Stage-oe-small.jpg

Michael Färber: Unterschied zwischen den Versionen

Aus Aifbportal
Wechseln zu:Navigation, Suche
Zeile 42: Zeile 42:
 
{{#ask: [[Kategorie:Abschlussarbeit]] [[Betreuer::Michael Färber]] [[Abschlussarbeitsstatus::Offen]]
 
{{#ask: [[Kategorie:Abschlussarbeit]] [[Betreuer::Michael Färber]] [[Abschlussarbeitsstatus::Offen]]
 
| ?Titel
 
| ?Titel
| mainlabel=-
+
| link=subject
| headers=hide
 
 
|}}
 
|}}
 
<br />
 
<br />

Version vom 4. Oktober 2020, 18:24 Uhr

Michael Faerber 2019.png


Michael Färber ist seit 01.10.2020 Vertretungsprofessor der Forschungsgruppe Web Science am KIT-Institut AIFB.


Forschung

Michael Färbers Forschungsinteressen:

  • Natürliche Sprachverarbeitung (natural language processing),
  • Machinelles Lernen (machine learning) und
  • Wissensrepräsentation (z.B. Semantic Web).

Seine momentaner Forschungsschwerpunkt liegt im Bereich scholarly data mining. Mehr Informationen finden sich auf seiner Homepage und auf Google Scholar.
Kürzlich entwickelte und veröffentlichte Online-Demonstrationssysteme:


Kürzlich entwickelte und veröffentlichte Datensätze:



Offene Stellen & Abschlussarbeiten

Offene Hiwi-Stelle im Bereich Machine Learning, Natural Language Processing, und/oder Semantic Web Technologies: [1].

Offene, ausgeschriebene Abschlussarbeitsthemen:

 Titel
Thema4420Wie fair sind Forscher? Eine Analyse von Zerrungen bzgl. Zitaten in wissenschaftlichen Publikationen
Thema4423Automatically Recommending Citations for Texts Using Neural Networks
Thema4574Deep Learning + Knowledge Graphs
Thema4771Analyzing the Influence of Enterprises and Countries on AI Research
Thema4772GPT-3, BERT & Co.: When to use which language model?
Thema4837Alles nur Show? Ein Vergleich der Berichterstattung vor der Bundestagswahl mit dem Koalitionsvertrag
Thema4838Extracting Facts from Text: Joint Entity and Relation Extraction


Anfragen zu weiteren Abschlussarbeitsthemen zu Themen wie

  • Natural Language Processing (NLP) / Text Mining
  • Angewandtes Machine Learning
  • Semantic Web / Linked Data
  • Big Data
  • Data Science

gerne willkommen.
Viele der Abschlussarbeitsthemen können auch an einer Partnerinstitution im Ausland (z.B. Japan, Italien, Frankreich) geschrieben und vom DAAD gefördert werden, sofern die Bewerbung ein Jahr vorher stattfindet. Mehr Informationen unter Web_Science/DAAD-Stipendium.


Publikationen
Publikationen


Abschlussarbeiten
Abschlussarbeiten


Tools

FAIRnets, KB-Statistics, Linked Crunchbase, Novel Triple Extraction


Datasets

AWARE Ontology, CrunchBase Knowledge Graph, KORE 50^DYWC, Microsoft Academic Knowledge Graph, NewsBias2020, UnarXive, XLiD-Lexica


Aktive Projekte
Mediating-machines.png

AI in Peacemaking
Externer Link: https://mediatingmachines.com/

Transparent.png

ChemKB

Transparent.png

DataScore
Externer Link: https://datascore.int.kit.edu/

Digilog-logo.png

digilog@bw
Externer Link: https://digilog-bw.de

Transparent.png

IIDI

Kiglis logo.png

KIGLIS





Forschungsgebiete
Semantische Suche, Wissensrepräsentation, Maschinelles Lernen, Text Mining, Semantische Annotation, Informationsextraktion, Natürliche Sprachverarbeitung, Digitale Bibliotheken, Knowledge Discovery, Data Mining, Künstliche Intelligenz, Data Science, Semantic Web, Trustworthy AI


KIT Funktionen und Kompetenzfelder

Cognition and Information Engineering