Stage-oe-small.jpg

Lehre/Vorlesung Knowledge Discovery

Aus Aifbportal
Version vom 16. März 2021, 10:32 Uhr von Ns1888 (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche

Vorlesung Knowledge Discovery

Details zur Lehrveranstaltung
Dozent(en) Michael Färber
Übungsleiter Tarek Saier
Fach (Gebiet) Data ScienceMaschinelles LernenKünstliche Intelligenz
Leistungspunkte ECTS
Erfolgskontrolle Schriftliche Prüfung (idR.)
Semester WS


Aktuelle und ergänzende Informationen, sowie Zeiten und Räume der Lehrveranstaltung finden Sie im Vorlesungsverzeichnis der Universität.
Link zum Vorlesungsverzeichnis
Link zum Studierendenportal


Forschungsgruppe


Inhalt

Die Vorlesung gibt einen Überblick über Data Science Verfahren zur Wissensgewinnung aus strukturierten Daten und Texten. Der Wissensgewinnungsprozess umfasst Datenrepräsentationen, Data Warehouses, OLAP-Techniken, Visualisierungen und Evaluation. Als Lernverfahren werden z.B. Neuronale Netze, Matrixfaktorisierung, Instance/Memory Based Learning, Support Vector Machines, Decision Trees, Ensemble methods, und Graphische Modelle behandelt.


Literatur

Grundlegende Literatur:

  • T. Mitchell. Machine Learning. 1997
  • M. Berhold, D. Hand (eds). Intelligent Data Analysis - An Introduction. 2003
  • I.H. Witten, E. Frank. Data Mining: Practical Machine Learning Tools and Techniques. 2005