Stage-oe-small.jpg

Techreport1483: Unterschied zwischen den Versionen

Aus Aifbportal
Wechseln zu:Navigation, Suche
K (Added from ontology)
K (Added from ontology)
Zeile 1: Zeile 1:
 +
{{Publikation Erster Autor
 +
|ErsterAutorNachname=Branke
 +
|ErsterAutorVorname=Jürgen
 +
}}
 
{{Publikation Author
 
{{Publikation Author
 
|Rank=3
 
|Rank=3
Zeile 4: Zeile 8:
 
}}
 
}}
 
{{Publikation Author
 
{{Publikation Author
|Rank=1
+
|Rank=4
|Author=Jürgen Branke
+
|Author=Kalyan Deb
 
}}
 
}}
 
{{Publikation Author
 
{{Publikation Author
 
|Rank=2
 
|Rank=2
 
|Author=Benedikt Scheckenbach
 
|Author=Benedikt Scheckenbach
}}
 
{{Publikation Author
 
|Rank=4
 
|Author=Kalyan Deb
 
 
}}
 
}}
 
{{Publikation Author
 
{{Publikation Author
Zeile 42: Zeile 42:
 
}}
 
}}
 
{{Forschungsgebiet Auswahl
 
{{Forschungsgebiet Auswahl
|Forschungsgebiet=Aktienkursanalyse
+
|Forschungsgebiet=Naturanaloge Algorithmen
 
}}
 
}}
 
{{Forschungsgebiet Auswahl
 
{{Forschungsgebiet Auswahl
|Forschungsgebiet=Evolutionäre Algorithmen
+
|Forschungsgebiet=Multikriterielle Optimierung
 
}}
 
}}
 
{{Forschungsgebiet Auswahl
 
{{Forschungsgebiet Auswahl
|Forschungsgebiet=Naturanaloge Algorithmen
+
|Forschungsgebiet=Aktienkursanalyse
 
}}
 
}}
 
{{Forschungsgebiet Auswahl
 
{{Forschungsgebiet Auswahl
|Forschungsgebiet=Multikriterielle Optimierung
+
|Forschungsgebiet=Evolutionäre Algorithmen
 
}}
 
}}

Version vom 8. September 2009, 10:01 Uhr


Portfolio Optimization with an Envelope-based Multi-objective Evolutionary Algorithm




Published: 2007
Nummer: 503
Institution: University of Karlsruhe, Institute AIFB
Erscheinungsort / Ort: 76128 Karlsruhe, Germany
Archivierungsnummer:1483

BibTeX



Kurzfassung
The problem of portfolio selection is a standard problem in financial engineering and has received a lot of attention in recent decades. Classical mean-variance portfolio selection aims at simultaneously maximizing the expected return of the portfolio and minimizing portfolio variance. In the case of linear constraints, the problem can be solved efficiently by parametric quadratic programming (i.e., variants of Markowitz' critical line algorithm). However, there are many real-world constraints that lead to a non-convex search space, e.g. cardinality constraints which limit the number of different assets in a portfolio, or minimum buy-in thresholds. As a consequence, the efficient approaches for the convex problem can no longer be applied, and new solutions are needed.

In this paper, we propose to integrate an active set algorithm optimized for portfolio selection into a multi-objective evolutionary algorithm (MOEA). The idea is to let the MOEA come up with some convex subsets of the set of all feasible portfolios, solve a critical line algorithm for each subset, and then merge the partial solutions to form the solution of the original non-convex problem. We show that the resulting envelope-based MOEA significantly outperforms existing MOEAs.

Download: Media:2007_1483_Branke_Portfolio_Optim_1.pdf



Forschungsgebiet

Evolutionäre Algorithmen, Multikriterielle Optimierung, Naturanaloge Algorithmen, Aktienkursanalyse