Aus Aifbportal
Wechseln zu:Navigation, Suche

Extracting Reduced Logic Programs from Artificial Neural Networks

Extracting Reduced Logic Programs from Artificial Neural Networks

Published: 2005 August
Herausgeber: Artur Garcez, Pascal Hitzler, and Jeff Ellman
Buchtitel: Proceedings of the IJCAI-05 Workshop on Neural-Symbolic Learning and Reasoning, NeSy

Referierte Veröffentlichung


Artificial neural networks can be trained to perform excellently in many application areas. While they can learn from raw data to solve sophisticated recognition and analysis problems, the acquired knowledge remains hidden within the network architecture and is not readily accessible for analysis or further use: Trained networks are black boxes. Recent research efforts therefore investigate the possibility to extract symbolic knowledge from trained networks, in order to analyze, validate, and reuse the structural insights gained implicitly during the training process. In this paper, we will study how knowledge in form of propositional logic programs can be obtained in such a way that the programs are as simple as possible — where simple is being understood in some clearly defined and meaningful way.

Download: Media:2005_906_Lehmann_Extracting_Redu_1.pdf






Neuro-symbolische Integration, Logikprogrammierung, Künstliche Intelligenz