Prep0 NP (pcomp-n)0, where V0 represents a verb, Prep0 a preposition and
NP (pcomp-n) denotes a noun phrase acting as a prepositional complement. Please note
that these expressions are very much simplified for the sake of presentation. The last
column shows the OWL axioms generated in each case, where X denotes the atomic
class name represented by the surface string of the complete expression matched by the
regarding transformation rule.

It is important to emphasize that this set of rules is by no means exhaustive, nor does
it define the only possible way to perform the transformation. In fact, there are many
different modeling possibilities, and the choice and shape of the rules very much depends
on the underlying application, the domain of interest or individual modeling preferences
of the user (see example Tetraploid in Section 7).

Rule Natural Language Syntax OWL Axioms

Disjunction NP0 or NP1 X ≡ NP0 t NP1

Conjunction NP0 and NP1 X ≡ NP0 u NP1

Determiner Det0 NP0 X ≡ NP0

Intersective Adjective Adj0 NP0 X ≡ Adj0 u NP0

Subsective Adjective Adj0 NP0 X v NP0

Privative Adjective Adj0 NP0 X v ¬NP0

Copula NP0 VBE NP1 NP0 ≡ NP1

Relative Clause NP0 C(rel) VP0 X ≡ NP0 u VP0

Number Restriction V0 Num NP(obj)0 X ≡ =Num V0.NP0

Negation (not) not V0 NP0 X v ¬∃V0.NP0

Negation (without) NP0 without NP(pcomp-n)1 X ≡ NP0 u ¬with.NP1

Participle NP0 VP(vrel)0 X ≡ NP0 u VP0

Transitive Verb Phrase V0 NP(obj)0 X ≡ ∃V0.NP0

Verb with Prep. Compl. V0 Prep0 NP(pcomp-n)0 X ≡ ∃V0_Prep0.NP0

Noun with Prep. Compl. NP0 Prep0 NP(pcomp-n)1 X ≡ NP0 u ∃NP0_Prep0.NP1

. . . . . . . . .
Table 1. Transformation Rules

3.3. Learning Disjointness

The feasibility of learning disjointness based on simple lexical evidence in principle has
already been shown in [22]. However, our experiments indicate that a single heuristic is
not suitable for detecting disjointness with sufficiently high precision, i.e. better than an
average human could do.

An extensive survey which we performed in order to collect experience with model-
ing disjoint classes revealed several problems frequently encountered by users who try to
introduce disjointness axioms. Based on the results of this survey we developed a variety
of different methods in order to automatically extract lexical and logical features which
we believe to provide a solid basis for learning disjointness [27]. These methods take



into account the structure of the ontology, associated textual resources, and other types
of data sources in order to compute the likeliness of two classes to be disjoint. The fea-
tures obtained from these methods are used to train a classifier that decides whether any
given pair of classes is disjoint or not. In the remainder of this Section, we will describe
those features in more detail before concluding with a summary of our experiments and
evaluation results.

3.3.1. Taxonomic Overlap

In description logics, two classes are disjoint iff their “taxonomic overlap”5 must be
empty. Because of the open world assumption in OWL, the individuals of a class do not
necessarily have to exist in the ontology. Hence, the taxonomic overlap of two classes is
considered not empty as long as there could be common individuals within the domain
of interest which is modeled by the ontology, i.e. if the addition of such an individual
does not generate an inconsistency.

We developed three methods which determine the likeliness for two classes to be
disjoint by considering their overlap with respect to (i) individuals and subclasses in the
ontology – or learned from a corpus of associated textual resources – and (ii) Del.icio.us6

documents tagged with the corresponding class labels. An additional feature indicating
disjointness is computed by determining whether (iii) any of the classes is subsumed by
the other.

Ontology Individuals and subclasses which may serve as indicators for taxonomic
overlap can be imported either from an ontology, or from a given corpus of text doc-
uments. In the latter case, subclass-of and instance-of relationships are ex-
tracted by different algorithms provided by the Text2Onto7 ontology learning framework.
A detailed description of these algorithms can be found in [23]. All taxonomic relation-
ships – learned and imported ones – are associated with rating annotations rsubclass-of

(or rinstance-of respectively) indicating the certainty of the underlying ontology learning
framework in the correctness of its results. For imported relationships the confidence
is 1.0.

The following feature fsubclass−of models the confidence for a pair (c1, c2) to be not
disjoint based on the taxonomic overlap of c1 and c2 with respect to common subclasses
(and in a similar way for instances):

fsubclass−of (c1, c2) =

∑
cvc1uc2

(rsubclass-of(c, c1) · rsubclass-of(c, c2))∑
cvc1

rsubclass-of(c, c1) +
∑

cvc2
rsubclass-of(c, c2)

(1)

Del.icio.us Del.icio.us is a server-based system with a simple-to-use interface that al-
lows users to organize and share bookmarks on the internet. It associates each URL with
a description, a note, and a set of tags (i.e. arbitrary class labels). For our experiments,
we collected |U | = 75, 242 users, |T | = 533, 191 tags and |R| = 3, 158, 297 resources,
related by |Y | = 17, 362, 212 triples. The idea underlying the use of del.icio.us in this

5We use this notion to refer to the set of common individuals.
6http://del.icio.us
7http://ontoware.org/projects/text2onto/



case is that two labels which are frequently used to tag the same resource are likely to be
disjoint, because users tend to avoid redundant labeling of documents.

In this case, we compute the confidence that c1, c2 are not disjoint as

fdel.icio.us(c1, c2) =
|{d : c1 ∈ t(d), c2 ∈ t(d)}|∑

c∈C |{d : c1 ∈ t(d), c ∈ t(d)}|+
∑

c∈C |{d : c2 ∈ t(d), c ∈ t(d)}|
(2)

where C is the set of all classes and t(d) represents the set of del.icio.us tags asso-
ciated with document d. The normalized number of co-occurrences of c1 and c2 (their
respective labels to be precise) as del.icio.us tags aims at capturing the degree of associ-
ation between the two classes.

Subsumption A particular case of taxonomic overlap is subsumption, which provides
us with additional evidence with respect to the disjointness of two classes. If one class is
a subclass of the other we assume these two classes to be not disjoint with a confidence
equal to the likeliness rsubclass-of associated with the subclass-of relationship.

3.3.2. Semantic Similarity

The assumption that a direct correspondence between the semantic similarity of two
classes and their likeliness to be disjoint led to the development of three further meth-
ods: The first one implements the similarity measure described by [24] to compute the
semantic similarity sim of two classes c1 and c2 with respect to WordNet [25]:

fwordnet(c1, c2) = sim(s1, s2) =
2 ∗ depth(lcs(s1, s2))
depth(s1) + depth(s2)

(3)

where si denotes the first sense of ci, i ∈ {1, 2} with respect to WordNet, and
lcs(s1, s2) is the least common subsumer of s1 and s2. The depth of a node n in WordNet
is recursively defined as follows: depth(root) = 1, depth(child(n)) = depth(n) + 1.

The second method measures the distance of c1 and c2 with respect to the given
background ontology by computing the minimum length of a path of subclass-of
relationships connecting c1 and c2.

fontology(c1, c2) = min
p∈paths(c1,c2)

length(p) (4)

And finally, the third method computes the similarity of c1 and c2 based on their
lexical context. Along with the ideas described in [17] we exploit Harris’ distributional
hypothesis [26] which claims that two words are semantically similar to the extent to
which they share syntactic contexts.

For each occurrence of a class label in a corpus of textual documents (see prelimi-
naries of this section) we consider all the lemmatized tokens in the same sentence (ex-
cept for stop words) as potential features in the context vector of the corresponding class.
After the context vectors for both classes have been constructed, we assign weights to all



features by using a modified version of the TFIDF formula. It differs from the original
version in that it aims at measuring the significance of terms with respect to the classes
they co-occur with rather than the documents in which they are contained.

Let vc = (fc,1, ...fc,n), n ≥ 1 be the context vector of class c where each fc,j is the
frequency of token tj in the context of c. Then we define TFc,j = fc,j ·(

∑
1≤k≤n fc,k)−1

and DFj = |
∑

c′∈C fc′,j > 0|, where C is the set of all classes. Finally, we get
f ′c,j = TFc,j · log(|C| · (DFj)−1), hence v′c = (f ′c,1, ...f

′
c,n). Given the weighted con-

text vectors v′c1
and v′c2

the confidence in c1 and c2 being not disjoint is defined as
fcontext(c1, c2) = v′c1

· v′c2
· (‖v′c1

‖‖v′c2
‖)−1 which corresponds to the cosine similarity

of v′c1
and v′c2

.

3.3.3. Patterns

Since we found that disjointness of two classes is often reflected by human language,
we defined a number of lexico-syntactic patterns to obtain evidence for disjointness re-
lationships from a given corpus of textual resources. The first type of pattern is based
on enumerations as described in [22]. The underlying assumption is similar to the idea
described in section 3.3.1, i.e. terms which are listed separately in an enumeration mostly
denote disjoint classes. Therefore, from the sentence

The pigs, cows, horses, ducks, hens and dogs all assemble in the big barn, thinking
that they are going to be told about a dream that Old Major had the previous night.8

we would conclude that pig, cow, horse, duck, hen and dog denote disjoint classes.
This is because we believe that – except for some idiomatic expressions it would be
rather unusual to enumerate overlapping classes such as dogs and sheep dogs separately
which would result in semantic redundancy. More formally:

Given an enumeration of noun phrases NP1, NP2, . . . , (and|or) NPn we con-
clude that the concepts c1, c2, . . . , ck denoted by these noun phrases are pairwise dis-
joint, where the confidence fenumeration(c1, c2) for the disjointness of two concepts c1
and c2 is obtained from the number of evidences found for their disjointness in relation to
the total number of evidences for the disjointness of these concepts with other concepts.

The second type of pattern is designed to capture more explicit expressions
of disjointness in natural language by phrases such as either NP1 or NP2 or
neither NP1 nor NP2. For both types of patterns we compute the confidence for the
disjointness of two classes c1 and c2 as follows:

fpattern(c1, c2) =
freq(c1, c2)∑

j 6=1 freq(c1, cj) +
∑

i6=2 freq(ci, c2)
(5)

where freq(ci, cj) is the number of patterns providing evidence for the disjointness
of ci and cj with 0 ≤ i, j ≤ |C| and i 6= j.

3.3.4. Evaluation

We evaluated the approach by performing a comparison of learned disjointness axioms
with a data set consisting of 2,000 pairs of classes, each of them manually tagged by

8George Orwell, Animal Farm, Secker & Warburg, London, 1945



Table 2. Evaluation against Majority Vote 100% (ADTree)

Dataset P R F Acc Accmajority

+ − avg. + − avg. + − avg.

Experts 0.896 0.720 0.808 0.903 0.703 0.803 0.899 0.712 0.806 0.851 0.738
Students 0.866 0.790 0.828 0.942 0.599 0.771 0.903 0.681 0.792 0.851 0.734

Avg. 0.881 0.755 0.818 0.923 0.651 0.787 0.901 0.697 0.799 0.851 0.736

All 0.934 0.823 0.879 0.946 0.789 0.868 0.940 0.805 0.873 0.909 0.760

6 human annotators – 3 students and 3 ontology experts9. A 10-fold cross validation
against those pairs of classes which were tagged identically by all the annotators showed
an accuracy between 85.1% and 90.9%, which is significantly higher than the majority
baseline (cf. Table 2).

In order to find out which classification features contributed most to the overall per-
formance of the classifier we performed an analysis of our initial feature set with re-
spect to the gain ratio measure. The ranking produced for data set C clearly indicates
an exceptionally good performance of the features taxonomic overlap (Section 3.3.1),
similarity based on WordNet and lexical context (Section 3.3.2), and del.icio.us (Sec-
tion 3.3.1). The contribution of other features such as the one presented in Section 3.3.3
relying on lexico-syntactic patterns seems to be less substantial. However, as the classi-
fication accuracy tested on every single feature is always below the overall performance,
the combination of all features is necessary to achieve a very good overall result.

4. Discussion

The syntactic transformation proposed in Section 3.2 creates a set of OWL axioms which
can be used to extend the axiomatization of any given class in an ontology. Our naive
implementation of this approach is as simple as efficient, but obviously requires a signif-
icant amount of manual or automatic post-processing. This is to a major extent due to a
number of problems which relate to limitations of the linguistic analysis and the trans-
formation process, as well as fundamental differences between lexical and ontological
semantics. In the following we will discuss some of these problems in more detail, and
present possible solutions.

Although the transformation takes into account some aspects of lexical semantics,
it is certainly not capable of capturing much of the intension of the terms involved in
the natural language expression that serves as an input for the transformation process.
Much of the meaning of the resulting axioms is still brought in by the semantics of
the underlying natural language terms. This does not necessarily constitute a significant
problem as long as the semantics of the description logic expressions is sufficiently “in
line” with the lexical semantics of the terms involved in their formation. Actually, the
semantics of ontological elements – not of the constructs of the ontology language, but of
the classes, properties and instances defined by means of these constructs – will always
be grounded to some extent in natural language semantics.

9The complete data set is available from http://ontoware.org/projects/leda/.



As it is impossible to express all possible aspects of a concept’s meaning by virtue
of description logic axioms, natural language labels and comments undoubtedly play a
key role in ontological knowledge representation. In fact, an ontology without natural
language labels attached to classes or properties is almost useless, because without this
kind of grounding it is very difficult, if not impossible, for humans to map an ontology
to their own conceptualization, i.e. the ontology lacks human-interpretability.

However, a grounding of ontologies in natural language is highly problematic due
to different semantics and the dynamic nature of natural language. It is important to
mention that many problems linked to either of these aspects are not necessarily specific
to ontology learning approaches such as the one we present in this chapter. Since the way
people conceive and describe the world is very much influenced by the way they speak
and vice-versa (also known as the Sapir-Whorf hypothesis), ontology engineering is often
subject to our intuitive understanding of natural language semantics. Some problems
that relate to differences between ontological and lexical semantics are discussed in the
following.

Lexical Semantics. The semantics of lexical relations fundamentally differs from the
model-theoretic semantics of ontologies. While lexical relations such as hyponymy,
antonymy or synonymy are defined over lexemes, ontological relations are used for re-
lating classes.10 And it is not obvious in all cases how to map words – especially very
abstract notions – to classes, as their extension often remains unclear.

For practical reasons it might be sensible to assume a correspondence between lexi-
cal relations and some types of axioms. Indeed, traditional ontology learning approaches
often rely on information about hyponymy and synonymy for creating subsumption hier-
archies [12], or meronymy for identifying part-of relationships [28]. However, a one-to-
one mapping between lexical and ontological semantics is problematic for various rea-
sons. Just to mention a few of them, true synonymy is very rare if existent at all in natural
language. And since tiny differences in meaning may be significant depending on the
modeling granularity of an ontology, synonymy cannot always be mapped to equivalence
in a straightforward way. Second, lexical relations such as meronymy do not need to be
transitive even if their ontological counterparts are. It is also important to mention that
hyponymy in pattern-based ontology learning is often confused with para-hyponymy [29]
as those patterns are not able to capture the necessity condition which holds for regular
hyponymy11. Finally, one has to be aware of the fact that such a mapping between lexical
and model-theoretic semantics may affect the formal correctness of an ontology – even
more, if ontology learning or engineering exclusively relies on lexico-syntactic clues for
inferring lexical relationships. Due to the informal character of natural language it is no
trouble to say, for instance, “A person is an amount of matter”. But from the perspective
of formal semantics this might be problematic as pointed out by [30].

10For example, each of these classes could be associated with one or more natural language expressions
describing the intended meaning (intension) of the class. And still, since hyponymy is not “transitive” over
(near-)synonymy it is not necessarily the case that all mutually synonymous words associated with a subclass
are hyponyms of all synonymous words associated with its superclass.

11Interestingly, this necessity condition parallels the rigidity constraint as defined by the OntoClean method-
ology [30]. A tool such as AEON [36] could therefore help to automatically detect both, cases of formally
incorrect subsumption as well as para-hyponymy relationships (e.g. “A dog is a pet.”).



Dynamics of Natural Language. Further problems with respect to the use of natural
language in ontology engineering relate to the way in which semantics are defined. While
ontologies have a clear model-theoretic semantics, the semantics of lexical relations is
defined by so-called diagnostic frames, i.e. by typical sentences describing the context in
which a pair of words may or may not occur given a certain lexical relation among them.
This way of defining lexical relations does not guarantee for stable semantics, since nat-
ural languages, other than ontology representation languages, are dynamic. That means,
each (open-class) word slightly changes its meaning every time it is used in a new lin-
guistic context. These semantic shifts, if big enough, can affect the lexical relationships
between any pair of words. And considering that natural language expressions are regu-
larly used for the grounding of ontologies they can potentially lead to semantic “incon-
sistencies”, i.e. conflicting intensional descriptions. This kind of inconsistencies can be
avoided by more precise, formal axiomatizations of ontological elements. However, it is
an open issue how many axioms are required to “pin down” the meaning of a given class
or property.

The proposed approach for learning disjointness axioms (see Section 3.3) is affected
by similar problems as it relies among others upon ontology learning methods for cap-
turing the potential overlap of any two concepts. However, one of the main weaknesses
of this approach might be that it crucially depends on the quality of the manually created
training data sets. Our user study [27] revealed a number of difficulties and misunder-
standings human ontology engineers had while creating disjointness axioms. For exam-
ple, a simple taxonomy along with natural language labels was often not sufficient for
disambiguating the sense of a given concept. And people were confused if the intensions
of two concepts were disjoint while their extensions were not – or vice versa (e.g. Woman
and US President).

5. Dealing with Inconsistencies in Ontology Learning

One of the major problems of learning ontologies is the potential introduction of incon-
sistencies. These inconsistencies are a consequence of the fact that it is inherent in the
ontology learning process that the acquired ontologies represent imperfect information.

According to [31], we can distinguish three different causes of imperfection. Imper-
fection can be due to imprecision, inconsistency or uncertainty. Imprecision and incon-
sistency are properties of the information itself – either more than one world (in the case
of ambiguous, vague or approximate information) or no world (if contradictory conclu-
sions can be derived from the information) is compatible with the given information.
Uncertainty means that an agent, i.e. a computer or a human, has only partial knowledge
about the truth of a given piece of information. One can distinguish between objective
and subjective uncertainty. Whereas objective uncertainty relates to randomness refer-
ring to the propensity or disposition of something to be true, subjective uncertainty de-
pends on an agent’s opinion about the truth of some information. In particular, an agent
can consider information as unreliable or irrelevant.

In ontology learning, (subjective) uncertainty is the most prominent form of imper-
fection. This is due to the fact that the results of the different algorithms have to be con-
sidered as unreliable or irrelevant due to imprecision and errors introduced during the
ontology generation process. There exist different approaches for the representation of



uncertainty: Uncertainty can for example be represented as part of the learned ontologies,
e.g. using probabilistic extensions to the target knowledge representation formalism, or
at a meta-level as application-specific information associated with the learned structures.

Ignoring the fact that learned ontologies contain uncertain and thus potentially con-
tradicting information would result in highly inconsistent ontologies, which do not allow
meaningful reasoning. In the following we show how inconsistencies can be dealt with
in the process of ontology learning. In particular, we show how the concept of consistent
ontology evolution can be applied in the context of ontology learning. To begin with, we
define the notion of consistency more precisely.

5.1. Logical Consistency

Logical consistency addresses the question whether the ontology is “semantically cor-
rect”, i.e. does not contain contradicting information. We say logical consistency is satis-
fied for an ontologyO ifO is satisfiable, i.e. ifO has a model. Please note that because of
the monotonicity of the considered logic, an ontology can only become logically incon-
sistent by adding axioms: If a set of axioms is satisfiable, it will still be satisfiable when
any axiom is deleted. Therefore, we only need to check the consistency for ontology
change operations that add axioms to the ontology. Effectively, ifO∪{α} is inconsistent,
in order to keep the resulting ontology consistent some of the axioms in the ontology O
have to be removed or altered.

Example. Suppose, we have generated an ontology containing the following axioms:
Pig v Mammal, Human v Mammal, Human v Biped (humans walk on two
legs), Pig v Quadruped (pigs walk on two legs), Biped v ¬Quadruped (Bipeds and
Quadrupeds are disjoint), Pig(OldMajor). This ontology is logically consistent.

Suppose we now learn from some source that Old Major walks on two legs and want
to add the axiom Biped(OldMajor). Obviously, this ontology change operation would
result in an inconsistent ontology.

5.2. Consistent Ontology Evolution

As we have already discussed in Section 2.2, the most adequate approach to dealing with
inconsistencies in ontology learning is by realizing a consistent evolution of the ontology.
The goal of consistent ontology evolution is the resolution of a given ontology change in
a systematic manner by ensuring the consistency of the whole ontology. It is realized in
two steps:

1. Inconsistency Localization: This step is responsible for checking the consistency of
an ontology with the respect to the ontology consistency definition. Its goal is to find
"parts" in the ontology that do not meet consistency conditions;

2. Change Generation: This step is responsible for ensuring the consistency of the on-
tology by generating additional changes that resolve detected inconsistencies.

The first step essentially is a diagnosis process. There are different approaches how
to perform the diagnosis step [32]. A typical way to diagnose an inconsistent ontology
is to try to find a minimal inconsistent subontology, i.e. a minimal set of contradicting
axioms. Formally, we call an ontology O′ a minimal inconsistent subontology of O,



if O′ ⊆ O and O′ is inconsistent and for all O′′ with O′′ ⊂ O′, O′′ is consistent.
Intuitively, this definition states that the removal of any axiom from O′ will result in
a consistent ontology. A simple way of finding a minimal inconsistent subontology is
as follows: We start with one candidate ontology containing initially only the axiom
that was added to the ontology as part of the change operation. As long as we have
not found an inconsistent subontology, we create new candidate ontologies by adding
axioms (one at a time) that are in some way connected with the axioms in the candidate
ontology. One simple, but useful notion of connectedness is structural connectedness:
We say that axioms are structurally connected if they refer to shared ontology entities.
Once the minimal inconsistent ontology is found, it is by definition sufficient to remove
any of the axioms to resolve the inconsistency.

In our previous example, a minimal inconsistent subontology would consist
of the axioms Pig v Quadruped, Biped v ¬Quadruped, Pig(OldMajor), and
Biped(OldMajor). The removal of any of the axioms would result in a consistent ontol-
ogy.

While the removal of any of the axioms from a minimal inconsistent subontology
will resolve the inconsistency, the important question of course is deciding which axiom
to remove. This problem of only removing dispensable axioms requires some semantic
selection functions capturing the relevance of particular axioms. These semantic selec-
tion functions can for example exploit information about the confidence in the axioms
that allows us to remove "less correct" axioms. In the resolution of the changes we may
decide to remove the axioms that have the lowest confidence, i.e. those axioms that are
most likely incorrect. We are thus able to incrementally evolve an ontology that is (1)
consistent and (2) captures the information with the highest confidence. For details of
such a process and evaluation results, we refer the reader to [22].

Based on the discussions above, we can now outline an algorithm (c.f. Algorithm 1)
to ensure the consistent evolution of a learned ontology.

Algorithm 1 Algorithm for consistent ontology learning
Require: A consistent ontology O
Require: A set of ontology changes OC

1: for all α ∈ OC, rconf(α) ≥ t do
2: O := O ∪ {α}
3: while O is inconsistent do
4: O′ := minimal_inconsistent_subontology(O,α)
5: α− := α
6: for all α′ ∈ O′ do
7: if rconf(α′) ≤ rconf(α) then
8: α− := α′

9: end if
10: end for
11: O := O \ {α−}
12: end while
13: end for

Starting with some consistent ontology O, we incrementally add all axioms gener-
ated from the ontology learning process – contained in the set of ontology changes OC



– whose confidence is equal to or greater than a given threshold t. If adding the axioms
leads to an inconsistent ontology, we localize the inconsistency by identifying a minimal
inconsistent subontology. Within this minimal inconsistent subontology we then identify
the axiom that is most uncertain, i.e. has the lowest confidence value. This axiom will be
removed from the ontology, thus resolving the inconsistency. It may be possible that one
added axiom introduced multiple inconsistencies. For this case, the above inconsistency
resolution has to be applied iteratively.

5.3. Context Information for the Resolution of Inconsistencies

Besides the general notion of confidence used above, we may rely on various other forms
of contextual information to obtain a ranking of the axioms for the resolution of incon-
sistencies. In the following we discuss what kind of contextual information can be auto-
matically generated by the ontology learning algorithms:

Axiomatic support. The axiomatic support can be defined as the relative number of
times a particular axiom was generated by an ontology learning component. Since the
methods which are applied by such a component can generate axioms of different com-
plexity, it may be necessary to define the axiomatic support based on some normal form
of the axioms.

Provenance information. Whenever ontologies are automatically generated from
structured or unstructured resources, and in particular if these resources are part of the
World Wide Web, the reliability of the results depends on the trustworthiness and qual-
ity of these resources. Therefore, associating provenance information with the learned
ontology elements does not only increase the traceability of the results (as the user can
track individual elements back to the resources they have been extracted from), but also
helps to estimate the correctness of the results.

Mapping confidence. If the ontology learning task is to extend a given ontology (as
opposed to generating an ontology from scratch) it can be necessary to map all newly
introduced properties and class descriptions to already existing ontology elements. This
helps to avoid unnecessary extensions to the ontology, but at the same time introduces
additional uncertainty caused by incorrect mappings, as suggested in Section 3.2.

Rule reliability. Ontology learning approaches based on syntactic transformation rules
(c.f. Section 3.2.2), or lexico-syntactic patterns [18] often make certain assumptions
about the reliability of their rules or patterns. These (implicit or explicit) assumptions
typically being supported by empirical data can be used to estimate the correctness of
the ontology learning results.

Classifier confidence. Supervised ontology learning approaches such as the one pre-
sented in Section 3.3 rely on a classification model built from training examples. The
classifier that can be constructed from this model will make predictions for previously
unseen data (e.g. instances to be classified as belonging to a certain class, or pairs of
classes being disjoint or not) with a confidence value that depends on the classifier type.

Relevance. In general, ontology learning from text is based on the assumption that the
domain of interest, i.e. the domain to be modeled by the learned ontology, is given by
means of the underlying document corpus. It therefore seems natural that approaches



such as [34] try to evaluate the quality, and in particular the domain coverage, of learned
ontologies by comparing them to the corpus. Similarly, the relevance of an individual on-
tology element can be estimated based on the pieces of evidence (e.g. explicit mentions)
in the corpus.

6. Integrating Learning and Evolution into the Ontology Lifecycle

In this section we sketch our vision of a semi-automatic ontology engineering process,
which integrated our previously described methods for ontology learning and evolution
along with an elaborate methodology. We describe the potential role of our approaches
within this scenario and identify the missing components.

Figure 6. Ontology Evolution Process

The overall scenario we envision for the evolution of expressive OWL ontologies
is a semi-automatic cyclic process of ontology learning, evaluation and refinement as
depicted by Figure 6. The process starts with a relatively inexpressive ontology, possibly
a bare taxonomy, which is supposed to be enriched and refined to meet the requirements,
e.g. of a reasoning-based application. In each iteration of the process, the user selects
the class to be refined, and optionally specifies appropriate resources for the ontology
generation phase (Step 1) such as

• manual user input,
• comments contained in the ontology,
• definitions extracted from ontology engineering discussions by email or Wiki,
• software documentation of the underlying application,
• available glossaries and encyclopedias (e.g. Wikipedia), or
• textual descriptions of the domain which could be obtained by initiating a

GoogleTMsearch for definitions (e.g. “define: DNS”).



A tool such as LExO (cf. Section 3.2) can analyze the given resources to identify and
extract definitory sentences, i.e. natural language descriptions of the class previously
selected by the user. These definitions are parsed and transformed into OWL DL axioms
(Step 2) that can be presented to the user, if she wants to intervene at this point.

Otherwise, the system directly proceeds to the mapping phase which aims at relating
the newly generated entities and axioms to elements in the initial ontology (Step 3). The
outcome of this phase are a number of mapping axioms which can be added to the class
axiomatization after being confirmed by the user. Then, methods for consistent ontology
evolution check for logical inconsistencies or potential modeling errors (Step 4). Based
on the learned axiomatization and additional mappings the system now suggests ontol-
ogy changes or extensions to the user (Step 5). The user now revises the ontology by
modifying or removing some of the axioms (Steps 6 and 7), before the whole process
starts over again. Further entities, e.g. those introduced by previous iterations, can be
refined until the user or application needs are satisfied.

When validating the ontology, it is certainly necessary to consider aspects beyond
that of logical consistency. We point out two aspects which we judge to be of particu-
lar importance, namely how to aid the ontology engineer to ensure on the one hand a
sufficiently high quality of the ontology and on the other hand the completeness of the
modeling process in terms of the application domain.

Quality insurance will have to be based on previous work on the field of ontology
evaluation. Since the automatic generation of expressive ontologies can potentially lead
to a substantial increase in complexity, a simple manual revision of the ontology gen-
erated by a system such as the one described here might be infeasible. Therefore, we
believe that automatic techniques for ontology evaluation will play a crucial role in the
ontology learning and engineering cycle. These techniques could check, for instance, the
ontology’s coverage with respect to a domain-specific corpus [34] or its validity in terms
of the OntoClean methodology [36].

In order to ensure completeness of the modeling process with regard to the appli-
cation domain, a structured approach for an exhaustive exploration of complex relation-
ships between classes is required. This can be realized, for example, by employing meth-
ods like relational exploration [37], which is an adaptation of attribute exploration from
Formal Concept Analysis [38] to description logics. And finally, it might also be worth-
while to consider an integration of LExO with other learning approaches which could
compensate for some of its limitations, e.g. with respect to the learnability of particular
relations between roles [39], or disjointness axioms (see Section 3.3).

7. Experiments in an Application Scenario

In this section we discuss an application scenario of ontology learning in the context of
a case study in the fishery’s domain at the Food and Agriculture Organization (FAO) of
the UN.

The FAO Fisheries department has several information and knowledge organization
systems to facilitate and secure the long-term, sustainable development and utilization of
the world’s fisheries and aquaculture. In order to effectively manage the world’s shared
fish stocks and prevent overfishing, the FAO Fishery systems manage and disseminate
statistical data on fishing, GIS data, information on aquaculture, geographic entities, de-



scription of fish stocks, etc. However, even though much of the data is “structured”, it is
not necessarily represented in a formal way, and some of the information resources are
not available through databases but only as parts of websites, or as individual documents
or images. Therefore, many or even all of these data sources could be better exploited by
bringing together related and relevant information, along with the use of the fishery on-
tologies, to provide inference-based services for policy makers and national governments
to make informed decisions.

A particular application developed within the NeOn project12 is FSDAS (Fishery
Stock Depletion Alert System), an ontology-driven decision support system for fisheries
managers, assistants to policy makers and researchers. FSDAS will be a web-based in-
telligent agent that uses networked ontologies consisting of various fisheries, taxonomic,
and geographical ontologies to aid users in discovering resources and relationships re-
lated to stock depletion and to detect probabilities of over-fishing. Fisheries ontologies,
which bring together concepts from a number of existing knowledge organization sys-
tems, help to improve language-independent extraction and the discovery of informa-
tion. Their development will allow for managing the complexity of fishery knowledge
communities, their meaning negotiation and their deployment by worldwide authorities.

In order to achieve these goals, the ontological model needs to be shaped starting
from highly structured FAO information systems, and to develop a learning capacity
from this model to incorporate data and information from other less structured systems.
Here, ontology learning becomes an integral part of the lifecycle of the fishery ontology.
Further, in order for the FSDAS to be effective, it is important that the ontologies and re-
sources it builds on are maintained and kept up-to-date, and that when applying changes
to ontologies the consistency of the ontology is guaranteed.

7.1. Learning an Ontology for the Fishery Domain

We exemplify our approach by giving a number of axiomatizations automatically gener-
ated by means of LExO and the set of rules listed by Table 1. The example sentences are
not artificial, but were selected from a fishery glossary provided by FAO.

1. Data: Facts that result from measurements or observations.
Data ≡ Fact u ∃result_from.(Measurement t Observation)

2. InternalRateOfReturn: A financial or economic indicator of the net benefits expected
from a project or enterprise, expressed as a percentage.
InternalRateOfReturn ≡ (Financial t Economic) u indicator u ∃indicator_of.(Net u
Benefit u ∃expected_from.(Project t Enterprise)) u ∃expressed_as.Percentage

3. Vector: An organism which carries or transmits a pathogen.
Vector ≡ Organism u (carry t ∃transmit.Pathogen)

4. Juvenile: A young fish or animal that has not reached sexual maturity.
Juvenile ≡ Young u (Fish t Animal) u ¬∃reached.(Sexual uMaturity)

5. Tetraploid: Cell or organism having four sets of chromosomes.
Tetraploid ≡ (Cell t Organism) u=4 having.(Set u ∃set_of.Chromosomes)

6. Pair Trawling: Bottom or mid-water trawling by two vessels towing the same net.
PairTrawling ≡ (Bottom t MidWater) u Trawling u =2 trawling_by.(Vessel u
∃tow.(Same u Net))

12http://www.neon-project.org



7. Sustained Use: Continuing use without severe or permanent deterioration in the re-
sources.
SustainedUse ≡ Continuing u Use u ¬∃use_with.((Severe t Permanent) u
Deterioration u ∃deterioration_in.Resources)

8. Biosphere: The portion of Earth and its atmosphere that can support life.
Biosphere ≡ Portionu∃portion_of.((Earthu ItsuAtmosphere)u∃can_support.Life)

Some critical remarks and observations on the examples:

1. This is a simple example, which works out very well.
2. This example shows the complex axiomatizations which can be obtained using our

approach. Here (and in other examples) we note that adjectives are so far interpreted
as being intersective – we discuss this in Section 4. Another recurring problem is the
generic nature of the role of which we tried to solve by designing the transformation
rule in a way that it adds a disambiguating prefix to the preposition as a role name
(indicator_of ). Nevertheless, the output is a reasonable approximation of the intended
meaning and would serve well as suggestion for an ontology engineer within an inter-
active process as we draft in Section 6.

3. This is a Minipar parse error. The desired solution would be
Vector ≡ Organism u (∃carry.Pathogen t transmit.Pathogen).

4. Take particular attention to the handling of negation and of the present perfect tense.
5. The natural language sentence is actually ambiguous whether the number should be

read as exactly four or at least four, and the role name having is certainly not satisfac-
tory. Even more difficult is how set of chromosomes is resolved. A correct treatment
is rather intricate, even if modeling is done manually. The class name Chromosomes
should probably rather be a nominal containing the class name as individual – which
cannot be modeled in OWL DL, but only in OWL Full. Note also that the cardinality
restriction is used as a so-called qualified one, which is not allowed in OWL DL but is
supported by most DL reasoners.

6. Same is difficult to resolve. In order to properly model this sentence, one would have
to state that two different individuals of the class Vessel are connected to the same
instantiation of Net by means of the tow role. This is not expressible in OWL DL as in
the general case, such constructions would lead to undecidability.

7. Apart from the very generic role in and the problem with adjectives already men-
tioned, this is a complex example which works very well.

8. The possessive pronoun its would have to be resolved.

8. Conclusions

In this chapter we presented two conceptual approaches and implementations for learning
expressive ontologies. LExO (cf. Section 3.2) constitutes a lexical approach to generating
complex class descriptions from definitory sentences. It can be complemented by any
general purpose ontology learning framework, or more specific solutions such as the
approach presented in Section 3.3 aiming at the automatic generation of disjointness
axioms.

Although we see a great potential in learning expressive ontologies, the discussion
shows that there are still many open issues – technical, but also very fundamental ques-



tions. The most important ones according to our perception relate to the relationship of
lexical and ontological semantics. Given a purely syntactical transformation such as the
one presented in Section 3.2, it will be crucial to investigate at which stage of the process
and in which manner particularities of both semantics have to be considered. Finally, we
will have to answer the question where the principal limitations of our approaches with
respect to the expressivity of the learned ontologies really are. It is reasonable to assume
that at least some aspects of ontological semantics cannot (or not so easily) be captured
by purely lexical ontology learning methods. However, we believe that a combination of
lexical and logical approaches could help to overcome these limitations.

In any case, learning expressive ontologies for knowledge-intensive applications will
demand a tighter integration of learning and reasoning at both development time and
runtime. One of the most important questions is how potential inconsistencies in the
ontology can be dealt with by consistent ontology evolution, for example (see Section 5).
Finally, suitable methodologies for semi-automatic ontology engineering will be needed
in order to combine ontology learning, evaluation and reasoning.
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