Stage-oe-small.jpg

Inproceedings3876

Aus Aifbportal
Version vom 3. Mai 2021, 11:51 Uhr von Ka5438 (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Publikation Erster Autor |ErsterAutorNachname=Dessì |ErsterAutorVorname=Danilo }} {{Publikation Author |Rank=1 |Author=Danilo Dessì }} {{Publikation Author…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche


COCO: Semantic-Enriched Collection of Online Courses at Scale with Experimental Use Cases


COCO: Semantic-Enriched Collection of Online Courses at Scale with Experimental Use Cases



Published: 2018

Buchtitel: In Proc. of World Conference on Information Systems and Technologies (WorldCIST 2018)
Ausgabe: 746
Seiten: 1386-1396
Verlag: Springer

Nicht-referierte Veröffentlichung

BibTeX

Kurzfassung
With the proliferation in number and scale of online courses, several challenges have emerged in supporting stakeholders during their delivery and fruition. Machine Learning and Semantic Analysis can add value to the underlying online environments in order to overcome a subset of such challenges (e.g. classification, retrieval, and recommendation). However, conducting reproducible experiments in these applications is still an open problem due to the lack of available datasets in Technology-Enhanced Learning (TEL), mostly small and local. In this paper, we propose COCO, a novel semantic-enriched collection including over 43 K online courses at scale, 16 K instructors and 2,5 M learners who provided 4,5 M ratings and 1,2 M comments in total. This outruns existing TEL datasets in terms of scale, completeness, and comprehensiveness. Besides describing the collection procedure and the dataset structure, we depict and analyze two potential use cases as meaningful examples of the large variety of multi-disciplinary studies made possible by having COCO.

ISBN: 978-3-319-77711-5
Download: Media:2018 - COCO Semantic Enriched Collection of Online Courses at Scale with Experimental Use Cases.pdf
DOI Link: 10.1007/978-3-319-77712-2_133



Forschungsgruppe

Information Service Engineering


Forschungsgebiet