

24.09.2021

Call for Bachelor/Master Thesis
“Deep Learning + Knowledge Graphs”

(in English or German)

What is the topic?

Graph neural networks [1] are a group of neural network architectures which are very powerful,
as they combine deep learning architectures with graphs. Consequently, decisions made by
deep learning systems become explainable. Furthermore, these models are often outstanding
in their performance.

The focus of the proposed
thesis is to apply graph neu-
ral networks to existing
knowledge graphs like
DBpedia and Wikidata. The
student will apply existing
implementations of graph
neural networks to new ap-
plication areas (e.g., infor-
mation extraction from text).
Furthermore, own basic ap-
proaches for graph neural
networks will be developed.

[1] https://arxiv.org/pdf/1812.08434.pdf

[2] http://gcucurull.github.io/deep-learning/2020/04/20/jax-graph-neural-networks/

Which prerequisites should you have?

- Hands-on experience in machine learning, no fear to implement neural network models (un-
der guidance of the supervisors).

In case of good results, the findings of the thesis can be published as scientific paper together
with the supervisor.

Starting date: As soon as possible.

I

Karlsruher Institut für Technologie

Institut für Angewandte Informatik und

Formale Beschreibungsverfahren (AIFB)

Dr.-Ing. Michael Färber

michael.faerber@kit.edu

def GCN(nhid: int, nclass: int, dropout: float):

 """

 This function implements the GCN model that uses 2 Graph Convolutional layers.

 """

 gc1_init, gc1_fun = GraphConvolution(nhid)

 _, drop_fun = Dropout(dropout)

 gc2_init, gc2_fun = GraphConvolution(nclass)

 init_funs = [gc1_init, gc2_init]

 def init_fun(rng, input_shape):

 params = []

 for init_fun in init_funs:

 rng, layer_rng = random.split(rng)

 input_shape, param = init_fun(layer_rng, input_shape)

 params.append(param)

 return input_shape, params

 def apply_fun(params, x, adj, is_training=False, **kwargs):

 rng = kwargs.pop('rng', None)

 k1, k2, k3, k4 = random.split(rng, 4)

 x = drop_fun(None, x, is_training=is_training, rng=k1)

 x = gc1_fun(params[0], x, adj, rng=k2)

 x = nn.relu(x)

 x = drop_fun(None, x, is_training=is_training, rng=k3)

 x = gc2_fun(params[1], x, adj, rng=k4)

 x = nn.log_softmax(x)

 return x

 return init_fun, apply_fun

Contact:

Dr. Michael Färber / Frederic Bartscherer

michael.faerber@kit.edu / frederic.bartscherer@kit.edu

Figure 1. Example of a GNN implementation [2].

https://arxiv.org/pdf/1812.08434.pdf
http://gcucurull.github.io/deep-learning/2020/04/20/jax-graph-neural-networks/
mailto:michael.faerber@kit.edu
file://///VBoxSvr/shared-win/Abschlussarbeiten_AIFB_2019/2019/frederic.bartscherer@kit.edu

