Aus Aifbportal
Version vom 25. Januar 2020, 14:51 Uhr von He9318 (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Publikation Erster Autor |ErsterAutorNachname=Wang |ErsterAutorVorname=Jiexin }} {{Publikation Author |Rank=2 |Author=Adam Jatowt }} {{Publikation Author |Ra…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche

Answering Event-Related Questions over Long-term News Article Archives

Answering Event-Related Questions over Long-term News Article Archives

Published: 2020 April

Buchtitel: Proceedings of the 42th European Conference on Information Retrieval (ECIR'20)
Verlag: Springer

Referierte Veröffentlichung


Long-term news article archives are valuable resources about our past, allowing people to know detailed information of events that occurred at specific time points. To make better use of such heritage collections, this work considers the task of large scale question answering on long-term news article archives. Questions on such archives are often event-related. In addition, they usually exhibit strong temporal aspects and can be roughly categorized into two types: (1) ones containing explicit temporal expressions, and (2) ones only implicitly associated with particular time periods. We focus on the latter type as such questions are more difficult to be answered, and we propose a retriever-reader model with an additional module for reranking articles by exploiting temporal information from different angles. Experimental results on carefully constructed test set show that our model outperforms the existing question answering systems, thanks to an additional module that finds more relevant documents.

Download: Media:QA_ECIR2020.pdf


Web Science


Information Retrieval, Natürliche Sprachverarbeitung, Digitale Bibliotheken